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and a and b are non-negative integers. Proposition 4 then follows from
this and computations in Section 6.
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Introduction

¥ The purpose of this paper is to describe a remarkable connection between
representation theory, C*-algebras, and algebraic topology. Many aspects
of this relationship were discovered a number of years ago by several
k. Soviet mathematicians: Kasparov, Mis€enko, and Solov’ev. However, the
'subject is perhaps not as well appreciated as it should be, especially by
§: workers in operator algebras and Lie group representations. Further-
- more, new progress in the study of K-theory and extension theory of
¢ C*-algebras makes it possible now to prove a few new results and to
¢ indicate directions for future research, especially in the operator-algebra
[ aspects of the subject. This is the goal of this article.

‘ Our theme will be a close relationship, for a (second countable) locally
|- compact group G, between algebraic invariants of the group C*-algebra
C*(G) and the topology of the classifying space BG. What is remarkable
is that the former depend only on the unitary representation theory of G,
¢ Whereas the latter involves only notions from topology.§ The relationship
[. may therefore be used either to say something about harmonic analysis,
b given topological information, or else to use analysis to prove something
. about topology. We shall indicate a few possible applications of ‘both
- SOTtS.

" To motivate the subject, it is necessary to recall a theorem of Atiyah,
| Hirzebruch, and Segal ([2, 4.8], [3]). First, however, we need some nota-
tion and definitions. For any topological group G, BG denotes the

. $Sloan Foundation Fellow. Partially supported by a grant from the National Science
t- Foundation.

i § This is somewhat reminiscent of the connection, described in Professor Borel’s paper
] (Vol. L p. 28), between the analysis of the representation of a semisimple Lie group G on
LZ(G/F ), when T is a lattice subgroup of G, and the topology of G/T'. In fact, the parallels
with the present theory are probably not accidental.
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classifying space of G, which is the base space of a locally trivial principal
G-bundle with contractible total space EG, and is well-defined up to
homotopy under very mild conditions (for standard constructions, see {24,
Exercise 1.9.32], [14, §87-8], and [43, §3)). Although we shall later be
interested mostly in (non-compact) groups G for which BG can be
chosen compact, for compact G one must accept the possibility that BG
will be infinite-dimensional and not even locally compact, and view BG
as being in some sense a limit of compact spaces. If G is a compact group,
R(G) denotes the representation ring of G, which is the free abelian
group on the irreducible (finite-dimensional complex) representations of
G, with multiplication defined by the (inner) tensor product of represen-
tations.

Since K-theory will play an important role in what follows, let us
review the important definitions. Recommended references on this mater-
ial are [24, esp. Exercise I1.6.14] and [49], although our notation does not
quite agree with that of either of these authors. For A a (complex)
Banach algebra with unit, Ko(A) is defined to be the Grothendieck group
of the category of finitely generated projective A-modules (in the alge-
braic sense—the topology does not enter here). Thus elements of Ky(A)
are formal differences [P]— [Q], where P and Q are left A-modules which
can be embedded as direct summands of A" for some n, and where
([Pl]“[oﬂ)‘f‘([Pz]_[Qz]) is defined to be [P, ®P2]—[Ql © Q] An ele-
ment [P]-[Q] is zero in Ky(A) if and only if P@ A" = QD A" for some
n. When A is a C*-algebra, it is usually more convenient to regard K,(A)
as consisting of formal differences of Murray-von Neumann equivalence
classes of projections in A ® X, where ¥ denotes the compact operators
on a separable infinite-dimensional Hilbert space (see, e.g. [16, §3]). The
definition of K, is extended to Banach algebras not necessarily having a
unit by setting K,(A) = ker (Ko(A™) — K4(C) =7), where A* denotes the
algebra obtained by adjoining an identity to A. This agrees with the
previous definition when A has a unit, and defines a functor K, from
Banach algebras to abelian groups.

One now defines, for any Banach algebra A, K, (A) =K (CyR", A)),
where Cy(-, A) denotes the algebra of A-valued continuous functions
vanishing at infinity. The Bott periodicity theorem sets up a natural
isomorphism Ky(A)— K>(A), so that one may view K as a functor from
Banach algebras to Z/2-graded abelian groups. Any short exact sequence
of Banach algebras give rise to a cyclical 6-term exact sequence of
K-groups. For any locally compact space Y, we let K*(Y) =K ,(Cy( Y));
this defines a cohomology theory, periodic with period 2, with compact
supports. We shall also need to refer to ‘representable K-theory’ ¥*,
which is a cohomology theory, periodic with period 2, defined on the
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category of paracompact (not necessarily locally compact) spaces. For a
compact space X, K*(X) and %*(X) are naturally iSOmOl’ph{C. Hf)wever,
for a locally compact space 'Y, K*(Y) and #*(Y) may be quite different.
When Y is a direct limit of compact spaces {Y,}, ¥*(Y) is an extension
of lim K*(Y,) by a ‘l(iln1 term’ (which fortunately vanishes in many
familiar examples)—see [3, §4], [7]. If Y is a locally compact space and A
is a Banach algebra (over C), K*(Y; A) is defined to be K+ (Cy(Y, A)).
When Y is compact and A has a unit, K°(Y; A) coincides with the
Grothendieck group of the category of vector bundles over Y with fibres
that are finitely generated projective A-modules. ¥*(~; A) is the rep-
resentable functor on paracompact spaces coinciding with K*(—; A) on
compact spaces. .

Now Atiyah and Hirzebruch observed that for any compact Lie group
G, there is a natural homomorphism o :R(G)— ¥ 0(BG.) defined as
follows. Suppose  and o are finite-dimensional representations of G on
complex vector spaces V, and V,. Then the fibre products EG X6 Ve
and EG X5V, define vector bundles F, and F, over BQ, ar(l)d we let
a([m]—-[o])=[F,]~[F,], where [F,] denotes the class of F,, in % (BG) (as
a limit of classes of vector bundles over the skeletons of BG). It wa§ shown
first in [2] in special cases, and later in [3] in general, that « is ipjectlve, t.hat
H'(BG)=0, and that « extends by continuity to an lsomorphl§m
@:R(G)— %°(BG), where R(G) denotes the completion of R(G) with
respect to the I(G)-adic topology, I(G) the augmentation ideal. .

The connection with group C*-algebras is now made by (?bserv1ng that
for a compact group G, the group C*-algebra i§ a co-dlregt sum (or
restricted direct product) of finite-dimensional matrix algebias }ndeXfad .by
the irreducible representations. Since K, commutes with.C -direct llm.ltS,
hence in particular with (cy)-direct sums, K0§C*(G)) is a free abelian
group with a basis that can be canonically identified with G. Thus we have
a natural isomorphism R(G)=K,(C*(G)) taking [7], me G, t(i the class
of any minimal idempotent in the group L'-algebra (or C*-algebra)
obtained from a normalized matrix coefficient of . Furthermore,
K{(C*(G))=0=%"(BG). All of these observations suggest that for non-
compact groups, K.(C*(G)) might play the role of R(G),'ax?d turn out ?o
be ‘almost isomorphic’ to ¥ *(BG). We shall see that this is the case in
many instances. This idea is essentially due to Kasparov [25, §8]. (Caution
to the reader: what we call here K, (A) is called K *(A) in [24J and [25-].
Our notation is explained by the fact that our K, coincides 'w1th whflt l1s
usually so denoted in algebraic K-theory. Kasparov’s K*'IS esscintl.al y
what we will call Ext,. For consistency, we should really write E{(t since
Ext defines a contravariant functor on C*-algebras, but the notation Exty
seems too well established to be changed at this point.)
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2. Some general machinery

We have seen that at least for compact groups G, there is a natural
relation between K,(C*(G)), which depends only on the representation
theory of G, and %*(BG), which is defined strictly in terms of topology.
Somewhat remarkably, this turns out to still be the case even for very
non-compact and very non-commutative (non-type I) groups.

Before we take up the general situation, it might be natural to consider
first two questions about the compact case. First of all, when G is
compact, R(G) is a ring, not just an abelian group, and & is actually a
ring isomorphism. One might wonder, therefore, if there is any ring
structure on K(C*(G)) making the isomorphism R(G)=Ky(C *(G)) an
isomorphism of rings and not just of abelian groups. The answer is
unfortunately no, at least if one insists at looking at C*(G) as a C*-
algebra with no additional structure. Of course, one can carry the
multiplication on R(G) over to K,(C*(G)), but for non-compact and
non-abelian groups, there is no obvious way to make K. (C*(G)) into a
ring. The best one can say is that one might be able to make K,(C*(G))
into an R(H)-module for certain compact subgroups H of G. When G is
discrete, Kasparov [25, §8, Definition 1] has proposed a definition of a
ring to replace R(G), but it really lives on the dual object. We shall
discuss this more later.

A second problem is that one might think that the association of C*(G)
to G is covariant, hence that since K, is a covariant functor, KL (C*G))
should be a covariant functor of G. This is perplexing since G+ R(G)
and G~ ¥*(BG) are contravariant functors. However, this is easily
resolved if one remembers that if H is a closed but not open subgroup of
G, then the L'-algebra of H embeds not in L'(G) but in the measure
algebra M(G). Correspondingly, one has a map from C*(H) not to
C*(G) but to its multiplier algebra, so that G — C*(G) does not give a
covariant functor (see [39, Introduction and Prop. 4.1]). On the contrary,
on the category of compact groups, G +> Ko(C*(G)) can be made into a
contravariant functor. This is due to the fact that although C*(G) may
not have a unit, Ko(C*(G)) is generated by classes each represented by a
projection in L'(G), which must be given by a continuous function on G
and so can be restricted to any closed subgroup H. When one writes out
the details of this procedure, one sees that a: K, (C*G))— X*(BG)
defines a natural homomorphism of functors (both contravariant in G).

Extending the set-up to a non-compact group G presents a number of
problems. For one thing, one must choose between three different
Banach algebras which can serve as the group algebra of G:L'(G),
C*(G), and the reduced C*-algebra CX,(G). When G is amenable, the
last two of these coincide, and furthermore C*(G) is nuclear [18, Prop.
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14], so that one has Brown-Douglas-Fillmore groups Ext, (C *(G))=
Ext (C*(G)) and Ext, (C*(G)) = Ext (Cy(R, C*(G))) as in [15, Ch. 2 and
6] and [26]. These are dual in some sense to K;(C*(G)), j=1 and 0.
When G is not amenable, there seems to be no reason why Ext (C*(G))
should be a group, so perhaps it would be better to take its Grothendieck
group or group of invertible elements, or else to substitute the Kasparov
‘K-homology functor’ of [25] and [27]. Anyway, for certain special classes
of groups (most of the interesting examples of which are amenable—for
instance, compact groups {30, Theorem 1] or finite extensions of discrete
nilpotent groups [30, Corollary to Theorem 7]), one can show that LY(G)
and C*(G) have the same K-groups, using the following argument
suggested by Horst Leptin.

Proposition 2.1. Let A be a symmetric semi-simple Banach *_algebra
and let B be its C*-hull. Then the injection A — B induces isomorphisms of
K-groups.

Proof. Assume first that A has a unit. By Karoubi’s density theorem
[24, Exercise 11.6.15], it is enough to show that GL,(B)NM,(A)=
GL,(A) for all n, where M,(A) denotes nxn matrices over A and
GL,(A) is its group of invertible elements. However, M,(A) is also
symmetric if A is [30, p. 132], and M, (B) is its C*-hull, so we may as
well replace A by M, (A) and show that any element of A invertible in B
is invertible in A. As pointed out by Leptin, this may be shown as follows.
Suppose x € A is not left-invertible; then we may choose a maximal left
ideal L of A containing x. By symmetry of A, the A-module A/L may be
embedded in a Hilbert space # on which A acts by a continuous
*_representation a [29], and since w(x) is obviously not left-invertible as
an operator on ¥ (since x-1€L), the image of x in B is not left-
invertible. The same works for right-invertibility.

If A has no unit, one just repeats the whole argument with A™. O

There are additional difficulties in making sense of the analogue of
R(G) for general groups. When G is not amenable, the natural map
K (C*(G)) = K«(CE4(G)) need not be an isomorphism; in fact, as
pointed out to the author by Alain Connes, it cannot be if G has property
(T) of Kazhdan [28], since then the trivial representation of G defines a
non-zero class in Ko(C*(G)) sent to zero in Ko(CE4(G)). Furthermore,
for arbitrary locally compact groups, G > K (C*(G)) does not obviously
give either a covariant or a contravariant functor. There are also difficul-
ties in relating K+«(C*(G)) and ¥ *(BG)—since C*(G) will not have a
unit when G is non-discrete, we are forced when studying C*(G) to work
with what corresponds to K-theory with compact supports, but BG is
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only defined up to homotopy, not up to proper homotopy, so that we need
to use representable K-theory in order to have % *(BG) well-defined.

In the face of all these difficulties, it is surprising that one can say
anything at all. In the next two sections, we will discuss some results
concerning discrete countable groups and connected Lie groups. There-
fore we only mention here in passing some general ideas. The first is a
method for treating the case G =N x H, a semi-direct product of a
compact group H and some other locally compact group N. In this case,
C*(G) is a crossed product C*(H, C*(N)). In such a situation, there is a
natural isomorphism K.(C*(G))=K(C*(N)), where K¥ denotes H-
equivariant K-theory (see [21] for the case N abelian and [22] for the
general case—one method of proof is to first use [30, Theorem 1] and
Proposition 2.1 above to get K4(C*(G))= K (L'(H, C*(N)))). On the
other hand, one can take in this situation EG = EH X EN, with N acting
only on the second factor and with H acting by the diagonal action, so
that BG = EH X,; BN, which is essentially what is called BNy in [3]. Thus
relating K4«(C*(G)) and ¥ *(BG) in this situation is essentially equivalent
to relating K (C*(N)) and ¥ }(BN), and so one is naturally led to
considering the whole problem with an equivariant action of a compact
group.

A second general observation is that one knows for an arbitrary locally
compact, o-compact, finite-dimensional group G that the Cech cohomol-
ogy H*(BG;Q) is naturally isomorphic to H}(G; Q), where H} denotes
group cohomology with Borel cochains as defined by C. Moore ([50]; see
also [48] for a survey of related results). There is therefore a Chern
character ch:¥*BG)— HF(G:Q), which is an isomorphism modulo
torsion when BG can be chosen compact. Perhaps it would be best in this
degree of generality to disregard BG entirely and to try instead to relate
K.(C*(G)) or Extg(C*(G)) directly to topological group cohomology.
This would have the advantage that one would be trying to establish an
isomorphism between two objects both defined in terms of -analysis on G.
In particular, the discussion in [32, esp. Introduction and §9] suggests that
there would be important consequences in algebraic topology of a direct
(analytical) construction of Chern characters for a discrete group G, with
good functorial properties:

K*(C*(G)) — H.(G; Q)
or
Ext, (C*(G)) — H¥G; Q).
(One may have to replace C* by C%, here or work with real rather than
rational coefficients.) So far no such construction is known except for the

topological constructions to be discussed in the next section. However,
the ‘non-commutative Chern character’ for a C*-algebra equipped with a
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Lie group action in [11] seems to be closely related, at least in the case of
lattice subgroup of a Lie group.

3. Results for discrete groups

On the category of discrete (countable) groups, I'+—> C*T) and I'—
CX4I) give covariant functors (the latter of these is functorial only
in a limited sense) [39, Prop. 1.2], so since I' — %*(BT) is a contravariant
functor, it is natural to try to set up a natural transformation
p Ext, (C*()) — X*(BT). When T is finite, this is not precisely the
same as the Atiyah-Hirzebruch map, although it becomes the same if one
identifies R(I') with its dual. When T is non-amenable, it may be
necessary to replace C* by Cj, and possibly to replace Ext, by its
Grothendieck group or group of invertible elements. In any event, the
construction of w or of minor variants thereof is essentially the idea of
[25,88], [23,p.24], and of [31], [32], [45], etc. In fact, granted the
construction of a graded product on Ext, (which is essentially the subject
of [25], given the isomorphism for separable nuclear C*-algebras be-
tween the Kasparov and Brown-Douglas-Fillmore functors proved in
[27, §7)), [25, §8] also shows how to make w into a ring homomorphism.
It actually seems easiest here to modify the ideas of Kasparov and
Miscenko by using the Brown-Douglas—Fillmore Ext-theory in place of
Fredholm representations and the Kasparov K-functor. This results in a
construction first described by de la Harpe and Karoubi [23], although
phrased by them in slightly different language. In what follows T' will
always denote a countable discrete group, and Ext denotes what is
sometimes called ‘weak Ext’ (see [15, Ch. 2]). It is worth noting that since
C*(T') has a one-dimensional representation (namely, the trivial represen-
tation of I'), ‘strong’ and ‘weak’ Ext coincide for C*(I') (see [4, p- 560]
and [41, §3]). This makes the construction that follows somewhat simpler,
but the reader can easily make the modifications (that might be necessary
if C*(I') were replaced by C* (') needed to take the distinction between
‘strong’ and ‘weak’ Ext into account. If B = B(¥) denotes all bounded
operators on an infinite-dimensional separable Hilbert space % and
9 =RBIK denotes the Calkin algebra, then a class in Ext (C*I)) is
determined by a unital *-monomorphism 7:C*T)— 2. We form then

E, =9 X% El=9XETl/~,, where (ar(y),b)~,(a,vy-b)
for yel', ae2,be ET.

Then E, is the total space of a bundle over BT with fibres that are copies
of 2 (in particular projective 2-modules), and so defines a class [E.]e
X°(BT; 92).

We claim this gives a homomorphism w :Ext (C*(I") —» ¥°(BTI"; 2).
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First of all, if 7, and 7, are equivalent, which means frz(-)zwrl(-)u'1
for some unitary ue 2 of index zero, then [E.]=[E.], since the map
¢ (a,b) > (au ', b) for ae2, b e ET, commutes with the left 9-action
on 2 X ET, is bijective and satisfies

dlar,(y), b) = (au"'mo(¥), b) ~(au 'y b)=dla v b).

Secondly, w takes 0 to 0, since if T C*I)— 2 lifts to a *_homo-
morphism o C*¥T)— B, then [E.] lies in the image in ¥°(BT; 2) of
#°(BT; $), which is zero by [24, Exercise [1.6.16]. Finally, p is a
homomorphism, since if 7, and 7, are unital *-monomorphisms C*(I") —
9 and wut+uui=1, wiu,=ulu,=1 in 2, then [r,]+[7] is rep-
resented by 7:x+> u,fr,(x)u’f—kuﬂz(x)u’;, and E. is equivalent to E, ©®
E,, via the map 9 x ET/~.—> (2 ® Q)X El/~¢mp induced by (a, b)—
(au,, aus, b).

Proposition 3.1. There are natural transformations o Exto (C*M)
— %°(BY), p,:Ext, (CFI)— #Y(BT), for I a countable discrete group.
One could also replace C*(I') by CE .

Proof. The map w, is just the map u :Ext (C*(I)) — X°(BT, 2) con-
structed above, followed by the isomorphism ¥°(BT; 2)= X Y(BT) of [24,
Exercise 11.6.16). Karoubi and de la Harpe give an equivalent descrip-
tion: given 7:C *T)— 9, we view T as a group homomorphism I' — UQ)
and consider the induced map on spaces BT — B (2). Since BAU(2) is
homotopy-equivalent to the infinite unitary group U(®), we have as-
sociated to T a homotopy class of maps BI'— U(), hence an element of
%'(BT). To get o, replace I by I'xZ and observe that C*I'xZ)=
C*)®C(T), where T is the circle group, and similarly B(I'XZ)=
BT xBzZ=BUxT. Thus (BT x2)=H"(BT)®K'(BI) and
Ext (C*('xZ))=Ext (C*TI)) D Ext, (C*I)). We define p,; to be the
composite Ext, (C*())— Ext (C *'xZ))— X (BI%X2)— K(BT).
Everything of course works with C*, also. Note that the definitions of
for T and for ' XZ are properly consistent.

It remains to check naturality. If we are given a homomorphism
¢ :T, — T, inducing ¢y C*(T,)— C*(',), then for 7: C*(T,) — 2, clearly
E.., =¥*E,). The same argument with ¢ xid:TyxXZ— [,xZ estab-
lishes the claim. O

We are ready now for the main results about the map w of (3.1). In the
cases treated, they sharpen the results of [25,§8, Thm. 2], [45], and
[32, Thm. 1], and so presumably could be used as discussed in [25, §8]
and in [33] in proving cases of the ‘Novikov conjecture’ on higher
signatures of non-simply connected manifolds. Even if we leave aside the
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topological content of the results, the proofs seem to have some indepen-
dent interest since they illustrate applications of [36], [21], and [10]. In
particular, the exact sequences of [36] can be seen to be analogues of a
Gysin sequence in a non-commutative setting.

We call a solvable group I' poly-(infinite cyclic) if it has a composition
series in which the successive quotients are free abelian. For such a ', BT
can be chosen compact, and hence with slight abuse of notation, we shall
write K*(BT) in place of ¥ *(BT’). Any polycyclic group contains such a
subgroup I' of finite index, and these are essentially the same as the
groups that can be embedded discretely in solvable connected Lie groups
(for precise statements, see [51, Prop. 4.1 and Prop. 4.4]).

Lemma 3.2. The map p, is an isomorphism for I' = Z (or equivalently,
Mo is an isomorphism when T ={1}).

Proof. We have C*Z)=C(T), BZ=T. Thus Ext(C*Z)) and
K'(BZ) are both infinite cyclic, so it is enough to check that p sends a
generator to a generator. Now Ext (C*(2)) is generated by the homomorph-
ism from Z to GL(2) taking 1€Z to a unitary u of index 1. The
continuous sections of the corresponding 2-bundle over T may be
identified with continuous functions R — 2 such that f(x+1)=f(x)u for
x € R. Therefore, the bundle (as a bundle of left 2-modules) is not trivial,
since otherwise there would have to exist a section f as above taking
values everywhere in GL(2), which is impossible since the Fredholm
index of f(x) would have to increase by 1 each time x is increased by 1.

One sees from the same argument that the bundle generates
KT;2). O

Theorem 3.3. Let T be any poly-(infinite cyclic) group. Then the maps
i Ext; (C*() — KI{(BT) are isomorphisms.

Proof. This is proved by induction on the length of a composition
series for I" in which all quotients are infinite cyclic. Lemma 3.2 starts the
induction. Therefore we may assume I'=I',xZ and the theorem is
already known for T',. Let 8 denote the automorphism of I'; induced by a
generator of Z. Then we may take BI'=BT;X;R, where we divide
BT XR by the Z-action by powers of (x, t}) — (Bxx, t+1). In particular,
we have a fibration

BI', — BT
=,
T.

Thus we may compute K*(BT) via a sort of Gysin sequence. More
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exactly, let Y and Z be the images of BI';x(0, 1) and BT, x{0} in BT.
Then since Y is open in BT and BI\Y =Z=BT,, we get a long exact
K-theory sequence by which we can compute K*(BTI):

-+ — K'"Y(BT)) > Ki(BT, x (0, 1)) —

K'(BT) — K'(BT,) > KI*'(BT', x(0, 1)) — - - -

which when explicated gives (i : BI', =Z — BT denoting the inclusion)
-+ — K'"(BT,) <% K™(BT,) % K/(BT) s

KYBE S KBT s ve

On the other hand, C*(I') is a crossed product C*(Z, C*(T',)) and is
nuclear since T is solvable. Thus we may compute Ext, (C*(T)) using the
long exact sequence of [36, Theorem 3.5]. Here we have rewritten the
sequence slightly to conform to present notation, and have not needed to
check the quasi-diagonality hypothesis because of the improved
homotopy-invariance results of [27]. Putting the two exact sequences

together (using the map w for both T and I'y) we get the following
diagram with exact rows:

— Ext;,, (C*(I') 255 Bxt,,, (C*T ) 2> Ext, (C*(T)) ">

Hr, By My
©-—— K'"Y(BTI;) —=82, Ki*Y(BT',) — % _, Ki(BT) —*»

Ext; (C*(I')) =5 Bxt, (C*(T'})) —> - - -

Hr, My

K(BI;) ~1=B", KHBI,)—3--

Here i*:Ext; (C*T )) = Ext; (C*(I'y)) is induced from the natural inclu-
sion C*(';) > C*); note that the square involving the two maps
labelled i* commutes by the naturality assertion in Proposition 3.1.
Similarly the two squares involving maps labelled 1-B* commute. Fi-
nally, the square involving the maps & and ¢ also commutes, as can be
checked from a description of the connecting map of the Pimsner—
Voiculescu sequence. Since kr, 18 an isomorphism by inductive
hypothesis, wr must be an isomorphism, by the Five-Lemma. [J
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Theorem 3.4. If T is a free group on countably many generators,
w:Ext (C*I)) — X '(BT) is an isomorphism.

Proof. This is essentially a reformulation of results of L. Brown, who
observed [4, p. 563] that if I is free on n generators (n finite), then even
though C*(T') is non-nuclear for n>1, Ext (C*(I)) is a group and in fact
is isomorphic to Z" via the usual index invariant. (An element of
Ext (C*(I")) is given by a choice of n unitaries in 2 it lifts if and only if
all of these have index zero.) Since BT is just a wedge of n circles, this is
equivalent to our statement (via the argument of Lemma 3.2). If n =,
BT is a wedge of countably many circles and ¥'(BT) is an infinite
product of copies of Z. On the other hand, Ext (C*(I)) is isomorphic to
this same product by the index map. [

It would be nice to know about Ext, for the C*-algebra of a free group
or about the Ext-semigroup of the reduced C*-algebra (which is simple
by [38]), but it does not even seem to be known if these are groups. Our
knowledge about the case of other non-amenable groups is in most cases
even more limited. However, the following generalization of Theorem 3.4
is known (due to work of Brown and of Karoubi—de la Harpe).

Theorem 3.5. Let T be a free product of countable groups I’y and T,
and assume Ext (C*(T'})) is a group for j =1, 2. Then there is an isomorph-
ism Ext (C*(I'))=Ext (C*(T',)) ® Ext (C*(I',)) compatible (via w,) with
the isomorphism X' (BT')=%"(BT',)® % (BT,).

Proof. This follows immediately from the theorem of [5] about
Ext (A *c B), in the case A =C*T,), B=C*{T,), C=C. According
to  Brown’s theorem, the kernel of the natural map
Ext (C*(I')) &> Ext (C*(T,)) D Ext (C*(,)) will be isomorphic to the
cokernel of a map ‘Ext’, (A)® ‘Ext’, (B) — Ext, (C) which is easily seen
to be surjective, and the cokernel of y will be zero since Ext (C)=0. In
this situation, we may take BI'= BT, v BT, and it is clear that

Ext (C*(I") —— Ext (C*(T'y)) ® Ext (C*(T,))
ur (uftui?)
K (BT)—=——%"(BT",) ® ¥ (BI,)
commutes. For another version of the result, see [23]. O

It is worth mentioning at this point that composition of u with the usual
Chern character ch:X*(BI') - H*(BT, Q) = H*(T', Q) yields the Chern
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character map ch: Ext(C*T')) - H*T, Q) mentioned earlier. This can be
described explicitly as follows. View an element of Ext (C*(T)) as being a
class of group homomorphisms 7:T — U(2). Now U(2) is a topological
group in the norm topology, so 7 induces a map T1y:BI'— BU(2)
(well-defined up to homotopy). As a consequence of Bott periodicity,
A (2) has the homotopy type of Z x BU(>) and BU(2) has. the homotopy
type of U(00)=]i_1)n U(n). Then w(r]) is the class of T4 as sitting in
[BT, QBU(«)]=[SBT, BU(«)]. Then ch ([]) is defined by the usual
formula Y71 1/n! (1,)%(Q,(cy, cs, . . ) (24, V.3.22], where ¢ is the uni-
versal Chern class in H* (BU(), Z) and Q, is the nth Newton polynomial.
The sum is of course to be computed in H***"(SBT, Q)= H**(BT, Q).
Alternatively, one can compute ch ([=]) directly from the ‘Chern classes’
of 7, which are the elements of H *¥(BT, Z) obtained by pulling back via
7s: BI'— BU(2) the canonical generators of H *(U(), Z) (which is an
exterior algebra on generators in odd degrees). The ‘Chern classes’ of
course vanish if [r] is trivial in Ext (C*()), since then T4 is null-
homotopic.

We conclude this section by mentioning now a number of results about
K. (C*(I") for discrete groups. As we mentioned earlier, for reasons of
functoriality one should not expect these to be isomorphic or ‘almost
isomorphic’ to ¥ *(BT) in general. Instead, K.(C*(I") should be related
to K-homology of BT via Kasparov's map 8 [25, §8].1 For instance, let
['=7ZxZ, where the semidirect product is defined by the action of Z on Z
by multiplication by powers of —1. Then BT may be taken to be a Klein
bottle, and by Theorem 3.3, we have Ext, (C*I)=KYBIN=
H'(BT, Z)=Hom (I', Z) =7, Exto (C*(I)=K°BT)=H"BT,72)®
H*BT,2)=7® (z/2), while K, (C*T)=K,(BT)=H,(BT,2)=
T/ETT=Z2® (Z/2), K (C*I)) = Ko(BT)=H(BT,Z)® H,BT',7)=7 (by
calculation with the Pimsner—Voiculescu sequence for K-theory instead
of Ext, or else via Theorem 3.3 and the universal coeflicient theorem for
Ext, proved in [6] or [42]).

Nevertheless, there are a number of cases when one can relate
K, (C*T)) to ¥*(BT). This happens particularly when both are torsion-
free, for instance if T is finite. Recall in fact that for a finite group, the
Atiyah-Hirzebruch map « can be thought of as an injection of K,.(C*(I))
into ¥ *(BT"), which becomes an isomorphism upon completion. There
does not seem to be a good analogue of « for general discrete groups, but

¥ The definition of 8 is complicated but the existence of such a map is easy to motivate. In
fact, there is an obvious inclusion of I' into U(C*I)) (or the ‘stable’ unitary group
%‘(C*(F))=li__m)%(C*(F)®M,,)), which induces a map of spaces BI' — BU(C*(')). The
induced map on fundamental groups is the natural map I'= 4 ,(BT) — 7 (BUS(CHT))) =
K ((C*(T)) [25,11.6.14.d], and there is also a map induced in K-homology from K, (BT) to
K, (BU*(C*(IN)). The latter is at least closely related to K, (C*(I)).

e
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for certain of the groups treated in 3.3 and 3.4, there are good substi-
tutes.

Theorem 3.6. Let I' be a discrete cocompact subgroup of a connected,
simply connected solvable Lie group G. (In this case we may identify BT
with the compact solvmanifold G/T'.) Then there is an isomorphism
K«(C*(T)) — H*(BT) of degree equal to the dimension of G.

Proof. By Rieffel’s version of the Mackey imprimitivity theorem
[39, Theorem 7.18], C *T) is strongly Morita equivalent to the transfor-
mation group algebra C*(G, G/I"), and in fact by [20], the latter is
isomorphic to C*(IN® K. Thus K(CH*I)=K.(C*G, G/T")) (without
shift of degree). Then by [10, §V, Corollary 7], there is an isomorphism
K. . (C*G, GT)) - K*9S(Gr). 0O

Remark 3.7. If I is poly-(infinite cyclic), one may compute H*(T', 7)
from the Hochschild-Serre spectral sequence, starting from the case of a
free abelian group. This shows among other things that BT has Euler-
Poincaré characteristic zero (a classical fact), so that K BIN®Q=
K'(BI)®Q (as abstract groups). It follows from 3.3 and the universal
coefficient theorem for Ext (as stated in [6] and [42]) that the torsion-free
parts of Ext,, Ext,, K,, and K 1 for C*(T) are all isomorphic. Again by the
universal coefficient theorem, the torsion part of K, (resp. K;) is isomor-
phic to the torsion part of Ext, (resp. Exty). As we have already seen by
example, the torsion may not vanish and may be different in K, and K.
But if the rank of T is even and T satisfies the condition of 3.6, then 3.3
and 3.6 together imply that all the K- and Ext-groups of C*(I') coincide,

a fact which may be attributed to Poincaré duality for the manifold
G/r. QO

It is perhaps worth mentioning a possible application of Theorem 3.6 to
harmonic analysis on discrete groups. If T is finitely generated, torsion-
free, and nilpotent, then it satisfies the condition of Theorem 3.6 for a
unique nilpotent Lie group G (by a famous theorem of Malcev), and so
the K-groups of C*(') are easily computed. As indicated in the remarks
preceding Proposition 2.1, LY(T) is symmetric and so its K-groups co-
incide with those of C*D). Putting these facts together, we see that the
Betti numbers of BI" determine the number of ‘independent’ solutions to
the convolution equation f * f={, for f a matrix-valued L'-function on
the group (since such fs correspond to projective L'(I')-modules). Such
use of K-theory to study idempotent measures on groups was first
proposed in [49, §§11-12]. The same idea is valid for any group with

symmetric L'-algebra, for instance for the groups of the following
theorem.
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Theorem 3.8. Let I be a semidirect product T'y x 7", where T'; is a
finite group (acting on Z"). Then a suitable completion of K. (C*(I") is
isomorphic to X *(BT): via a generalized Atiyah—Hirzebruch—Segal map.

Proof. As indicated earlier, [21] gives an isomorphism K. (C*(I'))=
Ki(C*Z™)=K{ (T"). This is an R(I'})-module, and so may be com-
pleted in the I(T'))-adic topology. Furthermore, BT is just (T"), so this
theorem follows immediately from [3, Prop. 4.2]. O

Theorem 3.9 (Cuntz [13]). If I' is a free group on countably many
generators, the inclusion T — U(C*{I)) induces an isomorphism
I/, I']— K, (C*I)), and K(C*(I") is infinite cyclic with generator the
class of the identity.

Theorem 3.10 (Pimsner—Voiculescu [37]). The conclusions of
Theorem 3.9 remain valid if C*(I') is replaced by C% ().

Remark 3.11. Theorem 3.9 (proved in [13] for the case of T free on
two generators, although the general case is clearly the same) may be
interpreted as giving a natural isomorphism from K.(BT) to K, (C*(I)
for free groups, which is of course what one would expect on the basis of
[25, §8]. This improves and ‘explains’ an earlier theorem of Cohen [9]
(see [8] for major simplifications in the proof) stating that the C*-algebra
of a free group contains no non-trivial idempotents. The same is now
known for the reduced C*-algebra by Theorem 3.10. O

It would be nice to have calculations of K-groups for C*-algebras or
reduced C*-algebras of other non-amenable groups. About the only
result in this direction is the following, which bears the same relation to
3.9 as 3.5 to 3.4.

Theorem 3.12 (Cuntz [13]). If T is the free product of groups T,
and T, and ¢;: C*(I'}) > C is the homomorphism induced by the trivial
representation, then the K-groups of C*(I') are naturally isomorphic to those
of {(a,b)| ae C*(T,), be C*Iy), yn(a)=yn(b)}.

One group to which 3.5 and 3.12 apply is I'= PSL(2, Z)=(Z/2) * (Z/3).
Thus we see that Ext (C*(PSL(2,2)))=0, K(C*(PSL(2,2)))=0, and
Ko(C*(PSL(2, Z))) is free abelian of rank 4.7 Theorems similar to those of

+ The marked difference between this and the cohomology of BT, which is periodic and
has torsion, is easily understood in terms of the Atiyah—Hirzebruch theorem. BT is an infinite
complex, and the Chern character is far from being an isomorphism. However, % *(BT) is,
as expected, torsion-free and concentrated in even degree.



GROUP C*-ALGEBRAS AND TOPOLOGICAL INVARIANTS 109

[51 and [13] but valid for more general amalgamated free products would
make it possible to treat the fundamental groups of compact surfaces.
However, entirely different methods would be needed to treat groups like
PSL (3, Z). There is hope that one might be able to find a substitute for
the results of [10] and [17] valid for reduced crossed products by
semisimple Lie groups, in which case the method of 3.6 could be applied
to lattice subgroups of more general Lie groups. (The author thanks AL
Connes for this idea.)

4. Results for connected Lie groups

When G is a connected Lie group, unless G is compact there is no
obvious map connecting the K- and Ext-groups of C*(G) (or CEiG))
with the topological K-groups of BG. Nevertheless, there are striking
similarities between these that seem to be due to more than just coinci-
dence. In fact, one seems to be led to the following conjecture, which the

author believes should be attributed to Connes:

Conjecture 4.1. For G a connected Lie group with maximal compact
subgroup H (for obvious reasons we are trying to avoid over-using the
letter K), there are isomorphisms K;(C4(G))— Ki® ™™ (pt) (at least
as abstract groups),T where as usual K% denotes the H-equivariant
K-theory of [44] and pt is a one-point space. (There is an analogous
conjecture about Ext; (Cra(G)).)

The connection with our theme should be clear, since G and H are
homotopy-equivalent and thus BG can be identified with BH. Further-
more, we know ¥ *(BH)=R(H)=Kj(pt) by the Atiyah-Hirzebruch-
Segal Theorem, so that this would yield an isomorphism of a suitable
completion of K(C¥(G)) with X*(BG) (of degree the dimension of
G/H).

Let us now discuss some of the evidence for the conjecture and some of
its implications. The strongest evidence comes from the case of solvable
groups.

Theorem 4.2 (Connes [10, 8§V, Corollary 7], Kasparov
[27,p.574]). Let G be a connected, simply connected solvable Lie group.
Then KI(C*(G)) ~ Ki+dim G(pt).

Theorem 4.3 (Fack-Skandalis [17, Corollary 2], Kasparov [27,
p. 574)). Let G be a connected, simply connected solvable Lie group. Then
Ext;, (C*(G)) = K 1aim c(D1)-

*

+ Note that we are not claiming that K.(CX.(G)) necessarily carries an R(H)-module
structure, or even if it does, that it is necessarily free as an R(H)-module.
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Theorem 4.4. Let G be a connected Lie group with maximal compact
subgroup H, and assume G is either (a) nilpotent or (b) a motion group.
Then K(C*(G))=Kg*™ " (pt) (as abelian groups).

Proof. (a) If G is nilpotent, then H is central, and so G has a series of
closed subgroups GG, 2 ->G,=H with G;,,<4G; and G/G; =R.
Thus C*(G;) must be a crossed product C*[®R, C*(G;.y)). It suffices now
to apply the ‘“Thom isomorphism’ theorem of [10] n times. (b) If G is a
motion group, i.e. G=H xV with V a vector group, then C*(G)=
C*(H, C*(V)) = C*(H, V) and, by [21], K«(C*(G))= K*(V) (as R(H)-
modules). The result now follows from the Thom isomorphism theorem in
equivariant K-theory, applied either to V (if V is even-dimensional) or to
VxR (if V is odd-dimensional), as explained in [12, §4). It should be
pointed out, however, that although K ";,(\7) is a free R(H)-module when
V carries an H-invariant spin structure, this may be false in general. For
instance, suppose H =SO(4) and V =R* (with the obvious action). The
map H— SO(V) does not lift to a map H — Spin (V), so by [12,
Proposition 4.3], K‘;,(V) is isomorphic as an R(H)-module to the odd
part of R(Spin (4))=R(SU2)® R(SU(2)), which is not free as an
R(H)-module. U

Unfortunately, the argument given for Theorem 4.4 does not seem 10
work for general non-simply connected solvable Lie groups. Nevertheless,
it seems very likely that Conjecture 4.1 is at least true for all connected
amenable Lie groups. Our evidence in the semisimple case is much
sketchier, but at least we know the following.

Theorem 4.5 [41,§7]. Conjecture 4.1 is valid for all connected
semisimple Lie groups of real-rank one.

The primary reason for interest in Conjecture 4.1, as pointed out in
[12], comes from the ‘theory of the discrete series’. Suppose G is a
connected Lie group with compact centre. Then G may or may not have
square-integrable representations, i.e., factor representations which occur
as direct summands of the regular representation. If, however, such
representations exist, then they define open points in the primitive ideal
space of C*¥(G),and it G is unimodular, these points are also closed [19,
Theorem 1 and Corollaries]. The most familiar examples where such
representations exist are compact groups, SL.(2,R), the Heisenberg group
(the non-trivial central extension of R by T), and the ‘ax+b’ group
R xRY). Of these, the latter is non-unimodular and has two square-
integrable irreducible representations each of which weakly contains all
the one-dimensional representations; the other examples are unimodular.
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In the case of semisimple groups (and by extension, for other unimodular
groups with a type 1 regular representation), the square-integrable ir-
reducible representations are commonly referred to as the ‘discrete
series’, and are the basic building blocks in Harish-Chandra’s theory of
harmonic analysis on G. An important problem (now essentially solved,
but not without considerable effort) in harmonic analysis on Lie groups is
to determine which groups have square-integrable representations and to
parameterize and construct these representations when they exist. The
relevance of Conjecture 4.1 to this problem is apparent from the follow-
ing result of Philip Green, which he kindly communicated to the author.

Theorem 4.6 [P. Green, unpublished]. Let G be a connected uni-
modular Lie group. Then each square-integrable irreducible representation
of G contributes a summand of Z to Ko(Cx4(G)), and each non-type 1
square—integrable factor representation contributes to both Ky(CEA(G)) and

to Kl(cfed(G)) *

Corollary 4.7. Assume G is connected, unimodular, and satisfies
Conjecture 4.1. Then all square-integrable factor representations of G are
type 1, and such representations can exist only if G/H is even-dimensional.

Proof (Sketch). Let G be a connected unimodular Lie group, 7
a square—integrable factor representation of G with kernel Je
Prim (CE4(G)). By [40, Theorem 2.13], 7= must be traceable. Since by
[19] J is isolated for the hull-kernel topology on Prim (C*4(G)), we see
that Cru(G)=im(m)®J (C*-algebra  direct sum), and thus
K,(C%4(G)) =K, (im (m) ® K;(J). If 7 is type I, then im (m)=3¥ since ™
is traceable, and we get a contribution of Z to Ko(C * {(G)), 0 to K. If o
is not type 1, then using the machinery of [18], [19], and [36], one can
show that both K(im (7)) and K;(im (w)) are non-Zero. Thus this case 1S
ruled out if Ky (C *(G)) is concentrated in one degree. Furthermore, if
4.1 holds, then K, can only be non-zero when G/H is even-

dimensional. O

Finally, we should mention that a proof of 4.1, assuming it involved
construction of an explicit isomorphism of K-groups, would not only
prove 4.7, but also give geometric realization and exhaustion theorems
for the discrete series, since each discrete series representation contri-
butes a free generator toO K(CE4(G)). To illustrate: how this works,
consider the case of a nilpotent Lie group G with compact centre Z and
discrete series, for which 4.1 is proved via 4.4. By the argument of 4.7,
G|Z is even-dimensional, and the iterated Thom jsomorphism of 4.4,
together with Bott periodicity, gives an explicit isomorphism
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Ko(C*G)) coming from non-discrete series. Simj!

larly, in the case of
SL(2,R), all but one of the free generators of Ko(CX (G)) come from the

discrete series. The remaining generator is associated with the odd
principal series and the two ‘limits of discrete series’. We should mention
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