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Plan of the Lectures

Abstract: It is now known (or in some cases just believed) that
many quantum field theories exhibit dualities, equivalences with
the same or a different theory in which things appear very
different, but the overall physical implications are the same. We
will discuss some of these dualities from the point of view of a
mathematician, focusing on “charge conservation” and the role
played by K -theory and noncommutative geometry.

1 Overview with some classical examples.

2 Topological T-duality.

3 Problems presented by S-duality and other dualities.
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A General Framework and the Role of K -Theory

Part I

Overview with Some Classical Examples

1 Structure of Physical Theories

2 Dualities
Classical Dualities
Dyons and Dirac Quantization

3 A General Framework and the Role of K -Theory
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Fields

Most physical theories describe fields, e.g., the gravitational field,
electric field, magnetic field, etc. Fields can be

scalar-valued functions (scalars),

sections of vector bundles (vectors),

connections on principal bundles (special cases of gauge
fields),

sections of spinor bundles (spinors).
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Lagrangians and Least Action

In classical physics, the fields satisfy a variational principle — they
are critical points of the action S , which in turn is the integral of a
local functional L called the Lagrangian. This is called the
principle of least action, and can be traced back to Fermat’s theory
of optics (1662). The Euler-Lagrange equations for critical points
of the action are the equations of motion.

Examples

Let M be a 4-manifold, say compact.

1 Yang-Mills Theory. Field is a connection A on a principal
G -bundle. “Field strength” F is the curvature, a g-valued
2-form. Action is S =

∫
M Tr F ∧ ∗F .

2 General Relativity (in Euclidean signature). Field is a
Riemannian metric g on M. Action is S =

∫
M R dvol, R =

scalar curvature. Field equation is Einstein’s equation.
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Quantum Mechanics

Unlike classical mechanics, quantum mechanics is not
deterministic, only probabilistic. The key property of quantum
mechanics is the Heisenberg uncertainty principle, that observable
quantities are represented by noncommuting operators A
represented on a Hilbert space H. In the quantum world, every
particle has a wave-like aspect to it, and is represented by a wave
function ψ, a unit vector in H. The phase of ψ is not directly
observable, only its amplitude, or more precisely, the state ϕψ
defined by ψ:

ϕψ(A) = 〈Aψ,ψ〉 .

But the phase is still important since interference depends on it.
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Quantum Fields

The quantization of classical field theories is based on path
integrals. The idea (not 100% rigorous in this formulation) is that
all fields contribute, not just those that are critical points of the
action (i.e., solutions of the classical field equations). Instead, one
looks at the partition function

Z =

∫
e iS(ϕ)/~ dϕ or

∫
e−S(ϕ)/~ dϕ ,

depending on whether one is working in Lorentz or Euclidean
signature. By the principle of stationary phase, only fields close to
the classical solutions should contribute very much. Expectation
values of physical quantities are given by

〈A〉 =

(∫
A(ϕ) e iS(ϕ)/~ dϕ

)
/Z .
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Duality

A duality is a transformation between different-looking physical
theories that, rather magically, have the same observable physics.
Often, such dualities are part of a discrete group, such as Z/2 or
Z/4 or SL(2,Z).

Example (Electric-magnetic duality)

There is a symmetry of Maxwell’s equations in free space

∇ · E = 0, ∇ · B = 0,

∂E

∂t
= c ∇× B,

∂B

∂t
= −c ∇× E ,

(1)

given by E 7→ −B, B 7→ E . This is a duality of order 4.
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Fourier Duality

Example (Configuration space-momentum space duality)

Another example from standard quantum mechanics concerns the
quantum harmonic oscillator (say in one dimension). For an object
with mass m and a restoring force with “spring constant” k , the
Hamiltonian is

H =
k

2
x2 +

1

2m
p2 , (2)

where p is the momentum. In classical mechanics, p = mẋ . But in
quantum mechanics (with ~ set to 1),

[x , p] = i . (3)

We obtain a duality of (2) and (3) via m 7→ 1
k , k 7→ 1

m , x 7→ p,
p 7→ −x . This is again a duality of order 4, and is closely related
to the Fourier transform.
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The Dirac Monopole

A big puzzle in classical electricity and magnetism is that
while there are plenty of charged particles (electrons, etc.), no
magnetically charged particles (magnetic monopoles) have
ever been observed, even though their existence would not
contradict Maxwell’s equations.

Another problem with classical E&M is that it doesn’t explain
why charges appear to be quantized, i.e., only occur in units
that are integral multiples of the charge of the electron (or of
the charges of [down-type] quarks).

Dirac (1931) proposed to solve both problems at once with a
quantum theory of E&M that in modern terms we would call a
U(1) gauge theory.
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The Dirac Monopole (cont’d)

In Dirac’s theory, we assume spacetime is a 4-manifold M, say
R4 \ R ∼= R2 × S2 (Minkowski space with the time trajectory of
one particle taken out). The (magnetic) vector potential
(A1,A2,A3) and electric potential A0 = φ of classical E&M are
combined into a single entity A, a (unitary) connection on a
complex line bundle L over M. Thus iA is locally a real-valued
1-form, and F = iµdA, µ a constant, is a 2-form encoding both of
the fields E (via the (0, j) components) and B (via the (j , k)
components, 0 < j < k). The Chern class c1(L) ∈ H2(M,Z) ∼= Z
is an invariant of the topology of the situation. Of course, F
should really be iµ times the curvature of A, and Chern-Weil
theory says that the de Rham class [F ] is 2πµ times the image of
c1(L) in H2(M,Z) ∼= Z. L is associated to a principal U(1)-bundle
P → M, and Dirac identifies a section of this bundle with the
phase of a wave function of a charged particle in M.
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Charge Quantization

In the above setup, if we integrate F over the S2 that links the worldline
we removed, we get 2πµc1(L), and this is the flux of the magnetic field
through S2. So the deleted worldline can be identified with that of a
magnetic monopole of charge g = µc1(L) in suitable units. Suppose we
consider the motion of a test charge of electric charge q around a closed
loop γ in M. In quantum E&M, by the Aharonov-Bohm effect, the
exterior derivative is replaced by the covariant derivative (involving the
vector potential A). So the phase change in the wave function is basically

the holonomy of (P → M,A) around γ, or (taking ~ = 1) exp
(

qµ
∮
γ

A
)

.

Since M is simply connected, γ bounds a disk D and this is
exp

(
−iq

∫
D

F
)
. Taking D in turn to be the two hemispheres in S2, we

get two answers which differ by a factor of

exp

(
i q

∫
S2

F

)
= e2πi q µ c1(L).

Since this must be 1, we get Dirac’s quantization condition qg ∈ Z.
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Charge Groups

The upshot of this analysis is that we expect both electrical and
magnetic charges to be quantized, but that the basic quanta of
electrical and magnetic charge should be inversely proportional in
size. In other words, the smallness of the fundamental electrical
charge means that the charge of any magnetic monopole has to be
large. In any event, we expect the electrical and magnetic charges
(q, g) to take values in an abelian charge group C , in this case Z2.
It is also reasonable to expect there to be particles, usually called
dyons, with both charges q and g non-zero.

Now think about the classical electric-magnetic duality that
switches E and B. The Montonen-Olive conjecture, for which
there is now some tantalizing evidence, is that in a wide variety of
cases this should extend to a duality of quantum theories, which
would necessarily give an isomorphism of charge groups between a
theory and its dual.

Jonathan Rosenberg Dualities in field theories and the role of K -theory



Structure of Physical Theories
Dualities

A General Framework and the Role of K -Theory

Classical Dualities
Dyons and Dirac Quantization

Charge Groups

The upshot of this analysis is that we expect both electrical and
magnetic charges to be quantized, but that the basic quanta of
electrical and magnetic charge should be inversely proportional in
size. In other words, the smallness of the fundamental electrical
charge means that the charge of any magnetic monopole has to be
large. In any event, we expect the electrical and magnetic charges
(q, g) to take values in an abelian charge group C , in this case Z2.
It is also reasonable to expect there to be particles, usually called
dyons, with both charges q and g non-zero.
Now think about the classical electric-magnetic duality that
switches E and B. The Montonen-Olive conjecture, for which
there is now some tantalizing evidence, is that in a wide variety of
cases this should extend to a duality of quantum theories, which
would necessarily give an isomorphism of charge groups between a
theory and its dual.

Jonathan Rosenberg Dualities in field theories and the role of K -theory



Structure of Physical Theories
Dualities

A General Framework and the Role of K -Theory

Classical Dualities
Dyons and Dirac Quantization

The Role of Topology

In Dirac’s theory, the quantization of magnetic charge and of
electrical charge arise from different origins. The former is a purely
topological phenomenon; it comes from the fact that the Chern
classes live in integral cohomology. Quantization of electrical
charge comes from the requirement that the action (for the field
associated to a charged particle moving in the background
electromagnetic field of a monopole) be well-defined and not
multi-valued, so this can be viewed as a version of anomaly
cancellation. However, since Maxwell’s equations are invariant
under electro-magnetic duality, we can imagine an equivalent dual
theory in which electric charge is topological and magnetic charge
is quantized to achieve anomaly cancellation.
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A General Setup

Extrapolating from case above, we will be looking at the following
set-up:

1 We have a collection C of “physical theories” on which a
discrete duality group G operates by “equivalences.”

2 Each theory in C has an associated charge group C . If g ∈ G
gives an equivalence between two theories in C, it must give
an isomorphism between the associated charge groups. In
particular, the stabilizer of a fixed theory operates by
automorphisms on C .

3 In many cases, the charge groups arise as topological
invariants. We have already seen how Pic X = H2(X ,Z)
arises. We will see how K -theory arises in some cases.
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String Theories

Many of the most interesting examples of duality (and of topological
charge groups) arise in (supersymmetric) string theories. These are
quantum field theories based on the idea of replacing point particles by
strings or 1-manifolds (always compact, but maybe with boundary —
contrary to mathematical usage, physicists call these “open strings”). For
anomaly cancellation reasons, the spacetime manifold has to be
10-dimensional. The worldsheet traced out by a string in the spacetime X
is a compact 2-manifold Σ (again, possibly with boundary), so we obtain
fields that are maps f : Σ→ X , with the sigma-model action of the form∫

Σ

‖∇f ‖2 +

∫
Σ

f ∗(B) + (terms involving other fields). (4)

Here B is a 2-form on X called the B-field (not the magnetic field). The

term
∫

Σ
f ∗(B) is called the Wess-Zumino term.
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D-Brane Charges

In string theories, boundary conditions (of Dirichlet or Neumann
type) must be imposed on the open string states. These are given
by D-branes (D for Dirichlet), submanifolds of the spacetime X on
which strings are allowed to “end.” If we forget certain
complications and look at type II string theory, then X is a
10-dimensional spin manifold and the D-branes are spinc

submanifolds, of even dimension for type IIB and of odd
dimensional for type IIA. There is another piece of structure; each
D-brane carries a Chan-Paton vector bundle that reflects a U(N)
gauge symmetry allowing for local exchanges between coincident
D-branes.

The D-branes carry charges which are not just numbers but
elements of the K -group K (X ) (in the type IIB theory), K−1(X )
(in the type IIA theory), or KO(X ) (in the type I theory).
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Why K -Theory?

The idea that the D-brane charges should take values in K -theory
comes from Minasian-Moore and Witten, around 1997–1998, with
further elaboration by other authors later. Motivation comes from
several sources:

compatibility with anomaly cancellation formulas;

better functoriality;

compatibility with analysis of decay of unstable branes;

compatibility with what is known about string duality.

We will not attempt to go through these arguments but will
discuss some consequences.
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D-Brane Charges and Duality

For a D-brane W
� � ι // X with Chan-Paton bundle E →W , the

K -theory charge is ι!([E ]), where [E ] is the class of E in K (W ),
and ι! is the Gysin map in K -theory (defined using the spinc

structures). While string dualities do not have to preserve the
diffeomorphism type, or even the dimension, of D-branes, they do
have to give rise to an isomorphism of the K -groups in which the
D-brane charges lie.

The most important kinds of string theory dualities are T-duality,
an outgrowth of classical Fourier duality (“T” originally standing
for “target space”), and S-duality, an outgrowth of classical
electro-magnetic duality. The big difference between them is that
T-duality preserves coupling strength and changes geometry,
whereas S-duality (“S” standing for “strong-weak”) interchanges
strong and weak coupling and preserves the geometry of spacetime,
just as electro-magnetic duality inverts the magnitude of charges.
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Plan for the Other Lectures

T-duality replaces tori (of a fixed dimension k) in the spacetime
manifold X by the dual tori (quotients of the dual space by the
dual lattice), inverting the radii. If k is odd, T-duality interchanges
the theories of types IIA and IIB, so one gets an isomorphism
K (X ) ∼= K−1(X ]) or K−1(X ) ∼= K (X ]). S-duality interchanges
type I string theory with the SO(32) heterotic string theory, and
also maps type IIB string theory to itself.

In my other two talks I plan to discuss T-duality and S-duality in
more detail, and the way charge conservation in K -theory sheds
more light on them.
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Part II

Topological T-duality

4 The H-flux and Twisted K -Theory

5 Topological T-Duality and the Bunke-Schick Construction
Axiomatics for n = 1
The case n > 1

6 The Use of Noncommutative Geometry

(partially joint work with Mathai Varghese)
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The Use of Noncommutative Geometry

Gerbes and the H-Flux

It’s now time to correct a slight oversimplification in Lecture 1: the
“B-field” in the sigma-model action is not necessarily globally
well-defined, though its field strength H = dB does make sense
globally. Properly normalized, one can show that H defines an
integral de Rham class in H3. This can be refined to an actual
class in [H] ∈ H3(X ,Z). Thus the Wess-Zumino term in the path
integral should really be defined using a gerbe, for example a
bundle gerbe in the sense of Murray with curving B and
Dixmier-Douady class [H]. We usually refer to H (or to the
associated class [H] ∈ H3(X ,Z)) as the H-flux.
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The Use of Noncommutative Geometry

Continuous-Trace Algebras and Twisted K -Theory

The association of H with a Dixmier-Douady class is not an
accident, and indeed indicates a deeper connection with
noncommutative geometry. To set this up in the simplest way,
choose a stable continuous-trace algebra A = CT (X , [H]) with
Â = X and with Dixmier-Douady class [H]. Thus A is the algebra
of continuous sections vanishing at ∞ of a bundle over X with
fibers K (the compact operators on a separable ∞-dimensional
Hilbert space H) and structure group AutK = PU(H) ' K (Z, 2).

There are several possible definitions of twisted K -theory, but for
our purposes we can define it as K−i (M, [H]) = Ki (A) with
A = CT (M, [H]) as above. Up to isomorphism, this only depends
on X and the cohomology class [H] ∈ H3(X ,Z).
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The Use of Noncommutative Geometry

Twisted D-Brane Charges

In the presence of a topologically nontrivial H-flux, the K -theoretic
classification of D-brane charges has to be modified. A D-brane

W
� � ι // X in type II string theory is no long a Spinc manifold; instead

it is Spinc “up to a twist,” according to the Freed-Witten anomaly
cancellation condition W3(W ) = ι∗([H]). Accordingly, the D-brane
charge will live in the twisted K -group K (X , [H]) (in type IIB) or in
K−1(X , [H]) (in type IIA). Accordingly, if we have a T-duality between
string theories on (X ,H) and (X ],H]), conservation of charge (for
D-branes) requires an isomorphism of twisted K -groups of (X , [H]) and
(X ], [H]]), with no degree shift if we dualize with respect to even-degree
tori, and with a degree shift if we dualize with respect to odd-degree tori.

One might wonder what happened to the K -groups of opposite parity,

viz., K−1(X , [H]) (in type IIB) and K (X , [H]) (in type IIA). These still

have a physical significance in terms of Ramond-Ramond fields, so want

these to match up under T-duality also.
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Topology Change in T-Duality

Topological T-duality focuses on the topological aspects of
T-duality. The first example of this phenomenon was studied by
Alvarez, Alvarez-Gaumé, Barbón, and Lozano in 1993, and
generalized 10 years later by Bouwknegt, Evslin, and Mathai. Let’s
start with the simplest nontrivial example of a circle fibration,
where X = S3, identified with SU(2), T is a maximal torus. Then
T acts freely on X (say by right translation) and the quotient
X/T is CP1 ∼= S2, with quotient map p : X → S2 the Hopf
fibration. Assume for simplicity that the B-field vanishes. We have
X = S3 fibering over Z = X/T = S2. Think of Z as the union of
the two hemispheres Z± ∼= D2 intersecting in the equator
Z 0 ∼= S1. The fibration is trivial over each hemisphere, so we have
p−1(Z±) ∼= D2 × S1, with p−1(Z 0) ∼= S1 × S1. So the T-dual also
looks like the union of two copies of D2×S1, joined along S1×S1.
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The Hopf fibration example (cont’d)

However, we have to be careful about the clutching that identifies
the two copies of S1 × S1. In the original Hopf fibration, the
clutching function S1 → S1 winds once around, with the result
that the fundamental group Z of the fiber T dies in the total space
X . But T-duality is supposed to interchange “winding” and
“momentum” quantum numbers. So the T-dual X ] has no
winding and is just S2 × S1, while the winding of the original
clutching function shows up in the H-flux of the dual.
In fact, following Buscher’s method for dualizing a sigma-model,
we find that the B-field on the dual side is different on the two
copies of D2 × S1; they differ by a closed 2-form, and so H], the
H-flux of the dual (for simplicity of notation we delete the brackets
from now on), is nontrivial but well defined.
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The Case of S2 × S1 and S3

Let’s check the principle of K -theory matching in the case we’ve
been considering, X = S3 fibered by the Hopf fibration over
Z = S2. The H-flux on X is trivial, so D-brane charges lie in
K ∗(S3), with no twisting. And K 0(S3) ∼= K 1(S3) ∼= Z.
On the T-dual side, we expect to find X ] = S2 × S1, also fibered
over S2, but simply by projection onto the first factor. If the H-flux
on X were trivial, D-brane changes would lie in K 0(S2 × S1) and
K 1(S2× S1), both of which are isomorphic to Z2, which is too big.

On the other hand, we can compute K ∗(S2 × S1,H]) for the class
H] which is k times a generator of H3 ∼= Z, using the
Atiyah-Hirzebruch Spectral Sequence. The differential is

H0(S2 × S1)
k−→ H3(S2 × S1),

so when k = 1, K ∗(S2 × S1,H]) ∼= K ∗(S3) ∼= Z for both ∗ = 0
and ∗ = 1.
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Axioms for Topological T-Duality

This discussion suggests we should try to develop an axiomatic
treatment of the topological aspects of T-duality (for circle
bundles). Note that we are ignoring many things, such as the
underlying metric on spacetime and the auxiliary fields.

Axioms:

We have a suitable class of spacetimes X each equipped with a
principal S1-bundle X → Z . (X might be required to be a
smooth connected manifold.)
For each X , we assume we are free to choose any H-flux
H ∈ H3(X ,Z).
There is an involution (map of period 2) (X ,H) 7→ (X ],H])
keeping the base Z fixed.
K∗(X ,H) ∼= K∗+1(X ],H]).
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The Bunke-Schick Construction

Bunke and Schick suggested constructing a theory satisfying these
axioms by means of a universal example. It is known that (for
reasonable spaces X , say CW complexes) all principal S1-bundles
X → Z come by pull-back from a diagram

X

��

// ES1 ' ∗

��
Z // BS1 ' K (Z, 2)

Here the map Z // K (Z, 2) is unique up to homotopy, and

pulls the canonical class in H2(K (Z, 2),Z) back to c1 of the
bundle.
Similarly, every class H ∈ H3(X ,Z) comes by pull-back from a

canonical class via a map X // K (Z, 3) unique up to
homotopy.
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The Bunke-Schick Theorem

Theorem (Bunke-Schick)

There is a classifying space R, unique up to homotopy equivalence, with
a fibration K (Z, 3) // R

��
K (Z, 2)× K (Z, 2),

(5)

and any (X ,H)→ Z as in the axioms comes by a pull-back

X

��

// E

p

��
Z // R,

with the horizontal maps unique up to homotopy and H pulled back from
a canonical class h ∈ H3(E ,Z).
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The Bunke-Schick Theorem (cont’d)

Theorem (Bunke-Schick)

Furthermore, the k-invariant of the Postnikov tower (5)
characterizing R is the cup-product in

H4(K (Z, 2)× K (Z, 2),Z)

of the two canonical classes in H2. The space E in the fibration

S1 // E

p

��
R

has the homotopy type of K (Z, 3)× K (Z, 2).
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The Characteristic Class Formula

Corollary

If (X
p−→ Z ,H) and (X ] p]

−→ Z ,H]) are a T-dual pair of circle bundles over
a base space Z , then the bundles and fluxes are related by the formula

p!(H) = [p]], (p])!(H]) = [p].

Here [p], [p]] are the Euler classes of the bundles, and p!, (p])! are the
“integration over the fiber” maps in the Gysin sequences. Furthermore,
there is a pullback diagram of circle bundles

Y
(p])∗(p)//

p∗(p])

��

X

p

��
X ]

p]

// Z .

in which H and H] pull back to the same class on Y .
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What is Higher-Dimensional T-Duality?

We now want to generalize T-duality to the case of spacetimes X
“compactified on a higher-dimensional torus,” or in other words,
equipped with a principal Tn-bundle p : X → Z . In the simplest

case, X = Z × Tn = Z ×

n︷ ︸︸ ︷
S1 × · · ·S1. We can then perform a

string of n T-dualities, one circle factor at a time. A single
T-duality interchanges type IIA and type IIB string theories, so this
n-dimensional T-duality “preserves type” when n is even and
switches it when n is odd. In terms of our set of axioms for
topological T-duality, we would therefore expect an isomorphism
K ∗(X ,H) ∼= K ∗(X ],H]) when n is even and
K ∗(X ,H) ∼= K ∗+1(X ],H]) when n is odd.
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The Uniqueness Problem, Missing T-Duals, and the
T-Duality Group

In the higher-dimensional case, a new problem presents itself: it is no
longer clear that the T-dual should be unique. In fact, if we perform a
string of n T-dualities, one circle factor at a time, it is not clear that the
result should be independent of the order in which these operations are
done. Furthermore, a higher-dimensional torus does not split as a product
in only one way, so in principle there can be a lot of non-uniqueness.

The way out of this difficulty has therefore been to try to organize the
information in terms of a T-duality group, a discrete group of T-duality
isomorphisms potentially involving a large number of spacetimes and
H-fluxes. We can think of this group as operating on some big
metaspace of possible spacetimes.

Another difficulty is that there are some spacetimes with H-flux that

would appear to have no higher-dimensional T-duals at all, at least in the

sense we have defined them so far, e.g., X = T 3, viewed as a principal

T3-bundle over a point, with H the generator of H3(X ,Z) ∼= Z.
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Strategy of a NCG Approach (Mathai-Rosenberg)

Start with a principal Tn-bundle p : X → Z and an “H-flux”
H ∈ H3(X ,Z). We assume that H is trivial when restricted to
each Tn-fiber of p. This of course is no restriction if n = 2, but it
rules out cases with no T-dual in any sense.

We want to lift the free action of Tn on X to an action on the
continuous-trace algebra A = CT (X ,H). Usually there is no hope
to get such a lifting for Tn itself, so we go to the universal covering
group Rn. If Rn acts on A so that the induced action on Â is
trivial on Zn and factors to the given action of Tn = Rn/Zn, then
we can take the crossed product A o Rn and use Connes’ Thom
Isomorphism Theorem to get an isomorphism between
K−∗−n(X ,H) = K∗+n(A) and K∗(A o Rn).
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Recovering Topological T-Duality

Under favorable circumstances, we can hope that the crossed
product A o Rn will again be a continuous-trace algebra
CT (X ],H]), with p] : X ] → Z a new principal Tn-bundle and with
H] ∈ H3(X ],Z). If we then act on CT (X ],H]) with the dual
action of R̂n, then by Takai Duality and stability, we come back to
where we started. So we have a topological T-duality between
(X ,H) and (X ],H]).

Furthermore, we have an isomorphism

K ∗+n(X ,H) ∼= K ∗(X ],H]),

as required for matching of D-brane charges under T-duality.
Now what about the problems we identified before, about potential
non-uniqueness of the T-dual and “missing” T-duals? These can
be explained either by non-uniqueness of the lift to an action of Rn

on A = CT (X ,H), or by failure of the crossed product to be a
continuous-trace algebra.
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A Crucial Example

Let’s now examine what happens when we try to carry out this
program in one of our “problem cases,” n = 2, Z = S1, X = T 3 (a
trivial T2-bundle over S1), and H the usual generator of H3(T 3).
First we show that there is an action of R2 on CT (X ,H)
compatible with the free action of T2 on X with quotient S1. We
will need the notion of an induced action. We start with an action
α of Z2 on C (S1,K) which is trivial on the spectrum. This is given
by a map Z2 → C (S1,AutK) = C (S1,PU(L2(T))) sending the
two generators of Z2 to the maps

w 7→ multiplication by z ,

w 7→ translation by w .

(These unitaries commute in PU, not in U.)
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A Calculation

Now form A = IndR2

Z2 C (S1,K). This is a C ∗-algebra with
R2-action Indα whose spectrum (as an R2-space) is

IndR2

Z2 S1 = S1 × T2 = X . We can see that A ∼= CT (X ,H) via
“inducing in stages”. Let B = IndR

Z C (S1,K(L2(T))) be the result
of inducing over the first copy of R. It’s clear that
B ∼= C (S1 × T,K). We still have another action of Z on B coming
from the second generator of Z2, and A = IndR

Z B. The action of Z
on B is by means of a map σ : S1 × T→ PU(L2(T)) = K (Z, 2),
whose value at (w , z) is the product of multiplication by z with
translation by w . Thus A is a CT-algebra with Dixmier-Douady
invariant [σ]× c = H, where [σ] ∈ H2(S1 × T,Z) is the homotopy
class of σ and c is the usual generator of H1(S1,Z).
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The Use of Noncommutative Geometry

A Calculation (cont’d)

Now that we have an action of R2 on A = CT (X ,H) inducing the
free T2-action on the spectrum X , we can compute the crossed
product to see what the associated “T-dual” is.

Since
A = IndR2

Z2 C (S1,K), we can use the Green Imprimitivity Theorem
to see that

A oIndα R2 ∼=
(

C (S1,K) oα Z2
)
⊗K.

Recall that Aθ is the universal C ∗-algebra generated by unitaries U
and V with UV = e2πiθVU. So if we look at the definition of α,
we see that A oIndα R2 is the algebra of sections of a bundle of
algebras over S1, whose fiber over e2πiθ is Aθ ⊗K. Alternatively, it
is Morita equivalent to C ∗(Γ), where Γ is the discrete Heisenberg
group of strictly upper-triangular 3× 3 integral matrices.
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The Use of Noncommutative Geometry

Noncommutative T-Duals

Put another way, we could argue that we’ve shown that C ∗(Γ) is a
noncommutative T-dual to (T 3,H), both viewed as fibering over
S1.

So we have an explanation for the missing T-dual: we couldn’t
find it just in the world of topology alone because it’s
noncommutative. We will want to see how widely this
phenomenon occurs, and also will want to resolve the question of
nonuniqueness of T-duals when n > 1.
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The Use of Noncommutative Geometry

The Classification Theorem

Further analysis of this example leads to the following classification
theorem:

Theorem (Mathai-Rosenberg)

Let T2 act freely on X = T 3 with quotient Z = S1. Consider the
set of all actions of R2 on algebras CT (X ,H) inducing this action
on X , with H allowed to vary over H3(X ,Z) ∼= Z. Then the set of
exterior equivalence classes of such actions is parametrized by
Maps(Z ,T). The winding number of a map f : Z ∼= T→ T can be
identified with the Dixmier-Douady invariant H. All these actions
are given by the construction above, with f as the “Mackey
obstruction map.”
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The Use of Noncommutative Geometry

The Mathai-Rosenberg Theorem

Consider a general T2-bundle X
p−→ Z . We have an edge

homomorphism

p! : H3(X ,Z)→ E 1,2
∞ ⊆ H1(Z ,H2(T2,Z)) = H1(Z ,Z)

which turns out to play a major role.

Theorem (Mathai-Rosenberg)

Let p : X → Z be a principal T2-bundle as above, H ∈ H3(X ,Z).
Then we can always find a “generalized T-dual” by lifting the
action of T2 on X to an action of R2 on CT (X ,H) and forming
the crossed product. When p!H = 0, we can always do this in such
a way as to get a crossed product of the form CT (X ],H]), where
(X ],H]) is a classical T-dual (e.g., as found though the purely
topological theory). When p!H 6= 0, the crossed product
CT (X ,H) o R2 is never locally stably commutative and should be
viewed as a noncommutative T-dual.

Jonathan Rosenberg Dualities in field theories and the role of K -theory



The H-flux and Twisted K -Theory
Topological T-Duality and the Bunke-Schick Construction

The Use of Noncommutative Geometry

Current Directions in Topological T-Duality

Here we just summarize some of the current trends in topological
T-duality:

the above approach with actions of Rn on continuous-trace
algebras: more detailed study of non-uniqueness, extension to
actions with more complicated isotropy.

the homotopy-theoretic approach of Bunke-Schick: extension
to the higher-dimensional case (Mathai-Rosenberg,
Bunke-Rumpf-Schick).

a fancier approach using duality of sheaves
(Bunke-Schick-Spitzweck-Thom).

a generalization of the NCG approach using groupoids
(Daenzer).

algebraic analogues using Mukai duality with gerbes
(Ben-Basset, Block, Pantev).
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Part III

Problems presented by S-duality and other dualities

7 Type I/Type IIA Duality

8 The AdS/CFT Correspondence

(partially joint work with Stefan Mendez-Diez)
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Conjectured Dualities

As we mentioned before, there is believed to be an S-duality
relating type I string theory to one of the heterotic string theories.
There are also various other dualities relating these two theories to
type IIA theory. Putting these together, we expect a
(non-perturbative) duality between type I string theory on T 4 ×R6

and type IIA theory on K 3× R6, at least at certain points in the
moduli space.

How can we reconcile this with the principle that brane charges in
type I should take their values in KO, while brane charges in type
IIA should take their values in K−1?

On the face of it, this appears ridiculous:
KO(T 4 × R6) = KO−6(T 4) has lots of 2-torsion, while K ∗(K 3) is
all torsion-free and concentrated in even degree.
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KO-Theory of T 4

One side is easy compute. Recall that for any space X ,

KO−j(X × S1) ∼= KO−j(X )⊕ KO−j−1(X ).

Iterating, we get

KO−6(T 4) ∼= KO−6 ⊕ 4KO−7 ⊕ 6KO−8 ⊕ 4KO−9 ⊕ KO−10

∼= Z6 ⊕ (Z/2)4 ⊕ (Z/2) ∼= Z6 ⊕ (Z/2)5.
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K -Theory of the Orbifold Limit of K3

The way we deal with the opposite side of the duality is to recall
that a K3 surface can be obtained by blowing up the point
singularities in T 4/G , where G = Z/2 acting by multiplication by
−1 on R4/Z4. This action is semi-free with 16 fixed points, the
points with all four coordinates equal to 0 or 1

2 mod Z. If fact one
way of deriving the (type I on T 4) ↔ (type IIA on K 3) duality
explicitly uses the orbifold T 4/G .

But what group should orbifold brane charges live in? Not just
K ∗(T 4/G ), as this ignores the orbifold structure. One solution
that has been proposed is K ∗G (T 4), which we computed. However,
as we’ll see, there appears to be a better candidate.
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Cohomology Calculations

Let M be the result of removing an open ball around each G -fixed
point in T 4. This is a compact manifold with boundary on which
G acts freely; let N = M/G . We get a K3 surface back from N by
gluing in 16 copies of the unit disk bundle of the tangent bundle of
S2 (known to physicists as the Eguchi-Hanson space), one along
each RP3 boundary component in ∂N.

Theorem (with S. Mendez-Diez)

H i (N, ∂N) ∼= H4−i (N) ∼=



0, i = 0
Z15, i = 1
Z6, i = 2
(Z/2)5, i = 3
Z, i = 4
0, otherwise.
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K -Theory Calculations

Recall N is the manifold with boundary obtained from T 4/G by
removing an open cone neighborhood of each singular point.

Theorem (with S. Mendez-Diez)

K 0(N, ∂N) ∼= K0(N) ∼= Z7 and
K−1(N, ∂N) ∼= K1(N) ∼= Z15 ⊕ (Z/2)5.

Note that the reduced K -theory of (T 4/G ) mod (singular points)
is the same as K ∗(N, ∂N). Note the resemblance of K−1(N, ∂N)
to KO−6(T 4) ∼= Z6 ⊕ (Z/2)5. While they are not the same, the
calculation suggests that the brane charges in type I string theory
on T 4 × R6 do indeed show up some way in type IIA string theory
on the orbifold limit of K 3.

Jonathan Rosenberg Dualities in field theories and the role of K -theory



Type I/Type IIA Duality
The AdS/CFT Correspondence

Equivariant K -Theory Calculations

Again let G = Z/2. Equivariant K -theory K ∗G is a module over the
representation ring R = R(G ) = Z[t]/(t2 − 1). This ring has two
important prime ideals, I = (t − 1) and J = (t + 1). We have
R/I ∼= R/J ∼= Z, I · J = 0, I + J = (I , 2) = (J, 2),
R/(I + J) = Z/2.

Theorem (with S. Mendez-Diez)

K 0
G (T4) ∼= R8 ⊕ (R/J)8, and K−1

G (T4) = 0. Also,

K 0
G (M, ∂M) ∼= (R/I )7, K−1

G (M, ∂M) ∼= (R/I )10 ⊕ (R/2I )5.
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Discussion

Note that the equivariant K -theory calculation is a refinement of
the ordinary K -theory calculation (since G acts freely on M and
∂M with quotients N and ∂N, so that K ∗G (M) and K ∗G (∂M) are
the same as K ∗(N) and K ∗(∂N) as abelian groups, though with
the addition of more structure). While we don’t immediately need
the extra structure, it may prove useful later in matching brane
charges from KO(T 4 × R6) on specific classes of branes.
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Other Cases of Type I/Type II Charge Matching

More generally, one could ask if there are circumstances where
understanding of K -theory leads us to expect the possibility of a
string duality between type I string theory on a spacetime Y and
type II string theory on a spacetime Y ′. For definiteness, we will
assume we are dealing with type IIB on Y ′. (This is no great loss
of generality since as seen in the last lecture, types IIA and IIB are
related via T-duality.) Matching of stable brane D-charges then
leads us to look for an isomorphism of the form

KO∗(Y ) ∼= K ∗(Y ′).

In general, such isomorphisms are quite rare, in part because of
2-torsion in KO−1 and KO−2, and in part because KO-theory is
usually 8-periodic rather than 2-periodic.
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A Conjectural Duality

But there is one notable exception: one knows that

KO ∧ (S0 ∪η e2) ' K ,

where S0 ∪η e2 is the stable cell complex obtained by attaching a
stable 2-cell via the stable 1-stem η. This is stably the same (up to
a degree shift) as CP2, since the attaching map S3 → S2 ∼= CP1

for the top cell of CP2 is the Hopf map, whose stable homotopy
class is η. Thus one might expect a duality between type I string
theory on X 6 ×

(
CP2 r {pt}

)
and type IIB string theory on

X 6 × R4. We plan to look for evidence for this.
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Maldacena’s Idea

The AdS/CFT correspondence or holographic duality is a
conjectured physical duality, proposed by Juan Maldacena, of a
different sort, relating IIB string theory on a 10-dimensional
spacetime manifold to a gauge theory on another space. In the
original version of this duality, the string theory lives on
AdS5 × S5, and the gauge theory is N = 4 super-Yang-Mills
theory on Minkowski space R1,3. Other versions involve slightly
different spaces and gauge theories. Notation:

N is the standard notation for the supersymmetry multiplicity.
In other words, N = 4 means there are 4 sets of supercharges,
and there is a U(4) R-symmetry group acting on them.

AdS5 is (up to coverings) SO(4, 2)/SO(4, 1). Topologically,
it’s R4 × S1. It’s better to pass to the universal cover, so that
time isn’t periodic.
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Nature of the Correspondence

We have already explained that D-branes carry Chan-Paton
bundles. In type IIB string theory, a collection of N coincident D3
branes have 3 + 1 = 4 dimensions and carry a U(N) gauge theory
living on the Chan-Paton bundle. This gauge theory is the
holographic dual of the string theory, and the number N can be
recovered as the flux of the Ramond-Ramond (RR) 5-field G5

through S5. The rotation group SO(6) of R5 is identified with the
SU(4)R symmetry group of the N = 4 gauge theory.

The AdS/CFT correspondence looks like holography in that
physics in the bulk of AdS space is described by a theory of one
less dimension “on the boundary.” This can be explained by the
famous relation between the entropy of a black hole and the area
of its boundary, which in turn forces quantum gravity theories to
obey a holographic principle.
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The Lagrangian for 4D SYM

Recall that the Montonen-Olive Conjecture asserts that classical
electro-magnetic duality should extend to an exact symmetry of
certain quantum field theories. 4-dimensional super-Yang-Mills
(SYM) with N = 4 supersymmetry is believed to be a case for
which this conjecture applies. The Lagrangian involves the usual
Yang-Mills term

−1

4g 2
YM

∫
Tr(F ∧ ∗F )

and the theta angle term (related to the Pontrjagin number or
instanton number)

θ

32π2

∫
Tr(F ∧ F ).

We combine these by introducing the tau parameter

τ =
4πi

g 2
YM

+
θ

2π
.
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Charges in 4D SYM

The tau parameter measures the relative size of “magnetic” and
“electric charges.” Dyons in SYM have charges (m, n) living in the
group Z2; the associated complex charge is q + ig = q0(m + nτ).
The electro-magnetic duality group SL(2,Z) acts on τ by linear
fractional transformations. More precisely, it is generated by two
transformations: T : τ 7→ τ + 1, which just increases the θ-angle
by 2π, and has no effect on magnetic charges, and by S : τ 7→ − 1

τ ,
which effectively interchanges electric and magnetic charge. By the
Montonen-Olive conjecture, the same group SL(2,Z) should
operate on type IIB string theory in a similar way, and θ should
correspond in the string theory to the expectation value of the RR
scalar field χ.
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Puzzles About Charge Groups

An important constraint on variants of the AdS/CFT
correspondence should come from the action of the SL(2,Z)
S-duality group on the various charges. For example, this group is
expected to act on the pair (H,G3) in H3(X ,Z)× H3(X ,Z) by
linear fractional transformations. Here G3 denotes the RR 3-form
field, or more precisely, its cohomology class. But now we have
some puzzles:

The classes of RR fields are really supposed to live in K−1,
not cohomology. (Fortunately [Bouwknegt et al.], since the
first differential in the Atiyah-Hirzebruch spectral sequence is
Sq3, there is no difference when it comes to classes in H3,
except when H3 has 2-torsion.)
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expected to act on the pair (H,G3) in H3(X ,Z)× H3(X ,Z) by
linear fractional transformations. Here G3 denotes the RR 3-form
field, or more precisely, its cohomology class. But now we have
some puzzles:

The classes of RR fields are really supposed to live in K−1,
not cohomology. (Fortunately [Bouwknegt et al.], since the
first differential in the Atiyah-Hirzebruch spectral sequence is
Sq3, there is no difference when it comes to classes in H3,
except when H3 has 2-torsion.)
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Puzzles About Charge Groups (cont’d)

Since the S-duality group mixes the NS-NS and RR sectors, it
is not clear how it should act on D-brane and RR field charges.

It’s also not so clear what conditions to impose at infinity
when spacetime is not compact. For example, it would appear
that the H-flux and RR fields do not have to have compact
support, so perhaps K -theory with compact support is not the
right home for the RR field charges. This point seems unclear
in the literature.
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An Example

Let’s look again at the example of type IIB string theory on AdS5 × S5,
compared with N = 4 SYM on 4-space. How do the K -theoretic charge
groups match up? Our spacetime is topologically X = R5 × S5, where
R5 is the universal cover of AdS5. We think of R5 more exactly as
R4 × R+, so that R4 × {0}, Minkowski space, is “at the boundary.” The
RR field charges should live in K−1(X ), but we see this requires
clarification: the RR field G5 should represent the number N in H5(S5),
so we need to use homotopy theoretic K -theory Kh here instead of
K -theory with compact support, which we’ve implicitly been using before.
Indeed, note that K−1(X ) ∼= K−1(R5)⊗ K 0(S5) ∼= H0(S5), while
K−1

h (X ) ∼= K 0
h (R5)⊗ K−1(S5) ∼= H5(S5), which is what we want.

Now what about the D-brane charge group for the string theory? This

should be Z ∼= K 0(X ) ∼= K 0(R4 × Y ) ∼= K 0(R4)⊗ K 0(Y ), where Y is

the D5-brane R× S5, which has K 0(Y ) ∼= Z. Note that this is naturally

isomorphic to K 0(R4) = K̂ 0(S4), which is where the instanton number

lives in the dual gauge theory. But what charge group on X corresponds

to the group of electric and magnetic charges in the gauge theory?
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Conclusion

It is believed that the string/gauge correspondence should apply
much more generally, to many type IIB string theories on spaces
other than AdS5 × S5, and to gauge theories with less
supersymmetry than the N = 4 theory that we’ve been
considering. Analysis of the relevant charge groups on both the
string and gauge sides of the correspondence should give us a
guide as to what to expect. Study of these constraints is still in a
very early stage.
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Thank You

Thank you for listening, and a special thank you to the organizers!
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