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The statement which nowadays goes under the name of the “Novikov Conjecture”
was first formulated by Sergey Novikov in 1970 (though be careful—Novikov has
made many conjectures during his career and sometimes this name is used to refer
to one of the others!). We will come to the precise statement shortly, but suffice
it to say for now that this is one of the crucial open questions in the topology
of manifolds, perhaps the most important question not dealing with the special
peculiarities of dimensions 2, 3, and 4. For a copy of Novikov’s original formulation
of the conjecture in Russian, as well as an English translation, the reader can consult
[10, §11] or else §2 of “A history and survey of the Novikov Conjecture,” in [4], by
Steve Ferry, Andrew Ranicki, and this reviewer.

What has made the Novikov Conjecture so fascinating, and so central to con-
temporary mathematics, is not so much its precise statement, which on first sight
appears rather technical, but the fact that it is so closely connected to so many
other problems in topology, differential geometry, algebra, and even operator alge-
bras and representation theory. The book under review, by Matthias Kreck and
Wolfgang Lück, is the product of a one-week intensive course by the authors in
Oberwolfach in January, 2004, on this circle of ideas.

The story of the Novikov Conjecture begins with the attempt to “classify” man-
ifolds of an arbitrary dimension n. (For simplicity, let’s restrict attention to con-
nected compact manifolds without boundary, either in the smooth or in the topo-
logical category.) To do this in an optimal way would mean to give an explicit
list of all such manifolds, together with invariants that could be used to distin-
guish them. For n = 1, there is only one compact connected manifold up to either
homeomorphism or diffeomorphism, the circle, and for n = 2, there are two infinite
families: the orientable surfaces, classified either by the genus g = 0, 1, · · · or by
the Euler characteristic χ = 2− 2g = 2, 0, −2, · · · , and the non-orientable surfaces
M , classified either by the Euler characteristic χ(M) or else by the genus g̃ of the

oriented double cover M̃ . (These two numbers are related by the simple formula

χ(M) = 1
2
χ(M̃) = 1 − g̃.) The classification of manifolds in dimension 2 is one of

the most elegant classification theorems in all of mathematics, and it is frequently
taught in beginning topology classes.
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Unfortunately, no such simple classification can be given in higher dimensions.
Part of the reason has to do with the fundamental group π1(M); there are simply
too many possibilities for it. In fact, if n ≥ 4, it is easy to see that any finitely
presented group G (say with generators a1, · · · , ak and relations r1, · · · , rm) is
the fundamental group of a closed n-manifold. Simply start with a connected sum
Nn of k copies of S1 × Sn−1; this has fundamental group the free group on k

generators. Each relation rj is an element of π1(N), and thus can be represented
by a map γj : S

1 → N . By transversality, we can homotope these maps so that
they become embeddings with disjoint images, which then have disjoint tubular
neighborhoods that are disjoint embedded copies of the cylinder S1 × Dn−1. Do
“surgery” by cutting out each cylinder and replacing it by D2 × Sn−2, which has
the same boundary, S1 ×Sn−2. This has the effect of killing off each rj , or in other
words, “building in” each of the relations rj in turn. The result is a connected
compact smooth n-manifold Mn with fundamental group G. What makes things
worse [than the fact that any G is the fundamental group of a manifold] is that the
word problem for general finitely presented groups is unsolvable; so, in general, there
is no algorithm for telling if the result M of this construction is simply connected
or not.

Thus in high dimensions, we have to approach the classification problem dif-
ferently, for instance, first fixing the fundamental group, then the homotopy type
(which includes such information as the homology and homotopy groups), and only
then trying to classify manifolds within a homotopy type. This program has had
notable successes; for example, Smale’s proof of the h-cobordism theorem [15] im-
plied the [topological] Poincaré Conjecture in dimensions n ≥ 5. In other words,
any compact, smooth n-manifold homotopy-equivalent to Sn is homeomorphic to
Sn, provided that n ≥ 5. The same is now known to be true even if the manifold
is only assumed to be a topological manifold, without necessarily having a smooth
structure a priori, and is valid even in dimension n = 4 (this case requires deep
work of Freedman). If one wants a classification up to diffeomorphism, then the
results are somewhat more complicated—for example, Milnor and Kervaire ([8],
[7]) showed that there are precisely 28 diffeomorphism classes of compact, smooth
7-manifolds homotopy-equivalent to S7. Smooth manifolds homeomorphic to Sn

but not diffeomorphic to it are usually called “exotic spheres.”
In the case of manifolds with a fixed fundamental group G, the classification of

high-dimensional manifolds within a homotopy type is given by the subject known
as surgery theory, which involves some of the same techniques used for the results
cited above, but also a much trickier study of transversality that takes the group
G into account. This theory was first developed by Browder and Novikov in the
simply connected case, then by Wall in general. (See [17] and the papers in [1] or [2]
for general overviews, or the books of Ranicki, [11] and [13], and Wall’s “bible” of
the subject, [16], for all the details.) The main result of surgery theory is an exact
sequence for computing the “structure set” S(M) of all n-manifolds homotopy-
equivalent to a fixed closed (i.e., compact without boundary) manifold Mn, up
to homeomorphism or diffeomorphism. (More precisely, one classifies homotopy

equivalences M ′ ϕ
−→M , modulo the equivalence relation that two such are identified
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if there is a homotopy-commutative diagram

M ′
ϕ //

ψ ""D

D

D

D

D

D

D

D

M

M ′′

ϕ′

OO

with ψ a homeomorphism or diffeomorphism.) Roughly speaking1, the surgery
exact sequence has the form

(1) · · ·
σ
−→ Ln+1(ZG)

ω
−→ S(M)

ν
−→ N (M)

σ
−→ Ln(ZG),

where ν sends a manifold homotopy-equivalent to M to its “normal data” in N (M),
measuring characteristic classes and the like, where Lj(ZG) are algebraically de-
fined groups only depending on G and periodic in j with period 4, namely certain
Grothendieck groups of quadratic forms on finitely generated free ZG-modules,
the so-called surgery obstruction groups, and where σ is the “surgery obstruction”
map. In (1), S and N depend on whether one is classifying manifolds up to home-
omorphism or up to diffeomorphism, but Lj(ZG) is the same in both cases. In
fact, the whole theory in the topological case, including the exact sequence, can be
constructed purely algebraically [12], but then one misses some of the geometric
intuition for what it means.

The surgery exact sequence (1) in principle enables us to compute S(M), in
other words, to classify manifolds in the homotopy type of M , but only if we can
understand the surgery obstruction groups Lj(ZG) and the obstruction map σ. In
some cases, say for finite G, the groups Lj(ZG) are completely computed (see the
paper of Hambleton and Taylor in [1], for example), and thus surgery theory gives
us a fairly explicit classification theory of manifolds in this case. But the problem,
and this is where the Novikov Conjecture comes in, is that for general groups G, the
group ring ZG can be quite complicated, and there is no obvious way to compute
the surgery obstruction groups. Thus, in some sense, the surgery exact sequence (1)
may simply replace one difficult problem by an equally difficult one, of computing
Lj(ZG) and the obstruction map σ.

To put the Novikov Conjecture in context, it helps to recall a still older conjec-
ture, the Borel Conjecture. This asserts that if a closed manifold Mn is aspherical,

i.e., if its universal cover M̃ is contractible, then M should be determined up to
homeomorphism by its fundamental group. In other words, in this case, S top(M)
should consist of only a single element, which means (because of the surgery exact
sequence (1)) that we expect σ : N top(M) → Ln(Zπ1(M)) to be an isomorphism.
(Incidentally, the restriction to the topological category is essential here; M can-
not be determined up to diffeomorphism by its fundamental group, because it is
known that there are cases where taking the connected sum with an exotic sphere
changes the smooth structure, though of course it does not change the homotopy
type, or even the homeomorphism class.) When we think of things this way, the
relationship between M and π1(M) is that M is a classifying space BG for the

group G = π1(M), and we want N top(BG)
σ
−→ Ln(ZG) to be an isomorphism. In

1Experts will recognize that I am deliberately skipping over decorations on the L-groups, the
difference between the periodic and connective L-groups, and the complications arising from the
fact that S is only a pointed set, not a group.
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this formulation, the manifold M itself plays no role in the Borel Conjecture, and
everything depends only on the group G.

Now we are ready to explain the Novikov Conjecture and Borel Conjecture
and their connection with the surgery obstruction groups L∗(ZG). It turns out
that the surgery obstruction map σ : N (M) → Ln(ZG), when M is a closed n-
manifold with fundamental group G, always factors through a so-called assembly

map A : Hn(BG;L) → Ln(ZG). In fact, in the situation M = BG of the Borel
Conjecture, we have N top(M) ∼= Hn(BG;L), and σ and A are the same map. Here
Hn(BG;L) denotes a certain generalized homology group of the classifying space
BG; the homology with coefficients in the surgery spectrum L. Rationally, we have
Hn(BG;L)⊗Z Q ∼=

⊕
kHn−4k(G; Q), so the domain of the assembly map is roughly

just the group homology of G. The Borel Conjecture boils down to the statement
that the assembly map A should be an isomorphism when there is a closed manifold
model for BG; the Novikov Conjecture (whose original formulation had to do with
homotopy invariance of certain combinations of rational characteristic classes) boils
down to the statement that the assembly map A should be rationally injective for
any group G. (It can’t be injective on the torsion for all groups, since if G is a
cyclic group of odd order, H∗(BG;L) has odd torsion but L∗(ZG) does not.)

As I mentioned before, part of what makes the Novikov Conjecture so interesting
is the fact that it connects with many other areas of mathematics. This can be
explained by the fact that assembly maps, similar to the one we have discussed for
surgery theory, A : Hn(BG;L) → Ln(ZG), show up in other areas of mathematics
as well. Thus there are also assembly maps in algebraic K-theory,

AK : Hn(BG;K(Z)) → Kn(ZG),

and in topological K-theory of C∗-algebras,

AC
∗

: Kn(BG) = Hn(BG;Ktop) → Kn(C
∗
r (G)).

There are conjectures that these are also rationally injective, and these conjectures
are usually known as the Novikov Conjecture for algebraicK-theory and the Strong
Novikov Conjecture, respectively. (The latter name comes from the fact that the
C∗-algebraic Novikov Conjecture implies the usual Novikov Conjecture, by an ar-
gument due to Mishchenko and Kasparov, as well as results about the classification
of manifolds of positive scalar curvature, by an argument of the reviewer.) In fact,
there are also analogues of the Borel Conjecture, too, usually known as the Farrell-
Jones Conjecture and the Baum-Connes Conjecture, respectively. In the case where
G is torsion-free (as it would have to be if G is the fundamental group of an aspher-
ical manifold), these assert that the assembly maps A : Hn(BG;K(Z)) → Kn(ZG)
and A : Hn(BG;Ktop) → Kn(C

∗
r (G)) are also isomorphisms.

Now that we have explained the basics of the subject, it is time to discuss
the Kreck-Lück book itself. It is not an authoritative treatise on the Novikov
Conjecture, but rather an outline and discussion of the Novikov Conjecture and
related areas, intended for those who already have a reasonable background in
topology. The book covers a remarkably large amount of mathematics, but it does
move quickly and usually only gives sketches, but not full details, of proofs. The
book can be subdivided into four main sections, which involve increasing levels of
complexity:

(1) a rough discussion of the Novikov Conjecture, emphasizing geometric im-
plications and the connection with the signature (chapters 0–4);
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(2) a quick discussion of Whitehead torsion and the s-cobordism theorem (chap-
ters 5–8);

(3) a mini-course on surgery theory, leading to the surgery exact sequence, the
assembly map, and a sketch of a proof of the Novikov Conjecture and the
Borel Conjecture for free abelian groups (chapters 9–16);

(4) a more technical mini-course on a fancier approach to assembly maps, using
equivariant stable homotopy theory, followed by a review of the status of the
original Novikov Conjecture as well as its variants, such as the Farrell-Jones
Conjecture and the Baum-Connes Conjecture (chapters 17–24).

In addition, the book comes with a good set of exercises (chapter 25) and hints for
their solution (chapter 26), plus a very comprehensive bibliography and an index.

For someone who wants to learn about the Novikov Conjecture and related top-
ics, this book provides a very natural starting point. In fact, the first three sections
of the book could be used for a second-year graduate course on the classification
of manifolds. The first section of the book is quite approachable even to gradu-
ate students who have only had a single year of topology. The second section (on
Whitehead torsion and the s-cobordism) could be supplemented by the classic texts
[3], [14], and [9]. The third and fourth sections of this book require more prepara-
tion, both in algebra and in homotopy theory. But they are still a lot more readable
for beginners than much of the research literature. The reader could also consult
the two volumes [4] and [5] on the Novikov Conjecture, as well as the articles in
the Handbook of K-theory [6], for more on the algebraic K-theory side of things.
And for general perspectives on surgery and the Novikov Conjecture, the texts [13]
and [17] are highly recommended. (Ranicki’s style is more formal than Kreck-Lück;
Weinberger’s a lot more informal.)

In general, I very much enjoyed reading this book, and appreciated the care with
which the authors supplemented the text with exercises and examples (such as the
problem, posed in chapter 0, of classifying spin manifolds of dimension ≤ 6 with
fundamental group Z ⊕ Z), which will greatly enhance the usefulness of the book
for someone who wants to use it for self-study. My only major criticism is that
it is a shame that the book wasn’t proofread more carefully. There are misprints
everywhere, most of them just minor annoyances, but some of them rather serious.
I will just mention three examples, but a more extensive list of errata may be found
at

http://www.math.umd.edu/~jmr/KreckLueckErr.pdf

The first example is that in the statement of Exercise 6.1 on page 216, one should
have o(P∗) =

∑
n≥0(−1)n[Pn], but the factor (−1)n is missing. The properties of

the finiteness obstruction all depend on the fact that one has an alternating sum.
Secondly, in the discussion ofG-CW-complexes on pages 153–154, the hypotheses on
G are never made explicit. Definition 19.1 and Remark 19.2 seem to be given for G
discrete, but then Example 19.4 seems to refer to the case ofG a Lie group, for which
the definition of properness has to be modified. Or on page 189, it is asserted that
restricting to dimensions ≥ 5 in the Stable Gromov-Lawson-Rosenberg Conjecture
is essential, whereas this is not true at all. What is true is that there are some
exceptional Seiberg-Witten obstructions to positive scalar curvature in dimension
4, but they are unstable, and do not affect the stable conjecture. Thus the unstable

version of the conjecture could only be valid in dimensions 5 and up, but even here,
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there are counterexamples due to Schick for certain special fundamental groups,
which again do not affect validity of the stable conjecture.
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