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ABSTRACT. Since the study of commutative C*-algebras is equivalent

to the study of locally compact Hausdorff spaces, one can think of °
much of algebraic topology as being the study of homotopy-invariant
functors from commutative C#%-algebras to abelian groups or modules

over some ring, and application of these to concrete topelogical
problems. Similarly, one can conceive of "non-commutative algebraic
topology" (this term was coined by E. Effros) as the study of homotopy-
invariant functors from general C*-algebras to abelian groups or modules
over a ring, and applications. Among such functors, K-theory seems to
play a distinguished role. Some of the ways K-theory naturally arises
in the study of C%-algebras will be discussed, and in particular, the
relationship between K-theory and "stable homotopy" will be explored.
Curiously, the importance of K-theory in ordinary (commutative) algebraic
topology is due in part to its role in the non-commutative setting.
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1. THE CONCEPT OF NON-COMMUTATIVE ALGEBRAIC TOPOLOGY.

Algebraic topology may be defined to be the study of topologicai problems
not directly, but rather by means of reduction to algebraic problems. The
reduction is ordinarily accomplished by means of functors from various cate-
gories of topoloéical spaces to categoriles of algebraic objects, sueh as
abelian groups or modules over some ring. There are many such functors, and
success often depends on maklng a choice well-suited to the problem at hand.

In other cases, it may be clear how to reduce the topological problem to an
algebraic one, and success may depend on developing encugh machinery (e.g.,
exact sequences, spectral sequences, and the like) for manipulating the
algebraic objects that arise.

The standard fﬁncto;s of algebrailec topology — homotopy, homology, and
cohomology — all have one basic féature: théy are homotopy-invariant, that is,
insensitive to continuous deformation. Thus although they are very useful in
helping to‘claséify spaces up to homeomorphism, they really measure something
much weaker. Accordingly, they may be viewed as functors defined on ﬁombtopy
categories of spaces, where the morphisms are homotopy classes of continuous
maps. ‘

What, then, is '"non-commutative algebraic topology"? T owe this term to
Ed Effres, who infroduced it [21] a few years ago to describe the application
to (not necessarily commutative) C*-algebras of the methods of algebraic
topology. It is not hard to see the reason for the name., The category of
"pointed compact spaces”, familiar to topologists, is the category of compact
(Hausdorff) spaces with basepoint, where morphisms are continuous maps mapplng
basepoint to basepoint. This category is equivalent to that of locally compact
spaces and proper maps, since to any pointed compact space (X, we may
associate the locally compact space XU{+} . (This may be empty, although X
by assumptionrmust contain at least one point.)

l Conversely, to any locally compact space Y , we associate the pointed
compact space (Y+,+) , where Y+ is the one-point compaqtification v u{+} .
But this category is by Gelfand duality (Y > CO(Y)) equlvalent to the opposite
of the category of commutative C#-algebras, in which the morphisms are the
*-homomorphisms. Once we have a suitable notion of homotopy for C¥*-algebras
(see below), this means that the homotopy category of pointed compact spaces
may be contravariantly identified with the homotopy category of commutative
C#-algebras. The usual functors of algebraic topology, at least if one takes
them to be defined on compact spaces (rather than on, say, simplicial complexes
or CW-complexes), may therefore be viewed as homotopy functors from commutative
C#-algebras to abelian groups. Non-commutative algebraic topology would

involve extending the domain of these functors to the larger homotopy category
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of all (not necesgsarily commutative) C*-alpebras (see Figure 1).

ordinary algebraic topology

homotopy ’ ' homotopy category | — stable homotopy & cohomotopy
category of of pointed — cohomology theories
pointed c¢ompact < {paracompact, say)] —homology theories
(Hausdorff) spaces spaces — homotopy groups
N l
category of abelian
Gelfand duality groups or of
R-modules, R a commutative
ring
v non—-commutative alpebraic topology l
homotopy category | |homotopy category of ~¥~-theory
of commutative 6| (possibly non-commuta- |— Ext-theory —
C*-algebras tive) C#*-algebras —other homotopy functors??

Figure 1. Ordinary vs. non-commutative algebraic topology ‘

Several points must be railsed here. For ome thing, even if one regards the
goal of algebraic topology to be the understanding of the nicest compact spaces,
say compact smooth manifolds, one is inevitably led to the study of other
infinite-dimensional spaces not in the original category {e.g., loop spaces,
Eilenberg-MaclLane spaces, classifying spaces of various sorts, etc.) . This
makes it important to have well-behaved extensions of the original functors to
a somewhat larger category. As an example, Sech cohomology, which is perhaps
the most "natural" of all éohomology theories, extends nicely to paracompact
spaces. The most serious problem is developing the machinery of non-
commutative topology 1s that there is no obvious choice of a good homotopy
category containing both the non-commutative C#*-algebras and the analogues of
loop spaces and infinite CW complexes. The first thing one would want in such
a category would be a left adjoint © for the suspension functor & <(as
defined below). (We have reverged left and right from the usual situation of
[32, p.185] because of the contravariant correspondence between C*-algebras
and spaces.) Perhaps the o-C#%-algebras of Arveson would provide the appropriate
category. In any event, we shall not discuss thils problem here, and shall
instead work only with the homoteopy category of C*-algebrasg, (For certain
purposes, we shall also deal with certain full subcategories, such as the

category of separable C¥%-algebras.)
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A second point is that it is by no means clear which of the homotopy
functors defined on the category of commutative C*-algebras (e.g., cohomology
theories on pointed compact spaces) can be extended im a reasonable way to the
category of all C*-algebras. FExistence of such an extension certainly imposesr
certain constraints on a homotopy functor which may force it to be of a
particularly nice form, Incidentally, it is quite possible that the presence
of a large number of "non~commutative spaces” in our category may compensate
to some extent for the exclusion of analogues of infinite complexes, so that
homotopy functors extendible to the category of non-commutative C*-algebras
may come from "non-commutative classifying spaces" even simpler than the usual
clagsifying spaces asscciated by the Brown Representability Theorem. This will
be discussed more fully below.

Finaily, we should ask what the goals of non-commutative algebraic topology
are. Ultimately, these seem to be of twe sorts. On the one hand, one expects
non—commutative algebraic topology to he an increasingly Important tool in
ordinary (commutative) algeﬁraic topology. The clearest evidence for this seems
to be the application of the K-homology and Ext-functors of Rasparov [28,581-7]
and Brown-Douglas-Filimore ([20],[20],[4]) to provide a good setting for the
Atlyah~Singer Index Theorem, the use by Connes of non-commutative C#*-algebras
for the computation of invariants of foliated manifolds {14}, and work by
RKagparov [28,58] and Mi%éénko([33},[34])relating the non-commutative topology
of group C*-algebras to "higher sipnatures” in differential topelogy. On the
other hand, non-commutative algebraic topology should be an increasingly
important tool in the study of C*-algebras for thelr own sake {see for instance
[19]) and in non-commutative harmonic analysis (e.g., [40]), Just as in
ordinary topology we cannot understand spaces up to homeomorphism imtil we at
least know something about coarser invariants such as homology groups, so we
cannot expect to understand the classification of C#-algebras without some
knowleége of their coarsest algebraic invariants.

We conclude this section by summarizing the basic definitions and con-
structions that will be needed below. These concepts have been collected from
various sources and it seems hard to establish priority for any single author;
howvever, key references are [27]1, [31], and [7]. Much of what we say could be
made to work for (non C*%-) Banach algebras, but for simplicity we restrict
attention to C#*-algebras. Thus © generally denotes the C#~algebra tensor
product (when it's unique; otherwise one should distinguish between @min and
@max ). Note that for any C#-algebra A , the algebra C{[0,1],A) of
continuous functions from the unit interval into A may be identified with
C([0,1]) ® A . Also note that we generally do not require C*-algebras to have

a unit.
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Suppose A and B are 6*—algebras and a,BP: A= B are *-homomorphisms.
We say o and B are homotopic if there exists a *-homomorphism
h: A~ C({0,1],B) (called a homotopy) such that h(0) = o and h(1) = 8 .
Here, for 0 <t <1, h(t) denotes composition of h with the map “evalua-
tion at £ c({c,1},8) - B . Homotopy 1s an equivalence relation on

*-homomorphisms. A *-homomorphism o ds called null-homotopic if it is homo-

toplc to the zero-map A > 0% B . A C*-algebra A is called contractible if
the identity map idA: A+ A is null-homotopic. Given any C*-algebra A ,
the cone on A is defined to be the algebra
CA = CO((O,l],A) = {f e C([0,2],A): £(0) =0 } .
Note that CA 1is always contractible,
Given a *-homomorphism ¢: A + B , we define the associated mapping comne
c, = {(f,a): feCB,ach, £(1) = ¢(a)}
and mapping cylinder

2z, = ((E,): £ e CI0,11,B) , a e A, £(1) = ¢(a)] .

Note that C¢ is an ideal in Z¢ with Z¢/C¢ Zs , and that the map y: Z®+ A

defined by (f,a)l> a 1s a homotopy equivalence. (In other words, if
x(a) = {constant function with value ¢(a),a) , then xop and Poy are homo-—

topic to the identity maps on Z, and on A , respectively.} Finally, we

¢
define the suspension functor ¥ by

TA = {f e cA: f£f(1) = 0} COC[R) 8 A
L9 = id ® ¢: C_(R)BA » C_(R)®B .
COGR) 0 0

All of the above defimitions correspond under Gelfand duality to the usual
topological definitions in the event that A and B are commutative. Note
also that if ¢: A+ B 1is a surjective *-homomorphism with kernel J , then

we have a short exact sequence

¢ B
0+J3 C > B> 0,
where B(f,a) = £ and afx) = (0,x} . In other words, C, dis an extension of

¢
a contractible algebra by J , and so may be regarded as "weakly homotopy

equivalent” to J (in the sense that © induces isomorphisms a,: H(J) —+ H(C¢)
for all homotopy functors H giving rise to "long exact homology seguences';
examples of such functors will be discussed later). We also note that there is

a canonical short exact sequence of C*-algebras

1 P
0 » 8B +C¢+ A >0,

where (f,a) =a and 1(f) = (£,0)
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2. THE UBIQUITY OF K-THEORY IN NON~COMMUTATIVE ALGEBRAIC TOPOLOGY.

Among the homotopy-invariant functors from C#*-algebras to abellan groups,
there are two that seem to play an especially distinguished role: Ky and Kl .
Good references for the construction and basic properties of these functors
are [46] and [26; n.b. Exercise II.6.14), although the notation in both of these
references differs from that which we will be using here. TFor a C*-algebra A
with unit, K (A) 1is the usual Ko-group of algebralc K-theory, the Grothendieck
group of the category of finitely generated projective A-modules. K (A) 1is-
the "Karoubi Kl—group , which may be defined as 1im GL(n,A)/GL(n,A)O , where
GL{n,A) 1is the topological group of invertible nxn matrices with entries in
A, and GL(n,A)O is its identity compoment. Note that the Karoubl Kl-group
is usually a proper quotient of the "Bass K -group" of algebraic R-theory (see

[26, Exercise II.6.13] for a comparison). ior a C*—algebra without unit, K . (A)

is defined to be ker(Kj(A ) »-Kj(m)) , where A denotes the algebra obtained

by adjoining an identity to A . One may also define Kj(A) to be KO(EjA),

j > 0, then define K (A) for negative J using the Bott periodicity theorem.

If Y is a locally compact space, then K (C (1)) = _j(Y) is topological

(complex) K-~theory of Y with compact supports, sometimes denoted KU j(Y) .
The family K, = {Kj}jsz of functors from C*-algebras to abelian groups

has the following seven key properties:

(2.1) 1) homotopy invariance: if o,B: A > B are homotopic, then
Kj(u) = Kj(B) for all j . This implies the essentially equivalent property
that Kj(A) = 0 for all j 1if A is contractible.

2) compatibility with suspension: anzk = Kj+k , where = denotes

natural equivalence of functors, for any integers i,k with k> 0.

3) exactness: 1if
0+J+A>B~>0

is a short exact sequence of C*-algebras, K, induces an asgoclated (doubly
infinite) long exact sequance of abelian groups

...-*-K (B)+K(J)+K(A)+K(B)+K (J)+... .

Furthermore, the boundary maps 3 are natural.

4) stability: 4f K denotes the C*-algebra of compact operators on
a separable infinite-dimensional Hilbert space, there are natural isomorphisms
Kj(A) K (AGK) for all j and for any C*-algebra A . Because of the
following property (5), this is equivalent to having natural isomorphisms
Kj(A) _'Kj(AeMn) for all j and n . (Here Mn denotes nxn matrices Dxer
E .) HNote that X = lim Mn {C*-algebra inductive limit) and that K® Mn = K

for any =n .
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5) continuity under Iimits: the functors Kj commute with C*-
algebra- inductive limits.
6) Bott periodicity: there are natural equivalences, compatible with

Ny
the boundary maps @ of (3): Kj = Kj+2 .

7) normalization: KO(E) = Z and Kl(E) = 0 . The isomorphism
Ko(m) + 2 takes the class of a vector space to its dimension.

We remark in passing that although we shall only consider complex C¥*-
algebras and complex K-theory im this article, there 1s also an appropriate
K-theory for real C*—algeﬁras, giving rise on locally compact spaces to real
K-theory KO with compact supports. The basic properties of réal K-theory
are essentially the same except for (6) and (7) - one obtains periodicity of
. period 8 in place of (6), and (7) is replaced by.the formulas KjGR) z Z for
§ =0,4; /2 for j =1,2; 0 for j = 3,5,6,7 .

For purposes of calculation, one often needs only properties (1)-(7) above,
and not the original definition of the functors Kj . This makes it natural
to ask for an axiomatic treatment. In particular, is there another system of
functors satiéfying (1)-(7), or do the above properties characterize K-theory
uniquely? Although we shall not completely answer this question, we will show
in Section 4 that (1)~(7) characterize K-theory if we restrict our category

somevhat and interpret the periodicity axiom (6) suitably. With weaker hypo-
theses (Kj(E) sz for } even, 0 for j odd, but no a priori assumption
of functorial periodicity),the situation is still unclear, However, we will
explain what is known about the problem and suggest how furthex progress could
be made.

Note that of all our axioms, the only one involving non-commutativity in
an essential way is (4), stability. If this is dropped, and 1if one restricts
attention to the category of commutative C*-algebras, identified contravariantly
with the category of pointed compact spaces, then the axloms say that K¥ is
a periodic and continuous generalized cohomology theory on compact spaces, with
coefficient groups Kj(pt) 2z for i even, 0 for j odd. Because of the
continuity axiom, K¥* is determined by its restriction to the subcategory of
finite CW complexes (cf. [45, p.319]), on which it is given by a CW spectrum
E with ﬁj(E) 2Z for j even, 0 for j odd. (See [2,5§§1,2,6] and

" [3,Ch.11.) Periodicity says that we also have a homotopy equivalence E =+ E

of dégree 2 . This is "almost", but in fact not, enough to specify K¥*
uﬁiquely, for one could construct another CW spectrum E not of the same
homotopy type as the BU spectrum K ‘but still having the same homotopy
groups. For instance, one could construct the spectrum whose assoclated
cohomology theory is E“(x) = I Hn+2k
icity but is only rationglly h%%%topy—equivalent to K . Of course, if one had

(X,Z) ; this spectrum satisfies period-
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& natural transformation between a given theory and usual K-theory which
induced-isomorphisms of coefficient groups, then one would actually have a map
of spectra E *+ K inducing isomorphisms of homotopy groups, hence the
associated cohomology theories would coincide,-by J.H.C. Whitehead's Theorem
{2, Corollary 3.5 and §86,7].

The stability axiom (4), however, seems to introduce a radically new
element, In fact, if one is interested in "homology theories" on the category
of separable C*-algebras, (4) is an extremely matural condition, because of the
fact [11] that separable C#-algebras A and B are stably isomorphic (i.e.,
ABK = B8K) if and only if they are "strongly Morita equivalent". In turn,
strong Morita equivalence (which means identification of the #-representation
theories of two O%-algebras by means of an "imprimitivity bimodule”) is a very
natural notion of equivalence for C*-algebras, frequently useful in the study
af C%-algebras arising from harmoniclanalysis and topological dynamics (see
[371,[38] and references quoted there).

It seems therefore that a reasonable attack on the uniqueness problem for
homology theories on C#-algebras satisfying the stability axiom (4) should be
as follows: (a) first ome should study homotopy and stable homotopy in the
category of stable (A N ARK) C#*-algebras, and determine if some analogue of
the Brown Representability Theorem ([5],[6],[1]) holds; (b) then one should
study the relationship between stable homotopy in this category, which ought
to give rise to the "primordial" homology theory satisfying (3) and (4), and
K-theory, We have not yet been able to compiete this somewhat ambitious pro-
gram, but several of the necessary steps will be carried out in Sections 3 and
4 of this paper. In particular, we will derive in Section 4 a weak form of a
"yon-commutative Eilemberp-Steenrod thecrem". Without Bott periodicity, oux
results are at the moment indecisive.

We should mention the oune positive result known on axiomatic characteriza-
tion of K-theory: Karoubi and Villamayor showed in [27] that axioms (1)-(4)
above already determine the functors Kn uniquely (and thus force axioms (5)
and (6)) provided KO

this result in a sense begs the question of whether one could construct an

ig the usual Ko—functor of algebraic K-theory. However,

egsgsentially different homology theory on C*-algebras alse respecting strong
Morita equivalence (i.é., satisfying (4)). The Karoubi-Villamaycr theorem does
suggest that in some cases, Bott periocdicity (azxiom (6)) should be automatic,
and should not have to be built in from the beginning.

In the remainder of this section, we leave aside for the moment the
axiomatic characterization of K~theory, and instead review some of the ways in
which K—theoty has arisen recently in the study of C*—algebras., As the reader
will szee, K-theory is invoived in problems of many different sorts, in such a

way that one is led to suspect that the ubiquity of K-theory is not an accident
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but rather'is due te sqme‘fuﬁﬁamental role played by K-thecry in non-commutative
topology (analogous, perhaps, to the role of singular homology and cohomology
in ordinmary topology). Anyway, here is a (rather incomplete) list of some
applications of K-theory: -

(2.2) 1. K-theory has proved very useful in diséinguishing non-isomorphic
C*~algebras. For instance, KO (together with its natural order structure)
turns out to be a complete invariant for the classification of the so~called
YAF algebras" (inductive limits of finite-dimensional C*%-algebras) up to stable
isomorphism., This regult is essentially due to G. Elliott [24] - see also
{25],[23,831, and [22]. - Similarly, K-theory may be used to distinguish {from
the AF algebras and among themselves) a related class of simple C*-algebras
generated by welghted shifts, introduced by Bunce and Deddens [12]. Or it may
be used (even though it is mnot a complete isomorphism invariant) to help
classify the so-called "Cuntz algebras' generated by isometries or associated
to Markov chains ([16],[171,[18]1,119]). Finally, it has been used to show that
tﬁe reduced C*-algebras of free groups of different ranks are nouuisomorphic
[36}, a fact which has resisted attempts at a direct proof.

2. Because of the way in which KO and Kl are defined, K-theory
is useful in proving facts about projections or unitaries in C*—algebras. For
instance, L. Brown has used the K~thecry ewact sequence to show that if J. and
B are AF algebras and ¥ s an extension of - B. by J , 1.e., there exists

a short exact sequence of C%-algebras
¢+JI+>E=>B~+0 ,

then any progectlon in B lifts to a progectlon in E ({8} [22}). It feiiows
in fact that E is itself an AF algebra. Connes [13,5V] and Pimsner—
Voiculescu [36] have used K-theory calculations to show that certain simple
C#*-algebras contain no non—tr1v131 projections. '

3. K-theory of C*«algebras has prov1ded a settlng for several sorts
of index theorems for elliptlc operators, generallZlng the Atiyah-Singer
Theorem te various new situations. 'Imporfant examples afe the work of Mi%¥enko-
Fomenko on the index of an elliptic operator acting on sections of a bundle of
modules eﬁer a C*-algebra [351; the Work'of Cenneé on ﬁhe index of an elliptic
operator tangentlal to the leaves of a foliation [14], and the work of Connes~
Moscoviei on an index theorem ‘for non-compact homogeneous spaces [15}

4. K-theoxry seems to relate in an 1nteresting way harmonic analysis
on a discrete group T (as reflected in the Kngroups of C*(T)) and the topology
of the classxfying space BT . This is an idea of Kasparov {28,881 and
Mif¥enko ([331,[341); for a recent survey, see [40].
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5. K—theory is Elosely related to the classification of extensilons
of C*-algebras, and in particular to the measurement of "stable obstructions
to splitting" of extensions. This has been pointed out primarily by the work
of Browm-Douglas~Fillmore ([10],{201,[7]) and Kasparov ([291,[30]). We briefly
summarize here the construction of Kasparov -~ for further details, see the
original. papers or the survey article [39]. Suppose A and B are separable
C#-algebras with A nuclear, and one is interested in classifying C¥%-algebras
E which are extensions of A by B & ¥, i.e., which satisfy a short exact

sequence

- ™
(2.3) 0+BRK+E~+A+0Q .

This 1s a problem of some practical interest, since extensions of this sort
often arise when one considers C*-algebras of Lie groups [39,§7] or C#%-algebras
generated by pseudo—differential operators on a manifold ({20,Ch..6],[4]) or on
a follated manifold [14]. It turns out that "unitary equivalence classes' of
extensions of the form (2.3) can be made into a commutative semigroup (this
depends on the stability of the ideal B8X) , and that the split extensions
(those for which there exists a #*-homomorphism ¢: A+ E with wed = idA )
form a subsemigroup. The quotient semigroup Ext(A,B) dis then actually a
group (this is a deep fact), which when B =E ﬁas denoted FExi(A) by Brown,
Douglas, and Fillmore., It turns out the Kasparov Ext functor is essentially
a mixture of K-theory and the dual. contravariant theory. More precisely,

there is a natural equivalence FExZ{(L,B) = Kl(B) ([29, Theorem 5], [41, Theorem
3.1] and [18, 3.2-3.3)), and (with some technical restrictions on A ) there is

a "universal coefficient theorem" exact sequence ([9], [41 , Theorem 4,2])

(2.4) 0 » Extl (K (), K (B)) @ Exté(Kl(A),Kl(B)) > Bxt(A,B)
A Hom(K,,(A) ,K, (B)) @ Hom(K, (A),K;(B)) > 0 .

Here the map vy takes the class of the extension (2.3) to the two connecting
maps 2 of the assoclated long exact K-theory sequence. In essence this says
that K-theory measures all the stable obstructions to splitting of C*-algebra
extensions of the form (2.3). These obstructions are in turn often related to
index invariants.

6. Of course we should remember that non-—commutative algebraic
topology as defined here includes the algebraic topolegy of compact spaces
as a special case. Thus the applications of K-theory which we have mentioned
are all additions to its usual uses in topology, as discussed, say, in [26,
Ch.V] and in [2,511). These include the Atiyah-Singer Theorem, integrality
theorems for characteristic classes, various results on vector fields on spheres

and stable homotopy of spheres, ete. (For some of these one should really use
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real K-theory.) . -

We hope the above list gives the reader some ldea of the many ways K~
theory has arisen in the study of C%-algebras. Our objective in the rest of
the paper will be to study enough of the groundwork of nén—commutative
algebraic topology to indicate why K-theory should play such a distinguished

role.

3. TFOUNDATIONS OF NON-COMMUTATIVE HOMOTOPY THEORY.

Since ordinary algebraic topology rests on certain principles of homotopy
theory, it seems appropriate to begin a stud& of the non-commutative case with
the analogous theorems. We do not claim any great originality for what follows
{(many of the results are either in [31] or in the folklore), but it seems use-

ful to collect all the basic facts in one place.

We use the definitions of §l above. In addition, given C*-algebras A

and B , we define [4,B] to be the set of homotopy classes of (not

necessarily unital) *-homomorphisms A + B , This is a pointed set; the base-
point is the class of the zero-map. Xf A and B are unital, we may also
define [A,B]+ to be the set of homotopy classes (via unital homotoples) of
unital #*-homomorphisms A + B . This set may be empty. Note that

[4,B] = IA+,B+]+ . Since (via Gelfand duality) the C%-algebra COGRn) corres—
ponds to the n—-sphere h (as a pointed compact space), we are alsc led to

consider the analogues of stable homotopy and homotopy groups. We let

{A,B} = lim[EkA,EkB] .

k ket

where [EkA,EkB] maps to |[Z +1A,2 lB] via the suspension functor £ , amd

also define (for q ¢ Z)

! _ ktg, k.-
{A,B}q = 1im[177A,I78] ,
S —
wq(A) = {E,A}q
w (&) = [C . @®"),a] (n>0) .
n 0

We think of ﬂn(A) and ﬂ:(A) as homotopy (resp. stable homotopy) groups of

A , although for the moment we have no group structure available. 0f course,

if A= CO(X) and B = CO(Y) , then
. ~ + R .
(4,81 ¥ fexhy,crhy, T vt g,
where [ , ]+ for pointed spaces denotes based homotopy classes,

n () F fes™,ee], ¥t

and ﬂz(A) ﬁ:(x+) .
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Note that whether or not A is commutative, there is no reason.why wi(A)
ghould vanish for ¢ < 0 . (In fact we will see in §4 that often
n:(A) # 0 for infinitely many negative values of ¢ 2

The reader is cautlioned that in the present context, "stable" has two
very different meanings, both of which will come into play in what follows.

On the one hand, one may mean suspension stability: thus {A,B} is the

{suspension-) stable version of [A,B] . On the other hand, one may mean

matrix stabillty: a C*-algebra A is (matrix-) stable if A 2 AeX , and thus

"y
A= A@Mn for all n . Both kinds of stability give rise to extra structure
on sets of homotopy classes, and fortunately, these structures are mutually

compatible:

THEOREM 3.1, Let A, B, and C be C*-algebras. Then
a) 1f B z BRX , then [A,B] is a commutative monoid with monoid

operation defined by letting oy + 4y be the composite

(v ,uz)
A ———=3 BOB<— BOM,

ne

B .

The null-homotopic maps act as an identity element.
b) if B ce CO((O,l)) , then [A,B] dis a (not necessarily abelian)}
group under "loop composition”: given o5ty A > B , we define
Gy oty A > CO((O,l),B) by
ul(Zt) if 0 <t <1/2

(al'mz)(t) =
a,(2t-1) "if 1/2 <t <1

¢) if B is a stable suspension, i.e., both (a) and (b) hold, or if B
is a double suspension, the two addition operations coincide and [A,B] is an
abelian group.

d) if B and C are both suspensions or both stable, then composition
[B,Cj x [A,B} = [A,¢] dis bilinear, i.e., is a group or semigroup homomorphism

in one variable if the other variable is fixed.

Proof. This is proved in essentially the same way as the corresponding
theoremlin ordinary topology t45, Ch. 1, §§5-6}. TFor the benefit of the reader,
we iﬁclude some details.

a) The cnly non-trivial aspects are proving that the zero-map acts as an
identity element and that addition is commutztive, For the first of these,
note that since B 2 Bex , the multiplier algebra M(B) contains a copy of
B(H) (all bounded operators on the Hilbert space H on which X acts), and

so contalns a strictly continuous path {vt} of isometries with

10 .
= = ; : My .
v 1, vlvl* (0 0) (when we identify M(B) with M(B) 8 2)
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Then given a; A+B, ar vtq(a)vt* is a homotopy from o to o + 0 . TFor

commutativity, note that conjugation by

( cos(rt/2) sin{mt/2)
—gin(vrt/2) cos(nt/2)

defines a homotopy from o + B to B 4+ a .

) eM(B) ,0<t=<1

b) This is gquite similar to [45,pp.37-39]. To show that 0 acts as an

identity element, note that given o: A+ B ,

g: A+ C([0,1]) 8 C,((D,1)) 8 C

given by ‘ .
g(a) (5,8} = {0 Yot
afa) TTae if 1-s < 2t < 2
defines a homotopy from O:a to o as s goes from 0 to 1 . The inverse
of o 1is given by- g » where ;(tj = g(1-t) . To define a homotopy g from
d-z te 0, set
a(a)(2t)  df 0 < 2t < 1-s
gla)(s,t) = a{a) (1-8) if 1-s < 2t < 14s
afa)(2-2t) 4f 14s < 2t < 2 s

where s ranges from 0 to 1 .

c) Follows as usual from [45,Ch,1, §6, Theorem 8]. For instance, suppose
B 1is a stable suspension. To show the addition operation of (b) is commutative
and coincides with that of (a), note that we have a string of homotopies

g'B v (a+0) - (04B) = (-04+0-8) n a8 ~ BHa ~v Bea

If B is a double suspension, argue as in [45,Ch.1,86, Corollary 10].

d) To check bilinearity of composition, suﬁpose Gy a0y A-+B and
Bl,GZ: B+ C aud glven. If B and C are suspensions, we clearly have
(81'82)°al = (Bloul)-(BZOal) and Bl°(al'a2) = (Blﬂul)-(ﬁlouz) . Sdmilar
distributivity holds if B and C are stable. 0

COROLLARY 3.2. For any C*-algebras A and B and any q € % , {A,B}q
is an abelian group. In particular, wz(A) is an abelian group. Furthermore,
for n>0, ﬂn(A) is a commutative monoid if A dis stable, is a group if A
is a suspension, and is an abelian group if A is a double suspension or a

stable suspension. []

For purposes of working in the homotopy category 6f C*-algebras, it is
also useful to know how homoteopy classes behave under products, sums,and limdits.
In what follows, & denotes the direct sum of C*-algebras (also called the cq~
direct sum or restricted product, and defined categorically by

® A, = lim ® A, where the limit is taken over all finite subsets F of 1,
1eI ¥+ dieF T ' '
directed by inclusion) and * denotes the free product {or coproduct),defined
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by the obvicus universal property. (For example, EC*T is the free C*-algebra

on two (non-commuting) projections.)

PROPOSITION 3.3. 1If '{Ai}iEI and B are Ck-algebras and A = % A
: ie1

i ’
then [A,B] = T [Ai,B]
iel
Proof. a *-homomorphism A + B is equivalent to a family of *-homo-
morphisms Ai +3. D

PROPOSITION 3.4, If A, , 1 =1,2,..., and B are Ck-algebras with B

stable (i.e., B = B8K) , and A= @A , then [A,B] = n[A,B] . Thus in
i=1 © - 1=1. .
the homotopy category of stable C*-algebras, countable Ck-direct sums are

categorical coproducts (cf. [2, Propositions 3.11 and 3.140).

Proof. Without any condftion on B , there is always an obvious map
o: [A,B) - I [Ai,B] , but this is rarely surjective. However, if B is stable

1=]
and oyt Ai + B are given, we can form
o3 -3 "N
@ o, A+ @BEB@ cd;+ BOK = B ,
i=1 i=1

so B8 ds surjective. (It is clear that 6 ds well-defined on homotopy
clagses;) On the other hand, givem o: A -+ B , let oy be its restriction to
Ai , and form’ Q.ai - ag above. We claim this is homotoplc teo @ , so that 8

is invertible. if%deed, let e » i=1,2,... be the minimal central projec-
tlons of ¢y - We choose strictly continuous paths of isometries vi in

M{B) = M(BOX) such that vé =1 and vi* =1 @& ey s then define o, by
i i%
ut(ai) = vta(ai)vt ,a; €A .

Then o will be a well—defi?ed *—h?momorphism A + B provided we arrange
(as we may) thit via(Ai)vi*via(Aj)vi* =0 for 1+ 3, and defines a homotopy
from o to @ o, . O
1=1

REMARK 3.5, Let A and B be C*-algebras with B stable (i.e.,
B = B8K) . One can define maps o: [A,B] » [AK,B] and o: [AeK,B] -~ [4,B]
as follows., Fix a minimal projection e in X and isomorphisms B: B - B8K ,
a: A AGe ™ ABK . ‘# en y: A- B, define o(y): ABK + B toc be
B°(Y91dK) , and give. y: ABK -+ B , let p{y): A+ B be the composite Yoo .
It seems plausible that o and o should be isomorphisms {(and inverses of
each other when « and B are suitably chosen), but we have been unable to
prove this. It is not hard to see o is injective (with 5 as left inverse

if o and B are suitably chosen), but surjectivity of ¢ seems more diffi-
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cult. -

REMARK 3.6. If A and B are C*-algebras and B = & Bi s then there is
an obvious map [A,B] > 1 [A,B, } which is a bijection 1f Eﬁe index set I is
finite. If 1 is inflnl%e, however it i usually hard to characterize the
image. If A has a unit, then this unlt'&ust map to a projection under any
#_homomorphism, hence (since for b = (bi) eB, ]]bi|| > 1/2 only for finitely
many 1 & I ) the image of A must he contained in a finite sum of Bi's . ’
Thus in this case, [A,B] = z @ [A,B, ] , where #® dis the "direct sum" of
peinted sets, the space of sequences equal to zero almost everywhere. But in

general, the image of [A,B] in I [A,Bi] need not lie in @ [A,B,]: con-

iel jeX 1
sider, for instance, the case where A = B = an infinite direct sum of non-

contractible algebras, and loock at the identity map A+B .

We are now ready for the analogues of long exact homotopy sequences. Since
we have no homotopy extension theorem, the results are similar to those for
general spaces rather than the better versions for CW complexes. Recall in
what follows that a sequence of pointed sets (not necessarily groups) is called

exact if the preimage of zero under any map is the image of the previous map.

PROFOSITION 3.7. Let A,B,C be C%-algebras, ¢: A -+ B a *-homomorphism,

Define C¢ as in §1, and define wo: C¢ + A by (f,a)>a . Then

Ot.* ¢
[c,c.1 " [c,Al ~* [c,B]

is exact (as a sequence of pointed sets).

Proof., We mimic [45,Ch.7, §1, Theorem 3]. Suppose Y: C —+ A 1is such
that ¢ oy is null-homotopic. Recall from §1 that we have a homotopy equi-
valence x: A~ Zé .
homotopic to a map with values in C¢C: Z¢ .

lBy assumption, we havé a homotopy

h: ¢ » C(f0,1],B)

such that h(0) = ¢ey , h(1) = 0 . Define

We replace ¥ by xep: C -+ Z4J and show that xe) dig

g: C = C([0,l],2¢)

by g(0} = xe¥: C +Z¢ s
wﬁmmmxv)={vaHU,01h':fil
dod{c) e B, 0 <t < 2t' <2

ﬁz(g(C,t)) = P(c) £ A,

where ¢ g C , T and m, are the projections of Z¢ to G([0,1],B) and to
A , and where t is the homotopy variable. This is consistent since
h{c,0) = ¢efi{c) , and g is clearly a *-homomorphism, Finally, g{(1) takes

values in C¢ , since ﬁl(g(c,l))(o) = h(e,1) =0 . So g 1is a homotopy from
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¥y to a map with values in €, , as required. ]

¢
THEQREM 3.8. Let A,B,C be C*-algebras, ¢: A > B a *-homomorphism.

Define C¢ and o: C, + A as before. Then the following sequence of pointed

¢
sets and/or groups is exact:
... =» [c,zA} -  [C,ZB] - [C,C .1 o {C,Al 4 [C,B]

¢
Proof. We repeat the argument of [45,Ch.7,§l,Theorem 9]. We have already

proved exactness at [C,A] . Applying (3.7) again, we see

o -

[6,6,} > [6,¢,] + [C,A]

e

{(g,(£,a)): (f,a) eC
g(l) = a{f,a) = a} , so

is exact. Now Ca » g e C([0,11,A) , g(0) =0,

¢

C, = {(g,£): £ecCB, geCh, £(1) = (e}

We claim that the map IB ~ ¢, given by £+ (0,f) 1is a homotopy equivalence
with homotopy inverse
v: {g,f) h , where h: [0,1] =+ B

£{2t) , 0 <2t <1

and h{t) = $(g(2-2t))y , 1L <2t <2,

It is clear that vy 1s a *%-homomorphism Ca - EB and that IB - Cu T is
homotopic to the identity. Going the other way, the composite

Ca l IB C(1 takes (g,f)e> (0,h) , h as in the definition of vy . 4An
explicit homotopy to the identity on Ca is glven by

k: Ca - C([O,l],ca) , where

(g, £) (t,8) = (g(ts),£((2-t)s)) , (2-t)s 5_1_1
(g(ts),¢(g(2-(2-t)s))) , (2-t) ~ <s <1.

Here ‘t is the "homotopy variable" and s i1s the "cone variable". As
required, k(g,f)(0,s) = (0,h(s)) and k{g,f)(1,s) = (gls),f(s)) . This shows

Cu and XB are homotopy-equivalent and proves exactness at G Now apply

s
(3.7) once more to get exactness of

[c,c.] + [c,zB] 3 [e,c,1

where 6: IB + C dis given by fwv (£,0) . We have

C(S = {(g,f)= g E CO((U,I],C¢),f € IB, g(l) = (f;O)}

e

{(g,£,h): £ e IB,h e IA, g & C4((0,1]1x(0,1},B) ,
g(t,1) = ¢(u(t)), g(l,8) = £(s)}

{(g,h): g e C([0,1]x[0,11,B), h e XA, g(t,1) = ¢(n(t)) ,

I

g vanishes on ({03x[0,11)0 ([0,11x{0}) U {(1,1)}}



NON~COMMUTATIVE ALGEBRAIC TOPOLOGY 1

~

Now one can see (since graphdically,

et —
v and ! '
i i i

are homotopy-equivalent) that Ca is homotopy-egquivalent to

{(g,0): g & C(10,11,78), h e ZA , g(1) = 2é(M)} = 2., ,
which is homotopy-equivalent to TA . This proves exactness at IB , For the
:res; of the sequence, just repeat the whole argument for Z¢ . [

COROLLARY 3.9, Let A,B,C be C*-algebras, ¢: A > B a *-homomorphism.
Then there is a long exact sequence gof abelian groups

. * )
-+ {c,B}q_l+ {C»C¢}q+ {C,A}q + {C,B}q + {¢, C¢} ver e

Proof., For %k sufficiently large, the following is exact:

> [ ¥y L gt R c,] [k, gk a” e

k- 1
G

and everything is natural with respect to suspensions. Also, all sets of

[zk+qc,z B} > ey 12 eu

homotopy classes are abelian groups, by Corollary 3.2. Now pass to the limit

as k> =, []

PROPOSITION 3.10, ZLet A,B,C be C(C*-algebras, ¢: A->B and ¢: B~ C

%—homomorphisms, and 1: £+ (£,0) the Inclusion IB + C¢ . Then if (Yo is

null-homotopic, Z¢ is hbmctopic to a composite ZB = C¢ + IC .

Proof. This is the non-commutative analogue of [43,Ch.8, Exercise E5].

Recall from Theorem 3.1(b) that ZX¢: ZIB + IC 1is homotopic to n , where

A () () = {1,{!(1‘.(21:)) 0<t<1/2
‘ 1/2 <t <1 .

>

By assumption, we may choose a homotopy
' g: A c([0,1]) B C

such that g{0) = ¢e¢ and g(1) = 0 . Define o: C¢ -+ 5C by

G (£, a) (£) = p{£(2e)) , 0<t < 1/2
g(2t-1)(a), 1/2 <t <1 .

This is consistent since for (f,a) € C¢ , £(1) = ¢(a) , hence

Y(E(L)) = Ppop(a) = g(0)(a) . Then o extends mn , as required. 0

THEOREM 3.11. Let A,B,C be C*-algebras, ¢: A+ B a *~homomorphism.
Then there is a long exact sequence of abelian groups:

es > {C¢,C} > {}3,0}q 3 {A,C}q » {C c}_q - {:P.,c}qﬂ F e

g-1 o
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Proof, By Proposition 3.10,

i,

ik ¥
C}q-l > {B,C}q - {A,C}q

is exact, But we may also apply the same argument to o: C¢ + A , recalling
from the proof of Theorem 3.8 that Ca is homotopy~equivalent to IB ., This
shows that

. U.* .
ws,ch_y + e d fe,,00
: e ¥
or B,C} + ,Cl 3 {c,,0l

ig exact. Again apply Proposition 3.10 to &: IB -+ C¢ s recalling from the

proof of Theorem 3.8 that CS is homotopy-equivalent to ZA . This shows
*

8
{zA,c}q“f fc¢,c}q - {EB,C}q

or {A,C}q + {c c}q - {B,C}q+l

*
is exact. The theorem follows by "splicing'. N

With Corollary 3.9 and Theorem 3,11, we have recaptured in the non-
commutative case all the usual exact sequences of homotopy theory. In fact,
(3.9) and (3.11) show that if we fix a C*-algebra C and let Hq(A) = {C,A}_q,
1%a) = {A,C}q ,Ithen ,{Hq}qez and {Hq}qsz are essentially a homology and
a cohomology theory on C#-algebras, respectively. The "stability property"
of K-theory could be build in if we instead let Hq(A) - {C,A@K}_q . However,
we do not quite have exactness in the best possible form, since we do not know
that if ¢: A+ B 1is surjecpive with kernel J , then H,(J) = H*(C¢) . In
the next section, we shall discuss the relationship between K-theory and
these "generalized homology theories". This relationship could be made clearer
if we had a good version of the Brown Representability Theorem ([51,[61,111)
valid for homotopy functors on C*—algebras. The methods of [6] and [1] seem
promising, since they involve only category-theoretic constructions, most of
which seem to work for C*-algebras. A stumbling block at the moment, however,
is a lack of a good substitute for the sﬁbcategory of finite CW complexes.

We hope to return to this subject in a future paper.

4. STABLE HOMOTQPY AND EK-THEORY.

Our intention in this sectjon 1s to explain how some of the notions of

"non-commutative homotopy theory" from Section 3 can be applied to ezplain the
"ubiquity of K-theory" which we discussed in Section 2.2. The key observation
will be that K-theory is a "representable" homology funmctor - in fact, the
associated "non-commutative classifying space” is just the algebra K of

compact operators .
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THEOREM 4.1. Let A be any C*-alpebra. Ther there is a natural isomor-—
N

phisn 'Kl(A) = ﬁl(AQK) {compare the corresponding formula [2,86] for the
homology groups associated to a spectrum: EH(X) = nn(X-mE)) .

Proof. * First suppose. A4 has a unit. Then
v, (ABK) = [C@),A0K] ¥ [C(s), (AeR) "1, .

However, C(Sl) is isomorphic to the group C*-algebra of Z , i.e., is the
free C¥%-algebra on one unitary genmerator =z (the identity map Sl -+ Sl‘+ T) .
So a uniltal *-homomorphism ¢: C(Sl) -+ (A@K)+ is equivalent to a choice of a
unitary element ¢{z) in. (A@K)+ . Hence wl(AQK) may be identified with the
group of path compeonents of the unitary group of (A@K)+ , which coincides with

"
1im GL(n,A)/GL(n,A)O = Kl(A) .

Now suppose A has no unit, and _A% ig its "umitalization". We know

u
Kl(A) = Kl(A+) X U((A%@K)+) , where U{+) denotes "unltary group of". 8o the
problem is to show that the groups of path components of U((A@K)+) and of

U((A+@K)+) coincide., But we have a split extension of C¥*-algebras
0>ABK+A 8K+K~+0

N .
Thus U({A8K) ) 18 a normal subgroup of U((A+@K)+) , and the quotient must be
an open subgroup of

UEy, = (1+xe D(EY: xek} .

However, U(K)+ is path-connected, so the quotient is all of U(K)+ . To
complete the argument, we consider the exact homotopy sequence (for ordinary

homotopy of spaces, not homotopy of C*-algebras) of the Serre fibration
veasy > vwte ™ 0w
B a
n W) >z > 1 e ™) > r @) v .

(It is well-known that ﬁl(U(K)+) z Z and that ﬁO(U(K)+) =0 .) The map B
is surjective, since we have a splitting map X ~ A+8K ; hence o is an isomor-

phism, as desired. W
COROLLARY 4.2. For any Ch-algebra A , K (&) = ™, (A8C, () BK)
’ n

Proof. By Bott periodicity, KO(A) Kl(ZA). 0

. Now that we have a characterization of the K-groups of a C#*-algebra in
terms of non-commutative homotopy theory, we are ready to prove a "non~commuta-
tive Eilenberg-Steenrod uniqueness theorem", characterizing {on a certain sub-
category of the category of separable C*—algebras) K-theory as the unique
homology theory satisfying axioms (1}-(7) of (2.1). However, it will be
necessary to assume rather precise forms of the stability ana Bott periodicity

axioms ((4) and (6) on the list). Namely, we replace (4) and (6) by the
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following: .

(4%) If A is any C*-algebra and e is a minimal projection in X ,
then the map A + ABK defined by a a®e induces isomorphisms of homology
groups in every degree.

(6*) Let . X ¢ [, C(SZ)QK] be the homotopy class of rank~one projections
in C(S ) B K correspondlng to the Hopf line bundle on S (for an explicit
formula, see [46,p.162]), and let 1 e [T, C(S Y@Kl be the class of trivial
rank—oﬁe projections corresponding to the trivial line bundle on S2 . Thus
A~ 1 {the formal difference) is the Bott element representing the standard

generator of KO(SZ) = KOGRZ) The periodicity map

T Kj(A) » K, ,(4)

42
is defined as follows. @iven a € KJ(A) , form (id o1, (a) ¢ K (A@C(S Yar)
and similarly form (idAeT)*(a) . The difference in K (A@C(S ) ® K) lies

in the kernel of the natural map to KJ(A@E@K) hence, since the extension

0>a8c,®)8X+a08C(5)8K+ABL8K>0

is split may be 1dent1f1ed with an element of K (A@C GR 18K) = K (A@C GR ) =

K (2 A) = Kj+2( ) . We assume that v dis an 1somorph15m for all 3 E Z and
for all C*-algebras A .

THEOREM 4.3. Let ( be the smallest category of separable C*-algebras
containing the type I separable C*-algebras and closed under extensions, count-
able direct limits, and stable isomorphism. Let {H’}‘dz be a family of
functors from C to abelian groups satisfying axioms (1}-(3) (homotopy-
invariance, compatibility with suspension, exactness), (4%) (strong stability),
(5} (continuity under limits), (6%) (strong Bott periodicity), and (7)

* H:’:

e

(normalization). Then there is a natural equivalence wv: K

Proof. We have Hl(COGR)) = Hl(EE) X HZ(E) <z . Se fix a generator ¢

for H (COGR)) . We define our natural transformation
' ny
v Kl(A) = {COGR),A®K} +'H1(A)

by v([¢]) = ¢,(z) € Hl(A@K) z HI(A) , for any *-homomorphism ¢: COGR) -+ ABK .
To check naturality, suppose we have a *-homomorphism a: A > B, Without
loss of generality, we may assume A and B are stable. Then given

b COGR) + A representing a class [¢] in Kl(A) s o, ([e]) = Ea°¢1 and
via, ([613) = (oo} (€ = a, (¢, (2)) = 0, (v([$])) , as required. HNote also that
v commutes with the boundary maps ef (3), since these are induced by the

mapping cone construction of Proposition 3.7.
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Next we check that v dis an isomorphism on spheres, i.e., when
A= COGRH) . If n is even, KI(A) and Hl(A) both vanish, so this is
trivial. Therefore we may assume =n = 2k+l , k> 0. If k=0, v dis an
isomorphism by comstruction, for Kl{COGR)) is generated by the imagé in .
[COGR),C {R)BX] of the class of the identity map in [COGR),COGR)j -

1
[C(Sl),C(S )]+ 2 U(C(Sl))/U(C(Sl))0 = Z , and this class is taken by v to ¢,
Now consider the case k > 0 , Because of the fact that we have assumed our
periodicity maps 7w are actually implemented by (id&d), - (id@t), , we have a

commutative diagram

v
R, (CyR)) —4—> 1, (€[ (®))

ij _ ljk
R (0 @) >y @™y
Since the top map and the side maps are isomorphisms, so is the bottom map.

We now know {using the fact that K1+j(A) = Kl(EjA) , Hl+j = Hl(EjA) ,
with both isomorphisms natural) that v = vl defines natural transformations
vj: K, > Hj for j > 1 , and that these transformations are compatible with
-suspension and periodicity. Using the periodicity maps in reverse, we have -
v, defined for all j . Now restrict attention to the full subcategory
A CC of separable commutative C*—algebras (the opposite of the category of
pointed compact metric spaces). We have a natural transformation of continuous
cohomology theories inducing isomorphisms of coefficient groups, hence by the
argument discussed above in Section 2, v is a natural equivalence on 4 .
(Recall this goes via J. H. C. Whitehead's Theorem or the Atiyah-Hirzebruch
spectral sequence.)

To extend the result to the larger category { , we use a method introduced
in [42], 1431, and [41]. Namely, let D be the class of objects” A of (
fo? which v dInduces lsomorphisms Kj(A) 4'Hj(A) in every degree. We know
that D contains 4 . D 1s closed under extensions, for givem an extension

0+J+E>A>0 '
of C#-algebras with A , J e J , we get by naturality of v and ;he exactness

axioms a commutative diagram of abelian groups with exact rows:

2 3
- Kj+l(A) —-:~1<j(3)—>1<j (E)~—>Kj (a) ——> Kj_l(J) —> ...

l"A \l:JJ \L\}E | \L"A J/"J

3
-> Hj+l(A)—9Hj(J)—5Hj(E)—>Hj(A)———éﬂjul(J)—-—) .

Since v, and v_ are isomorphisms, v is an isomorphism by the 5-lemma.

A J E
Because of axiom (4%), D is closed under stable isomorphism. Thus I contains

what were called solvable algebras in [43], i.e., type I separable C*-algebra
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with a finite composition series in which the composition factors are all of
the form B 8 Mn or B®K,Bed . But we claim D is also closed under
countable inductive limits, for if A = lgm An with An e D , then using (5)

we have

ne

ne

o
v

K (A) = Lim K. (A) T T lim H(A) = B.(A) .

As in [43] and [41], we conclude that D = . This relies on the fact that
each type I C*-algebra has a countable (possibly transfinite) composition series
with composition factors of continuous trace, together with the fact due to
Dixmier and Douady (for a quick summary, see [39,56] and references quoted
there) that a separable continuous-trace algébra is stably isomorphic to one
locally of the form CO(Y) ekK. 0O _ -
Theorem 4.3 was the main goal of this paper, but Theorem 4.1 still suggests °
a substantial loose end: how 1s K, (A) related (if at all) to nn(AQK) for
n>1 or to ﬁqS(AﬁK) for g ¢ #Z ? In particular, is Kl(A) = ni(A@K} 7 If

so, we could conclude that K~theory '"is" stable stable homotopy, where now the

"stable” is to be used In both senses of §3. We do not yet know the complete
answer to this question, but we will see the answer is yes when A 1is abelian.
One might speculate that a complete calculation of ﬂi(A@K) might settle the
question raised in §2 about whether K-theory "gives rise to" all matrix-stable
homology theories on C#-algebras (without the a priori assumption of Bott
periodicity)., Either it should turn out that 4 +—ﬂi(A@K) jtself gives a new
homology functor with perhaps new and unforseen-applications in non-commutative
topology, or else one should probably be able to weaken the periodicity assump-
tion in Theorem 4.3.

To analyze our problem, we begin with a simple consequence of Theorem 4.1,

PROPOSTITION 4.4. TFor any C*-algebra A and any q <1 , there is a split

monomorphism of abelian groups

8
T K, (A) > o (a6K)

Moreover, the map J is natural with respect to *-homomorphisms of C#-algebras.

Proof. It is enough to prove this for ¢ =1 , since ﬂi_k(A@K): ﬁi(EkA@Kl

But for any n > 0 , we have the following commutative diagram:

{COGR), AQK] ———> K, (&)

}:“\ /\
+1
[cocmn y, Lha0K)
Here the horizontal arrow is the isomorphism of Theorem 4,1 and the map

n+l),ZnABK] + Kl(A) (essentially the v of Theorem 4.3) takes the

fc ®
0 +
homotopy class of ¢: COGRn+l) + $"A8K to the induced map in Hom (K, (Cy - 1)},
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n+l

. % : o
K*(ZnA@K)) = Hom(K (R~ ) , K;(EHA)) = KI(A) . Now pass to the limit as

n e, O

-t

Remark 4.5. We have called the map J in Proposition 4.4 to suggest that
it should be viewed as the analogue (in non-commutative matrix-stable homotopy)
of the J-invariant in ordinafy stable homotopy [26,Ch.V,55]. The analogy is
perhaps far—fetched, but we subscribe to the philosophy thatrK—theory should
give the "effectively comﬁutable” part of stable stable homotopy, just as it

b
. gives the more accessible part of ordinary stable homotopy. However, in our

case (unlike the usual case)}, it appears that J 1s surjective. .

Now let us consider how ni(A@K) could actually be computed. We begin by
studying wn(B) ; we will of course be interested in the case where =n 1s
large and B is stable and a multiple suspension. Note that for any C#- '
algebra B ,‘the set of *-homomorphisms COGRn) + B may be identified with the
set of unital *-homomorphisms C(Sn) -+ B+ , which in turn may be identified
with

+
v (B) = - : , = a, = .
n( ) {(ao, ,an) aJ aJ € B and ajaﬂ agaJ fqr

1
j, 8 =0,...,n; L a, =1}

Thus ﬂn(B) is just ﬁO(Vn(B)) , the set of path components of Vn(B) . Oof
special interest is Vn(K) , because if A = Co(Y) is commutative and

vV = Yui=} is the one-point compactification of X, then

Vn(AeK) = {f: Y+ +-Vn(K) continuous, gef constant-valued,
' n
(=) € Vn(O) = 5§ 1.

It is useful to comsider the approximations wn(AﬁMk) to ﬂn(AﬂK) ; we find

that
+
[Y ’vn,k

w: (G, (T)e,) 1,

where | , ]+ denotes the set of based homotopy classes and

(4.6) vn,k = {(ao,...,an): aj = aj* e Mk and ajag = azaj for
ji,t=0,...,m; T a, =1} .
i jgo ]

(The choice of é base~point in V is not particularly important - one might

choose (1,0,...,0) .) So the-cozéitation of stable stable homotopy in the
cage of commutative C#*-algebras basically comes down to the problem of deter-
mining the homotopy type of the spaces Vﬁ,k . Note that each_ Vﬁ,k is a |
finite cell complex and a real algebraic wvariety, although not necessarily a

smooth manifold.
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‘For fixed k , the spaces’ Vn Kk constitute a spectrum Vk with structure -
. 3
maps ZV +V defined by identifying LV with the space of (nt+l)-

-1,k 'm,k n-1,k
tuples - (ao,...,a Y e V Kk for which a, is a scalar matrix. (8ince 2, is
hermitian, it must then lie in [-1,1]1 . If ay = +1 , then aj = for all

4 » 0 . Otherwise, the space of possibilities for (al,...,an) with ay

fixed is homeomorphic to Vn-l K .) In fact, it is easy to see that
4.7) w (c () @ Mk) {}: vty ]

(in the notation of [26,Ch.l]). Stabla stable homotopy will be gottem by

passing to the limit as k + =, because of the following result:

PROPOSTTION 4.8. For any A € 4 , the natural map

1im ﬁn(A@Mk) +-vq(A8K)

koo

is an isomorphism.

Proof et A=C (Y) and consider a continuous map f e V (ABK)
< C(Y V (X)) . Given e >0, we can (using density of L)Mt in K and
compactness of Y ) choose k so that the image of £ lies within € of
Vn(Mk) . Assuming € < %— , by continuoqsly changing the eigenvalues in the
entries of £ (recall f£(y} is an {(n+l)~tuple of commuting self-adjoint opera-
tors of the form scalar’ + compact, for each y € Y+) we may deform f back
into Vn (Mk) . )

The spectra Vk and V = 1lim Vk were first introduced in [44,81], except
that Segal worked with real C*-algebras, which are actually harder to deal with.
Proposition 4.8 is essentially [44,Proposition 1.2]. Segal's main result on

this subject, reformulated in our context, is the following.

THEOREM 4,9. V = bu , the spectrum of connective complex K-theotry, as

defined in [2,56]. Equlvalently, 1im Vn Kk is (n-1)-connected, and
koo ’
ﬂn_l(lim v k) is homotopy-equivalent to V(=) = 1im U(k)
ko ) 7 oo

Proof. See [44,81}, except replace R by & and BO by BU . Another
very. similar proof was kindly communicated to the author by D. McDuff; the

jdea is to construct a quasifibration with contractible total space, with fiber

1im V and with base lim V (cf. [44,Proposition 1,5}). Then it is
n-1,k n,k
ke Jero0
enough to observe that Vl x Ty be identified by U(k) wvia the map
3+

so that 1im V = U(«) . a

(ao,a )R s ag + 1a Lm 1,k

l ¥
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... COROLLARY 4.10. If A “is a commutative C¥%-algebra, the map J of

Propbgition 4.4 is an dsomorphism 7 -

i

- :
j Kz_q(Ai > m (A8K) , g <1 .

Furthermore, if A = CO(Y) with E* a finite‘ CW complex, then for amny g ;
ws (ask) = Bl | )
and in particular, ﬂz(A@K) vanisﬁés for gq >‘dim(Y+) .
Proeof. We have seen that ﬂS(CO(Y)ﬁK) z {EmY+,bu]_ » which by definition
is é;q(Y+) when Y+ is a finitg complex, Even for an; locally compact Y ,

we still have Kl(A) = [Y+,U(°°)}+ . KO(A) z [Y+,Z % BU]+ s and Surjectivity of

the J-invariant for q < 1 follows since

Tr:(A@K) Y tin[r™ T, 14m v

- Koo n+q,k]+

125", 0% (lim v

L )1, = YL Uu(=)]
el

ntq,k
for suitable r > 0 . TIf Y5 ois a finite complex of dimension d , then since
1im V is d-connected, o (A8K)=C for q>d+ 1 . []

oo OFLLK » Mg = ,

It seems probable that surjectivity of the J-invariant for A ¢ 4 should
imply the same for A ¢ € , by the argument of Theorem 4;3, but we havé not
been able to prove this because qf a technié&l &ifficulty: the exactness
property of WZ s Corollary 3.9, involves mapping cones; and we have not heen

able to show that given an extension of C*-algebras

¢ .
0~+rJ3+4A > B0 , 4
the inclusien J -+ C¢ induces isomorphisms of homotopy groups. Also we are

, s : . .
not certain if o, (and hence 7, ) always commutes with C#-algebra inductive

limits; this dis at least true for T and ‘for abelian algebras.

5, AFTERWORD.

The present paper follows the outline of the talk given by the author in
San Francisco, But has been much improved on the basis of helpful suggestions
from several sources. I would like to thank several members of the audience
at fhe Special Session” for helping to clarify the problem of axiomatic treat-
ment of K-theory, discussed above in 32, and In particular to thank Chuck Weibel
and Ed Effros for referring me to the work oanaroubi and Villamayor. I would
especially like to thank Dusa McDuff for explaining in a recent letter hoﬁ to
prove Thecorem 4.9, which in the original talk was only a vague conjecture, and
for proﬁiding the very apt reference to her work and the work of G. Segal on

configuration spaces. Finally, I have learned that some of the ideas discussed
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here have also been developed independently by Claude Schochet and Joachim

‘Cuntz.

Quite a few open problems remain., TFor instance, 84 above shows how to
represent K-theory in terms of homotopy; presumably one could do this same for
the dual theory, i.e., the Evi-theory of Brown, Douglas, and Fillmore or the
K-homology theory of Kasparov. The natural conjecture, discussed in part in

[44], is that for suitable separable nuclear C¥*-algebras A ,
,Q8K3 < mtlay
where @ denotes the Calkin algebra. Moxe generally, one should have
", Q()eK} Y EetY(a,B)

for the Kasparov K-functor, where @(B) denotes the outer multiplier algebra
of BEX . Perhaps §(B) ® K may alsc be replaced by @Q(B) here.
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