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The meaning of scalar curvature

If Mn a Riemannian manifold, scalar curvature

s(x) at a point x ∈ M is (up to a normalizing

factor) “average curvature” at x.

• When n = 2, scalar curvature= 2×(Gauss

curvature).

• In general, volume of a small geodesic ball

of radius r about x is given by

vol(B
R
n(r))(1− 1

6(n+2)s(x)r2 +O(r4)),

so positive scalar curvature means small

geodesic balls have smaller volume than

balls of the same radius in Rn.

• In a Riemannian product M ×N ,

s(x, y) = s(x) + s(y).
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Trichotomy

If Mn a closed manifold (i.e., smooth, con-
nected, compact, without boundary), exactly
one of the following holds:

(A) M admits a Riemannian metric of positive
scalar curvature. If n = 2, M = S2 or RP2. If
n > 2, any s ∈ C∞(M) is the scalar curvature
of some metric on M (Kazdan-Warner).

(B) M does not admit a Riemannian metric
of positive scalar curvature, but admits a met-
ric of non-negative scalar curvature. Any such
metric is Ricci-flat (Kazdan-Warner). If n = 2,
M = T2 or a Klein bottle.

(C) M does not admit a Riemannian metric of
non-negative scalar curvature.

Basic question: Which closed manifolds Mn

belong to each of the various classes?
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Review of the work of
Gromov and Lawson

2 papers in Ann. of Math. 111 (1980), paper
in Publ. Math. IHES, no. 58 (1983), discuss:

1. The surgery theorem and its applications.

2. Extensions of the Lichnerowicz-Hitchin The-
orem.

3. Results on 3- and 4-manifolds.

4. Results on complete positive scalar curva-
ture metrics on non-compact manifolds.

In this talk we will concentrate on items 1 and
2.

Notation: PSC = positive scalar curvature
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Theorem 1 (Surgery) (Gromov-Lawson,

Schoen-Yau) If M is a compact manifold of

PSC with connected components Mi, and if a

closed connected manifold M ′ can be obtained

from M by surgeries in codimension ≥ 3, then

M ′ also admits a metric of PSC.

Theorem 2 (Lichnerowicz) If M is a spin

manifold with Dirac operator D, then

D2 = ∇∗∇+
s

4
.

Thus if M is closed with PSC, all index invari-

ants of D vanish.

Fundamental idea of Gromov-Lawson: If Mn

is a closed manifold with classifying map M →
Bπ, π = π1(M), then obstructions to PSC

on M should depend on the class of M in

Hn(Bπ,Z) or (in the spin case) KOn(Bπ,Z).
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Theorem 3 (Jung, Stolz) Let Mn be a com-

pact connected manifold with n = dimM ≥ 5,

with fundamental group π, and with classifying

map M → Bπ.

1. If M is spin, then M admits PSC if and

only the class of M → Bπ in kon(Bπ) lies in

the subgroup generated by classes of M ′ → Bπ

with M ′ a spin manifold with PSC.

2. If M is oriented and the universal cover

of M is not spin, then M admits PSC if and

only the class of M → Bπ in Hn(Bπ,Z) lies in

the subgroup generated by classes of M ′ → Bπ

with M ′ oriented with PSC.

3. If M is non-orientable and the universal

cover of M is not spin, then M admits PSC if

and only the class of M → Bπ in Hn(Bπ,Z/2)

lies in the subgroup generated by classes of

M ′ → Bπ with PSC.
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Dirac obstructions

and assembly

Suppose Mn is a spin manifold with fundamen-

tal group π and classifying map f : M → Bπ.

The spin structure defines fundamental classes

[M ] ∈ kon(M) and per∗([M ]) ∈ KOn(M).

Let C∗r(π) denote the completion of the group

ring Rπ in the operator norm for its action on

L2(π). There are maps (natural in π)

kon(Bπ)
per∗−−−→ KOn(Bπ)

ass∗−−−→ KOn(C∗r(π)).

Theorem 4 (Rosenberg) Suppose Mn is a

spin manifold with fundamental group π and

classifying map f : M → Bπ. If M has a metric

of positive scalar curvature, then

ass∗ ◦ per∗ ◦ f∗([M ]) = 0.
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Corollary 5 (Easy case of the Gromov-Lawson

Conjecture) Suppose Mn is a spin manifold

with torsion-free fundamental group π and clas-

sifying map f : M → Bπ. If ass∗ is injective for

π (the Strong Novikov Conjecture) and the pe-

riodicity map kon(Bπ)→ KOn(Bπ) is injective,

then M admits a metric of PSC if and only it

its “Dirac obstruction” vanishes in KOn(Bπ).

This applies to free abelian groups, surface

groups, many other “standard” cases.

Sadly, for finite groups, one has almost the

opposite extreme. The assembly map is com-

putable (for example, the reduced assembly

map K̃On(Bπ) → K̃On(C∗r(π)) = KOn(Rπ/R)

vanishes identically if |π| is odd) but never in-

jective, and the periodicity map is rarely injec-

tive also.
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Modifications of the
Gromov-Lawson Conjecture

“Gromov-Lawson-Rosenberg Conjecture”:
(“Dirac tells all”) If Mn is a spin manifold,
n ≥ 5 with fundamental group π and classify-
ing map f : M → Bπ, then M admits a metric
of PSC if and only it its “Dirac obstruction”
ass∗ ◦per∗ ◦f∗([M ]) vanishes in KOn(C∗r(π)). If
the universal cover of Mn is non-spin (so there
are no Dirac obstructions), then M admits a
metric of PSC.

This is known to fail in some cases, but there
are no known counterexamples with π finite.

We stand a better chance if we build in period-
icity in the geometry, not just in the algebraic
topology.

Fix a Bott manifold J8 which is simply con-
nected, spin, with Â(J) = 1.
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Example: a Joyce manifold with holonomy

Spin(7). This represents Bott periodicity in

KO∗.

Say M stably admits a metric of PSC if

M ×
k︷ ︸︸ ︷

J8 × · · · × J8

admits a metric of PSC for k sufficiently large.

“Stable Gromov-Lawson-Rosenberg Conjecture”:

If Mn is a spin manifold with fundamental group

π and classifying map f : M → Bπ, then M sta-

bly admits a metric of PSC if and only it its

“Dirac obstruction” ass∗ ◦ per∗ ◦ f∗([M ]) van-

ishes in KOn(C∗r(π)). If the universal cover of

Mn is non-spin (so there are no Dirac obstruc-

tions), then M stably admits a metric of PSC.
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A few known results

Theorem 6 (Botvinnik-Gilkey-Stolz) The

Gromov-Lawson-Rosenberg Conjecture holds

for spin manifolds with finite π1 with periodic

cohomology (i.e., all Sylow subgroups cylic or

quaternionic).

Theorem 7 (Stolz) The Stable Gromov-Law-

son-Rosenberg Conjecture holds for spin man-

ifolds with fundamental group π as long as π

stisfies the Baum-Connes Conjecture.

Thus for “reasonable groups” we expect the

Stable GLR Conjecture to hold. The unstable

conjecture is much tougher to approach.

A result of Kwasik-Schultz makes it possible

to reduce the study of the conjecture for finite

groups to the easier case of p-groups.
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Products and Toda brackets

In what follows, we specialize further to the

key test case of elementary abelian p-groups

(i.e., (Z/p)r). To avoid some technicalities,

we’ll stick to the case p odd, M non-spin.

Then H∗(B(Z/p)r) and Ω∗(B(Z/p)r) can be

computed by the Künneth Theorem. Tensor

terms correspond to products of manifolds, but

Tor terms correspond to Toda brackets.

Example: If M → Bπ and M ′ → Bπ′ repre-

sent bordism classes each of order p, the cor-

responding Tor term in Ω∗(Bπ × Bπ′) is given

by the Toda bracket 〈M,p,M ′〉, manufactured

as follows:

Choose W → Bπ bounding pM =

p︷ ︸︸ ︷
M q · · · qM

and W ′ bounding pM ′. Then glue W ×M ′ with

boundary pM ×M ′ ∼= M × pM ′ to M ×W ′.
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Theorem 8 A Toda bracket 〈M,P,M ′〉 admits

PSC if M and M ′ do. In other words, if M×P =

∂W0 and P × M ′ = ∂W1 for some compact

manifolds with boundary, W0 and W1, then

N =
(
W0 ×M ′

)
∪M×P×M ′ (M ×W1)

admits a metric of PSC.

Proof. Rescale M ′ to have small diameter so

W0×M ′ has PSC. Also rescale M to have small

diameter so M ×W1 has PSC. Then one just

needs to interpolate between two rescaled met-

rics on M × P × M ′ using a Gromov-Lawson

trick:
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In Hn(B(Z/p)r), n ≤ r, we have toral classes

generated by

Tn = BZn → B(Z/p)n ↪→ B(Z/p)r.

We can define a complement to the atoral

classes which we call the atoral part.

Theorem 9 Let p be an odd prime, let π be an

elementary abelian p-group, and let n ≥ 5. Let

Mn be a non-spin manifold with f : M → Bπ

the classifying map for its universal covering.

If the class [M
f−→ Bπ] ∈ Hn(Bπ) is atoral,

then M has a metric with PSC. In particular, if

n > rkπ, then every non-spin n-manifold with

fundamental group π has a metric of PSC.
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Sketch of proof of Theorem 9

The key fact that makes this work is the follow-

ing. For any space X, we denote by RH∗(X)

the image of the Thom map Ω∗(X)→ H∗(X,Z),

and call it the representable homology.

Theorem 10 Let π be an elementary abelian

p-group, where p is an odd prime. Then

RH∗(Bπ)

is generated (as an abelian group) by elements

x1 ⊗ · · · ⊗ xj ∈ H∗(Bσ1) ⊗ · · · ⊗ H∗(Bσj), with

σ1 × · · · × σj a subgroup of π with each σi a

cyclic p-group.

This is based on an η-invariant calculation to-

gether with the structure of BP∗(Bπ). Product

classes as in Theorem 10 are either toral or else

have at least one factor which is a lens space

with PSC. It’s not clear whether the toral ho-

mology classes contain manifolds of PSC.
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