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I. Group Von Neumann Algebras
in Topology: L2-cohomology,

Novikov-Shubin invariants
I.1. Motivation

Spectrum of the Laplacian:

Compact Non-compact
manifolds manifolds

Discrete spectrum | Continuous spectrum

Finite-dimensional | Infinite-dimensional
kernel kernel

In the special case where the non-compact
manifold is a normal covering of a compact
manifold with covering group m, we use the
group von Neumann algebra of = to measure
the 'size” of the infinite-dimensional kernel
and the “thickness” of the continuous spec-
trum near O.



I1.2. An Algebraic Set-Up (following M. Far-
ber, GAFA 6 (1996), 628—665)

Let m be a discrete group. It acts on both the
right and left on L?(x). The von Neumann
algebras A(w)"” and p(7)" generated by the left
and by the right regular representations A and p
are isomorphic, and p(w)"” = X(«wr)’. These von
Neumann algebras are finite, with a canonical
(faithful finite normal) trace = defined by

l, g=1

0, g#1,

and similarly for p. Call a finite direct sum of
copies of L?(x) a finitely generated free Hilbert
m-module, and the cut-down of such a mod-
ule by a projection in the commutant a finitely
generated projective Hilbert m-module. (We

keep track of the topology but forget the in-
ner product.)

T(A(g)) = {



The finitely generated projective Hilbert =-
modules form an additive category H(w). The
morphisms are continuous linear maps com-
muting with the m-action. Each object A in
this category has a dimension dim,(A) € [0, c0),
via

dimsn-L?(x) =n, dims;eLl?(x) = 7(e).

When 7 is an ICC (infinite conjugacy class)
group, A(w)"” is a factor and objects of H(x)
are determined by their dimensions.

The category H(x) is not abelian, since a mor-
phism need not have closed range. It turns out
there is a natural way to complete it to get an
abelian category £(w). The finitely generated
projective Hilbert m-modules are the projectives
in £(w). Each element of the larger category is
a direct sum of a projective and a torsion ele-
ment (representing infinitesimal spectrum near
0). A torsion element is defined by a positive
operator a = a*: A — A with kera = 0 and
dim,- A arbitrarily small.



The most interesting invariant of a torsion el-
ement X represented by a = a*: A — A is the
rate at which

o0
Fo(t) = dim, (B A), aZ/O t dE

approaches 0 as t — 0. This is well-defined
modulo the equivalence relation

F~G<«3C,e>0, G(%) < F(t) <GUC), t < e.
The Novikov-Shubin capacity of X is

log t
c(X) = limsup . ;
t_>()‘|‘ |Og Fa(t)

it satisfies

c(X1 @ Xo) = max(c(X1), c(X2))

and for exact sequences

0> > & > A — 0,

max(c(X1), e(X2)) < e(X) < e(X1) + c(X2).



Now consider a connected CW complex X with
fundamental group =« and only finitely many
cells in each dimension. The cellular chain
complex Cx(X) of the universal cover X is a
chain complex of finitely generated free (left)
C[x]-modules. We can complete to L?(x) Qx
C«(X), a chain complex in H(x) C &E(x), and
get homology, cohomology groups

Hi(X, L?(m)) € E(m), HY(X, L? (7)) € E(m),

called (extended) L?-homology and cohomol-
ogy, which are homotopy invariants of X. The
numbers B;(X, L?(w)) =

dim,(H;(X), L?(x)) = dim-(H'(X), L?(x))

are called the (reduced) L2-Betti numbers of
X. Similarly one has Novikov-Shubin invariants
defined from the spectral density of the torsion
parts (though by the UCT, the torsion part of
HY (X, L?(x)) corresponds to the torsion part
of H;_1(X, L?(x))).



I.3. Calculations

Theorem 1 Suppose M is a compact connec-
ted manifold with fundamental group =. Then
the L2-Betti numbers of M as defined above
agree with the r-dimensions of

<L2 closed i-forms on M ) /

d <L2 (7 — 1)-forms on ]\7) N <L2 i—forms).
Similarly the Novikov-Shubin invariants can be

computed from the spectral density of A on
M (as measured using 7).

Example 2 M = S, » =2, C[x] = C[T,T1].
L2(r) identified via Fourier series with L2(S1),

group von Neumann algebra with L°(S1), =

1 27 .
with f — —/ £(e9) do,
27 J 0

(M) : [T, -1 =L ¢, 71

C.(M, L2(r)) - L2(S1) <271, 12(51)y.



So the L2-Betti numbers are both zero, but
the Novikov-Shubin invariants are non-trivial,
corresponding to the fact that if

o= e — 1| L2(s1) — L2(sY),
then F,(t) ~ t for ¢t small.

Generalizing one aspect of this is:

Theorem 3 (Cheeger-Gromov) If X is an
aspherical CW complex (i.e., m;(X) = 0 for
i = 1) with only finitely many cells of each
dimension, and if # = w1(X) is amenable and
infinite, then all L?-Betti numbers of X vanish.

However, under the hypotheses of Theorem 3,
Brooks proved that O lies in the spectrum of
A on O-forms. It is not known then (at least
to the author) if one of the Novikov-Shubin
capacities is always positive.



Example 4 M a compact Riemann surface of
genus g > 2, M the hyperbolic plane, = a
discrete torsion-free cocompact subgroup of
G = PSL(2,R). In this case, it's easiest to use
the analytic picture, since L2(M) = L?(G/K),
K = SO(2)/{£+1}. As a representation space
of G, this is a direct integral of the principal se-
ries representations, and A corresponds to the
Casimir operator, which has spectrum bounded
away from 0. So g = 0, and also B>, = 0 by
Poincaré duality.

Now the L2 sections of Q1(M) may be identi-
fied with Ind% (g/€)*, which contains, in addi-
tion to the continuous spectrum, two discrete
series representations with Casimir eigenvalue
0. Thus 81 % 0. The Atiyah L2-index theorem
implies 81 = 2(g — 1). There are no additional
N-S invariants, since these measure the non-
zero spectrum of A close to 0, but the con-
tinuous spectrum of A is bounded away from
0.



Generalizing one aspect of Example 4 is:

Theorem 5 (Jost-Zuo, conj. by Singer) If
M is a compact connected Kahler manifold of
non-positive sectional curvature and complex
dimension n, then all L?-Betti numbers of M
vanish, except perhaps for Bn.

As we will see in the next lecture, the Atiyah
L2-index theorem then implies that

n = (—1)"x(M),
where x is the usual Euler characteristic.

Note. One should not be misled by these ex-
amples into thinking that the L2-Betti num-
bers are always integers, or that most of them
usually vanish.



II. Von Neumann Algebra
Index Theorems:
Atiyah’s L2-Index Theorem
and Connes’

Index Theorem for Foliations
I1.1. Ativah’s L2-Index Theorem

As we saw in the last lecture, it is not always so
easy to compute all of the L2-Betti numbers
of a space directly from the definition, though
sometimes we can compute some of them. It
would be nice to have constraints from which
we could then determine the others. Such a
constraint, and more, is provided by:
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Theorem 6 (Atiyah) Suppose
D: COO(M, EQ) — COO(M, El)

is an elliptic pseudodifferential operator (1yDO)
(acting between sections of two vector bundles
Eo and Eq1) on a closed manifold M, and M is
a nhormal covering of M with covering group .
Let

D: C®(M,Ey) — C®(M, Eq)
be the lift of D to M. Then

Ind D(= dim ker D — dim ker D¥)
= L?-Ind D(= dim; ker D — dim, ker D*).

For applications to L2-Betti numbers, we can
take Eg = P Q?%, By = @ Q2+, D the “Euler
characteristic operator’ D = d+d*, soInd D =
v(M) by the Hodge Theorem, while L2-Ind D
is the alternating sum of the L2-Betti numbers,
> (—1)"B;.

11



Sketch of Proof. For simplicity take D to be
a first-order differential operator, and consider
the formally self-adjoint operator

0 D*
acting on sections of £ = Eqg & E1. Since D
Is elliptic, PDE theory shows that the solution
of the “heat equation” for P, H; = exp(—tP?2),
IS @ smoothing operator, an integral operator

with smooth kernel, for ¢t > 0. And as t — oo,
H; — projection on ker D @ ker D*, so that if

(1 0\ 1 on Ejg
7= \o -1 —1 on Ejq,
then Ind D = iMoo Tr (7Hy).

Define similarly

~ 0 D* -~ (1 O ~ _¢pP2

P_<D O>7 ’7_<O _1>7 H_e )
acting on sections of E = Eg @ E;. Then
L2-Ind D = liM;_s00 7 (VH).

12



Here we extend = to matrices over the group
von Neumann algebra in the obvious way. So
we just need to show that

Tr (yHy) = (YHy) (1)
Now in fact both sides of (1) are constant in
t, since, for instance,

d d
— Tr(vHy) = = Tr (ve_tpz)

dt
— % (Tre™tP™P — TrtPP7)
= Tr (DD*e_tDD* _ D*De_tD*D> .

But

Tr <DD*6_tDD* r < —tDD*/2D D*e_tDD*/2>

a
< —tDD* >

(D* (1—tDD*—|— )D)
(D*D (1 — tD*D + - --))
( D*De— tD*D )

r

Q)

—tDD*/2 —tDD*/2 D)

|
73337 3
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So it's enough to show that
im, (Tr (vHy) — 7 (¥H:)) = 0.

But for small ¢, the solution of the heat equa-
tion is almost local. In other words, H; and ﬁt
are given by integration against smooth kernels
almost concentrated on the diagonal, and the
kernel k for H; is practically the lift of the ker-
nel k for Hy, since, locally, M and M look the
same. But for a m-invariant operator S on E,
obtained by lifting the kernel function k£ for a
smoothing operator on M to a kernel function

to k, one can check that
(%) =/FE(5,f)dvo|(z)
= [ k(z,z)dvol
| k() dvol(a)
= Tr(S5),

F a fundamental domain for the action of w on

—~—

M. So that does it. [

14



I1.2. Connes’ Index Theorem for Foliations

Another important application to topology of
finite von Neumann algebras is Connes’ index
theorem for tangentially elliptic operators on
foliations with an invariant transverse measure.

Setup. M"™ a compact smooth manifold, F
a foliation of M by leaves LP of dimension p,
codimension ¢ = n—p. F itself can be identified
with an integrable subbundle of T'M. Locally,
M looks like LP x R9, but it can easily happen
that every leaf is dense. Not every such folia-
tion comes with an invariant transverse mea-
sure i, but when p exists, it gives a way to in-
tegrate over the “space of leaves M/F" even
though this space may not even be Tp. More
precisely, from M, F, and u, one can construct
a finite von Neumann algebra W*(M,F) with
a trace 7 coming from p. This is (except for
holonomy) the von Neumann algebra defined
by M and the equivalence relation ~ of “being
on the same leaf.”
15



Now suppose there is a differential operator D
on M which only involves differentiation in di-
rections tangent to the leaves and is elliptic
when restricted to any leaf. (Examples: the
Euler characteristic operator or the Dirac op-
erator "“along the leaves.”) Since the leaves
are usually not compact, we can't compute an
index for the restriction of D to one leaf. But
since M, the union of the leaves, is compact,
it turns out one can make sense of a numer-
ical index Ind-D for D. In the special case
where F has closed leaves, the foliation is a
fibration P — M 22 X9, and p is a proba-
bility measure on X, this reduces to Indr D =
[x Ind (D|Lx> dp(z), where Ly = proj—1(z). In
general, Ind-D is roughly the *"“average with
respect to u" of the L2-index of D|;_, as x
runs over the ‘space of leaves.” Here we give
each leaf the Riemannian structure defined by
a choice of metric on the bundle F.

16



Example 7 Let M; and M»> be compact con-
nected manifolds, and let = be the fundamen-
tal group of M. If m acts on My x M» with
trivial action on the first factor and the usual
action on the second factor, then the quotient
is My x (Mo/7) = M1 X Mo. But suppose we
take any action of # on M; and then take
the diagonal action of m# on My x M». Then
M = (M x M>)/m is compact and projection
to the second factor gives a fibration onto M,
with fiber M;. But M is also foliated by the
images of {z} x M, usually non-compact. A
measure p on My invariant under the action
of 7 is an invariant transverse measure for this
foliation F. If D is the Euler characteristic
operator along the leaves and all the leaves
are = Mo, then Ind, D just becomes the aver-
age L2-Euler characteristic of ]\7, and Connes’
Theorem will reduce to Atiyah’'s.

17



Theorem 8 (Connes) Let (M,F) be a com-
pact foliated manifold with an invariant trans-
verse measure u, and let W*(M,F) be the asso-
ciated von Neumann algebra with trace — com-
ing from u. Let

D: C*®(M, Eg) - C*(M, Eq)

be elliptic along the leaves. Then the L? ker-

nels of
__ (0 D*
P=(5 %)

on the various leaves assemble to a (graded)
Hilbert W*(M,F)-module Ko ® K1, and

Ind, D = dim, Ko—dim, K, = /InoltOID o(D)d p,

where o (D) denotes the symbol of D and the
“topological index” Indiop is computed from
the characteristic classes of o(D) just as in the
usual Atiyah-Singer index theorem.

18



II.3. An Application

If we specialize the Connes index theorem to
the Euler characteristic operator along the
leaves for foliations with 2-dimensional leaves,
It reduces to:

Theorem 9 (Connes) Let (M,F) be a com-
pact foliated manifold (oriented and transver-
sally oriented) with 2-dimensional leaves. Then
for every invariant transverse measure i, the u-
average of the L2?-Euler characteristic of the
leaves is equal to (e(F),Cu), where e(F) €
H?(M,7) is the Euler class of the 2-plane bun-
dle associated to F, and C, € H>(M,R) is the
“Ruelle-Sullivan class” attached to .

The result also generalizes to compact lamina-
tions with 2-dimensional leaves. (That means
we replace M by any compact Hausdorff space
X locally of the form R2 x T, where T is allowed
to vary.) The only difference in this case is that
we have to use tangential de Rham theory.

19



Corollary 10 Suppose (X,F) is a compact
laminated space with 2-dimensional oriented
leaves and a smooth Riemannian metric g. Let
w be the curvature 2-form of g. If there is an in-
variant transverse measure u with ([w], Cyu) > 0,
then F has a set of closed leaves of positive
pu-measure. If there is an invariant transverse
measure p with ([w],Cu) < 0, then F has a set
of (conformally) hyperbolic leaves of positive
pu-measure. If all the leaves are (conformally)
parabolic, then ([w],Cy) = O for every invariant
transverse measure.

Proof. The only oriented 2-manifold with
positive L2-Euler characteristic is S2. Every
hyperbolic Riemann surface has negative L2-
Euler characteristic. And every parabolic Rie-
mann surface (one covered by C with the flat
metric) has vanishing L2-Euler characteristic.
[]

20



This has been used in:

Theorem 11 (Ghys) Under the hypotheses
of Corollary 10, if every leaf is parabolic, then
(X,F,qg) is approximately uniformizable, i.e.,
there are real-valued functions un, (smooth on
the leaves) with the curvature form of eYng
tending uniformly to O.

Another known fact is:

Theorem 12 (Candel) Under the hypotheses
of Corollary 10, if every leaf is hyperbolic, then
(X,F,g) is uniformizable, i.e., there is a real-
valued function u (smooth along the leaves)
with e%g hyperbolic on each leaf.

21



III. Group C*-Algebras,
the Mishchenko-Fomenko
Index T heorem,

and Applications to Topology
III.1. The Mishchenko-Fomenko Index

Definition 13 Let A be a C*-algebra (over R
or C) with unit, and let X be a compact space.
An A-vector bundle over X will mean a locally
trivial bundle over X whose fibers are finitely
generated projective (right) A-modules, with
A-linear transition functions.

Example 14 If A= R or C, an A-vector bun-
dle is a usual vector bundle. If A = C(Y),
an A-vector bundle over X is equivalent to an
ordinary vector bundle over X x Y.

22



Definition 15 Let A be a C*-algebra and let
Eqy, Eq be A-vector bundles over a compact
manifold M. An A-elliptic operator

D: C*(M,Ey) - C®°(M, Eq)

will mean an elliptic A-linear ¥DO from sec-
tions of Eg to sections of E1. Such an operator
extends to a bounded A-linear map on suit-
able Sobolev spaces (Hilbert A-modules) Hg
and H1. One can find a decomposition

HOZH6@H67 leHll@Hlll7

H3 and HY finitely generated projective,
D:Hy — Hy, D:Hy— HY.
This means that “up to A-compact perturba-
tion” the kernel and cokernel of D are finitely
generated projective A-modules. The index of
D is

Ind D = [Hg] — [H]],

computed in the group of formal differences of
isomorphism classes of such modules, Kg(A).

23



III.2. Flat C*-Algebra Bundles and the As-
sembly Map

If X is a compact space and A is a C*-algebra
with unit, the group of formal differences of
isomorphism classes of A-vector bundles over
X is denoted K9(X: A). The following is anal-
ogous to Swan’s Theorem.

Proposition 16 If X is a compact space and
A is a C*-algebra with unit, then K°(X:; A) is
naturally isomorphic to Ko(C(X) ® A).

Definition 17 Let X be a compact space, X —
X a normal covering with covering group .
Let Cf(7) be the reduced group C*-algebra of
m (the completion of the group ring in the op-
erator norm for its action on L2(x)). The uni-
versal C}(m)-bundle over X is

Vx = X X CH(m) — X.

24



It has a class [Vx] € K9(X;C*(x)) which is
pulled back (via the classifying map X — Bmr)
from the class of

YV = En X Ci(w) = Bm

in KO(Bx; C*(x)). (Bm may not be compact,
but it can always be approximated by finite CW
complexes.) “Slant product” with [V] defines
the assembly map

A: K«(Br) — K«(CF(m)).

III.3. Kasparov Theory and the Index The-
orem

The formalism of Kasparov theory attaches,
to an elliptic operator D on a manifold M, a
K-homology class [D] € K«(M). If M is com-
pact, the collapse map c. M — pt is proper
and Ind D = c¢«([D]) € K«(pt).

25



Now if E is an A-vector bundle over M and
D is an elliptic operator over M, we can form
“D with coefficients in E,”” an A-elliptic oper-
ator. The Mishchenko-Fomenko index of this
operator is computed by pairing

[D] € K«(M) with [E] e KO(M; A).

In particular, if M — M is a normal covering
of M with covering group =, then we can form
D with coefficients in Vx, and its index is Ao
ux([D]), where w: M — Bw is the classifying
map for the covering.

Conjecture 18 (Novikov Conjecture) The
assembly map A: K«(Bw) — K«(C}(w)) is ra-
tionally injective for all groups =, and is injec-
tive for all torsion-free groups .

There are no known counterexamples. Conjec-
ture 18 is known for discrete subgroups of Lie
groups [Kasparov]|, amenable groups [Higson-
Kasparov], and many other classes.

26



II1.4. Applications

1. The L?-Index Theorem. The connection
with Atiyah's Theorem from Lecture II is as
follows. Suppose D is an elliptic operator on a
compact manifold M, and M — M is a normal
covering of M with covering group w. The
group C*-algebra Cf(w) embeds in the group
von Neumann algebra, and the trace 7 then
induces a homomorphism 7: Ko(Cf(mw)) — R.
The image under 7« of the index of D with
coefficients in C;(w) can be identified with the
L2-index of D, the lift of D to M. Atiyah's
Theorem thus becomes the assertion that the
following diagram commutes:

Ko(lM) “ . Ko(Bw)
Cx A
Ko(pt) =7Z Ko(Cpr(m))

R.
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2. Original Version of the Novikov Con-
jecture. Consider the signature operator D
on a closed oriented manifold M%k. This is
constructed so that Ind D is the signature of
M, i.e., the signature of the form

(z,y) = (z Uy, [M])

on middle cohomology H2*(M,R). The signa-
ture is obviously an oriented homotopy invari-
ant and Hirzebruch's formula says sign M =
(L(M),[M]), where L(M) is a power series in
the rational Pontryagin classes, the Poincaré
dual of Ch[D]. Here Ch: Ko(M) — H«(M,Q)
is the Chern character, a natural transforma-
tion of homology theories.

If u: M — Bm, u«(Ch[D]) € H«(Bw,Q) is called
a higher signature of M and Novikov conjec-
tured that, like the ordinary signature (the case
w = 1), it is an oriented homotopy invariant.
The conjecture follows from injectivity of the
assembly map, since Kasparov and Mishchenko
showed that A o u«([D]) is an oriented homo-
topy invariant.

28



3. Positive Scalar Curvature. If M"™ is a
closed spin manifold, then M carries a special
first-order elliptic operator, the Dirac operator
D with a class [D] € KOn(M). The operator
D depends on a choice of Riemannian metric,
though its K-homology class is independent of
the choice. Lichnerowicz proved that

D%=WV+Z,

where k is the scalar curvature of the metric.
Thus if kK > 0, the spectrum of D is bounded
away from O and Ind D = 0 in

(7, n =0 mod 4,
KOn(pt) =97/2, m=1or2mod S8,
L0, otherwise.

Theorem 19 (Stolz) If M™ is a closed simply
connected spin manifold with Dirac operator
class [D] € KOn,(M), and if n > 5, then M
admits a metric of positive scalar curvature if
and only if Ind D =0 in KOp(pt).

29



What if M is not simply connected? Then
Gromov-Lawson, Schoen-Yau showed there are
other obstructions coming from the fundamen-
tal group, and Gromov-Lawson suggested that
the “higher index”” of D is responsible.

Theorem 20 (Rosenberg) Suppose M is a
closed spin manifold and uv: M — Bmw classi-
fies the universal cover of M. If M admits a
metric of positive scalar curvature and if the
(strong) Novikov Conjecture holds for w, then
ux([D]) =0 in KOn(Bmr).

For some torsion-free groups, the converse is
known to hold for n > 5, generalizing Theorem
19.

Conjecture 21 (Gromov-Lawson) A closed
aspherical manifold cannot admit a metric of
positive scalar curvature.

Theorem 20 shows that the Strong Novikov
Conjecture implies Conjecture 21, at least for
spin manifolds.

30



For groups with torsion, the assembly map is
usually not an isomorphism, so the converse of
Theorem 20 is quite unlikely.

Definition 22 Fix a simply connected spin
manifold J® of dimension 8 with fl—genus 1.
(Such a manifold is known to exist, and Joyce
constructed an explicit example with Spin(7)
holonomy.) Taking a product with J does not
change the KO-index of the Dirac operator.
Say that a manifold M stably admits a metric
of positive scalar curvature if there is a metric
on MxJx---xJ with positive scalar curvature,
for sufficiently many J factors.

Proposition 23 A simply connected manifold
of dimension #* 3,4 stably admits a metric of
positive scalar curvature if and only if it actu-
ally admits a metric of positive scalar curva-
ture.
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For finite fundamental group, the best general
result is:

Theorem 24 (Rosenberg-Stolz) Let M™ be
a spin manifold with finite fundamental group
w, with Dirac operator class [D], and with clas-
sifying map uw: M — Bmx for the universal cover.
Then M stably admits a metric of positive
scalar curvature if and only Ao u«([D]) = 0 in
KOn(Cr(m)). (Of course, for « finite, Cr(mw) =
R[7].)

This has been generalized by Stolz to those
groups w for which the Baum-Connes assem-
bly map in KO (a generalization of our A, tak-
ing the torsion in @ into account) is injective.
This is a fairly large class including all discrete
subgroups of Lie groups.
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IV. Other C*-Algebras and

Applications in Topology:

Group Actions, Foliations,
Z./k-Indices, and Coarse Geometry

IV.1. Crossed Products and Invariants of
Group Actions

If a (locally compact) group G acts on a locally
compact space X, one can form the trans-
formation group algebra or crossed product
C*(G,X) or Co(X) x G. When G acts freely
and properly on X, C*(G, X) is strongly Morita
equivalent to Co(G/X). It thus plays the role
of the algebra of functions on G/X, even when
the latter is a “bad” space, and captures much
of the equivariant topology, as we see from:

Theorem 25 (Green-Julg) If G is compact,
there is a natural isomorphism

K.(C*(@, X)) & KGH(X).
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Definition 26 An n-dimensional orbifold X is
a space covered by charts each homeomorphic
to R" /G, where G is a finite group (which may
vary from chart to chart) acting linearly on R",
and with compatible transition functions. Ex-
ample: a quotient of a manifold by a locally
linear action of a finite group. Each smooth
orbifold X is of the form X/O(n), where X
is its frame bundle, and the action of O(n) is
locally free. Cf . ,(X) = C*(O(n),X) is called
the orbifold algebra of X [Farsi]. (It depends
on the orbifold structure, not just the home-
omorphism class of X as a space.) Note that
C3p(X) is strongly Morita equivalent to Co(X)
when X is a manifold, or to C*(G, M) when X
IS the quotient of a manifold M by an action
of a finite group G.

An elliptic operator D on the orbifold (which
in each local chart R*/G is a G-invariant el-
liptic operator on R"™) defines a class [D] €
K=*(C¥,,(X)) (which we think of as K2™P(X).
If X is compact, then as in the manifold case,
Ind D = e«([D]) € K«(pt).
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Applying the Kasparov formalism and working
out all the terms, one can deduce various index
theorems for orbifolds, originally obtained by
Kawasaki by a different method.

IV.2. Foliation C*-Algebras and Applica-
tions

Definition 27 Let M™ be a compact smooth
manifold, F a foliation of M by leaves LP of
dimension p, codimension ¢ = n — p. Then
one can define a C*-algebra C*(M,F) encod-
ing the structure of the foliation. (This is the
C*-completion of the convolution algebra of
functions on the holonomy groupoid.) When
the foliation is a fibration L — M — X, where
X is a compact g-manifold, then C*(M,F) is
strongly Morita equivalent to C(X). This jus-
tifies thinking of K«(C*(M,F)) as K—*(M/F),
the K-theory of the space of leaves. When the
foliation comes from a locally free action of a
Lie group G on M, then C*(M,F) is just the
crossed product C*(G, M).
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Introducing C*(M,F) makes it possible to ex-
tend the Connes index theorem for foliations.
If D is an operator elliptic along the leaves,
then in general Ind D is an element of the group
Ko(C*(M,F)). If there is an invariant trans-
verse measure u, then one obtains a real-valued
index by composing with the map

/d,u: Ko(C*(M, F)) — R.

Theorem 28 (Connes-Skandalis) Let (M, F)
be a compact (smooth) foliated manifold and
let

D: C*®(M, Eg) —» C®(M, Eq)

be elliptic along the leaves. Then IndD €
Ko(C*(M,F)) agrees with a “topological in-
dex” Indiop(D) computed from the character-
istic classes of (D) just as in the usual Atiyah-
Singer index theorem.
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Corollary 29 (Connes-Skandalis) Let (M,F)
be a compact foliated manifold and let D be
the Euler characteristic operator along the
leaves. ThenlInd D is the class of the zeros Z of
a generic vector field along the fibers, counting
signs appropriately. (Compare Poincaré-Hopf.)

Example 30 M a compact Riemann surface
of genus g > 2, M the hyperbolic plane, =
a discrete torsion-free cocompact subgroup of
G = PSL(2,R). Foliate V.= M xS2, = acting
on S2 = CP! by projective transformations, by
the images of M x {z}. Note that V is an S2-
bundle over M. In this case there is no invari-
ant transverse measure, but Ind D is non-zero
in Ko(C*(V,F)). (Itis —2(¢g — 1) - [S?].)
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IV.3. C*-Algebras and Z/k-Index Theory

Definition 31 A Z/k-manifold is a smooth
compact manifold with boundary, M™, along
with an identification of oM with a disjoint
union of k copies of a fixed manifold N™—1, It
is oriented if M is oriented, the boundary com-
ponents have the induced orientation, and the
identifications are orientation-preserving.

-

identical boundary components

Figure: A Z/3-manifold
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One should really think of a Z/k-manifold M as
the singular space M/~ obtained by identifying
all £ of the boundary components with one an-
other. This space is not a manifold (if & > 2),
and so does not satisfy Poincaré duality. Thus,
for example, an oriented Z/k-manifold of di-
mension 4n does not have a signature in the
usual sense. But it does have a signature mod
k since it has a fundamental class in homology
mod k, and there is a Z/k-version of Hirze-
bruch’s formula,

sign M = (L(M), [M]) € Z/k.

Higson showed this formula may be obtained
by showing that the signature operator gives
an element in the C*-algebra D; of operators
on H®Ck+1 which modulo compacts have the

form
k
diag(4, A, .-, A,0).
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We can recast Z/k-index theory by attaching to
each Z/k-manifold M, OM = N x Z/k, a non-
commutative C*-algebra C*(M;Z/k), so that
objects like the signature operator D give a
K-homology class in K9(C*(M:;Z/k)), whose
Z,/k-index is obtained as

c«([D]) € KO(C*(pt; Z/k)) = Z/k.
Let

C*(M;Z/k) = {(f,g9) : f € C(M),
g € Co(N x [0,00), Mg),
9lnx{oy diagonal,
fIOM matching g|nw o1}
C*(pt; Z/k) is defined similarly with M and N
replaced by points. Note the use of the philos-
ophy of non-commutative geometry: instead

of collapsing the cylinders together, we let them
“talk to each other.”
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IV.4. Roe C*-Algebras and Coarse Geom-
etry

Definition 32 [Roe] Let M be a complete Rie-
mannian manifold (usually noncompact). Fix a
suitable Hilbert space H on which Co(M) acts
(for example, L2(M,dvol)). A bounded opera-
tor T on ‘H is called locally compact if T, Ty €
K(H) for ¢ € C.(M), of finite propagation if
for some R > 0 (depending on T), ¢T¥ = O
for ¢, € Co(M), dist(supp ¢,supp) > R. Let
Chkoe(M) be the C*-algebra generated by the
locally compact, finite propagation, operators.

Example 33 If M is compact, C,.(M) = K,
the compact operators. If M = R" with the
usual Euclidean metric, then K;(C5,.(M)) = Z
for i = n mod 2, and K;(Ck,.(M)) = 0 for
t=n—1 mod 2.
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Theorem 34 (Roe) If M is a complete Rie-
mannian manifold, there is a functorial “as-
sembly map” A: K«(M) — K«(Ck,o(M)). If D
is a geometric elliptic operator on M (say the
Dirac operator or the signature operator), it
has a class in Kog(M), and A([D]) is its “coarse
index.” For noncompact spin manifolds, van-
ishing of A([D]) (for the Dirac operator) is
a necessary condition for there being a met-
ric of uniformly positive scalar curvature in the
quasi-isometry class of the original metric on

M.
Another application:

Theorem 35 (Principle of descent) “Coarse
Baum-Connes” for Cg, (7)), m a group, but
viewed as a discrete metric space, implies the
Novikov Conjecture for .
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