K and KK:
Topology and Operator Algebras

JONATHAN ROSENBERG

Department of Mathematics
University of Maryland
College Park, Maryland 20742

revised July, 1989

Abstract. The theme of this paper is to discuss the relationship between
algebraic K-theory, especially as it commonly occurs in problems in
geometric and algebraic topology, and operator algebras. We begin with
a brief survey of a few elements of algebraic K-theory. Then we review
what is known about the comparison between algebraic and topological
K-theory and discuss a few situations in which the algebraic K-theory of
operator algebras seems to be interesting and useful for applications. We
conclude by discussing the relationship between algebraic K-homology
(as developed by Pedersen and Weibel) and Kasparov’s KK-theory, and
suggesting a kind of algebraic KK-theory modeled on Kasparov’s theory.

§0. INTRODUCTION

This paper is about operator algebras, K-theory, and KK-theory.
However, since topological K-theory and the index-theoretic applications
of KK have been treated at great length in other lectures at this Sum-
mer Institute (notably the talks of N. Higson and P. Baum) and in my
previous survey [39], as well as in the excellent book [3] by B. Black-
adar, I shall discuss here only algebraic K-theory and the ways it relates
to operator algebras. Except for Theorems 2.2, 2.4 and 2.5 and for the
material of §3, this paper will mostly be a survey of known, and in
some cases fairly old, facts. However, I believe that this area deserves
to be better known, and that in particular, the topological applications
of algebraic K-theory should be brought to the attention of operator
algebraists.

The organization of this paper is briefly as follows: §1 consists of a
brief review of the basic definitions of algebraic K-theory, as well as
a discussion of a few important typical problems in geometric topol-
ogy in which it arises. This section is intended for operator algebraists
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who would like to learn a little more about topology; any true topolo-
gists or algebraists who might for some reason be looking at this paper
can skip this section. §2 then discusses similarities and differences be-
tween algebraic and topological K-theory, and reviews a few situations
where the algebraic K-theory of operator algebras has proved interest-
ing. The discussion incorporates some new results on algebraic K-theory
of commutative C*-algebras. This section also includes some remarks
on how operator algebras might contribute to the study of the geometric
problems discussed in §1. §3, which is new or at least partially new, dis-
cusses the Pedersen-Weibel approach to negative K-theory and algebraic
K-homology, and how it relates to Kasparov’s version of K-homology.
There is also a discussion of “algebraic KK-theory” and how it might be
used in algebra.

This paper would never have been written without the impetus pro-
vided by the Summer Research Institute on Operator Theory / Operator
Algebras and Applications. Though maybe that would have been just as
well, I would like to thank the principal organizers, Bill Arveson and Ron
Douglas, for their excellent work in bringing so many mathematicians
together for a stimulating meeting.

I also wish to thank Peter Landweber, Erik Pedersen, Chuck Weibel,
and Shmuel Weinberger for helpful suggestions about corrections to the
first draft of the manuscript.

§1. ALGEBRAIC K-THEORY

The simplest (and probably most naive) way of defining algebraic K-

theory is as a machine for associating certain abelian groups, customarily
denoted K;(R), to a ring R (with unit).

§1.1. K, and the Wall finiteness obstruction. The first of these
groups, Ky, has already become relatively familiar to operator alge-
braists, since it occurs for instance in the classification of AF-algebras
([9], [3, §7]). The group Ko(R) is by definition the Grothendieck group,
i.e., group of formal differences, of equivalence classes of finitely gen-
erated right (say—one has to fix a convention, and this will be most
convenient for us later on) projective R-modules. Recall here that a
projective module is by definition a direct summand in a free module,
so that the sorts of modules we are talking about are those of the form
pR"™, where p € M,(R) is an idempotent, i.e., p2 = p. (As a general
rule, we shall save the word projection for self-adjoint idempotents in a
C*-algebra.) The group operation in Ko(R) comes from the operation
@ on modules, or alternatively, from assembling two idempotents p and
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g into a block matrix
p O
0 ¢q/°
The equivalence relation is stable isomorphism, that is,
[P] - [Q] = [P'] - (@]

if and only if there exists another finitely generated projective module
M such that

PoQoM=P QoM.

More occurrences of Ky in the theory of operator algebras will be
discussed in the next section, but here we shall mention an important
way Ky comes into algebraic and geometric topology, which is by way of
the Wall finiteness obstruction. This obstruction really takes its values
not in K itself but rather in the so-called reduced group Kg, defined
to be the quotient of Ky by the canonical cyclic subgroup generated
by the rank-one free module (or in terms of the idempotent picture,
generated by the trivial idempotent 1). The reduced K-group is mostly
only interesting for rings with a well-defined notion of rank, i.e., for rings
R such that R" 2 R™ (as right R-modules) only when n = m.

In the topological applications, the ring R will usually be the integral
group ring Z7 of the fundamental group 7 of a space X, which let’s say
for sake of argument has the homotopy type of a connected CW-complex.
Note that since R has a surjective homomorphism to Z, coming from the
trivial representation of w, the ring R has a well-defined notion of rank.
We assume also that X is finitely dominated, which means that from
the point of view of homotopy theory, X is a retract of a finite complex.
More exactly, there exists a finite CW-complex Y and there exist maps
i: X =2 Yandr:Y — X such that ro: is homotopic to the identity map
on X. This may sound like quite a specialized hypothesis, but actually
it comes up fairly often, for instance when X is a compact connected
ANR (absolute neighborhood retract) [20, Corollary 6.2]. The problem
considered by C. T. C. Wall [52] was to determine when X then has
the homotopy type of a finite complex. It turns out that this is the
case precisely when a certain obstruction vanishes in Ko(Z71(X)). Here
we are using the word obstruction in a technical sense common among
topologists; it denotes an element of a certain (usually abelian) group,
defined by the geometric data, that if non-zero obsiructs, or prevents,
the solution of the problem.

We define the obstruction in the following way. Let C,(X) denote
the cellular chain complex of X (or, if X is not itself a CW-complex,
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of a complex homotopy-equivalent to X'). To be accurate, we mean the
chains for computing homology with local coeficients, as determined
by the fundamental group, so these are really the chains on the univer-
sal cover X, viewed as modules for the group ring R = Zm;(X). Note
that since m(X) acts freely on X, this is really a chain complex of free
R-modules. Now the corresponding chain complex for the finite CW-
complex Y is actually a complex of finitely generated free R-modules,
since Y has only finitely many cells. And the existence of the homo-
topy retraction r : ¥ — X guarantees that C,(X) is chain-homotopy-
equivalent to a direct summand in C,(Y'), that is, to a complex of finitely
generated projective R-modules. The Wall obstruction is the image in
Ky(R) of the alternating sum of these modules. Surely it would vanish if
X were given a finite cell decomposition to begin with, since then C,(X)
would consist of finitely generated free modules. But it would still van-
ish if X were only homotopy-equivalent to a finite complex, since C.
remains unchanged up to chain-homotopy-equivalence under homotopy-
equivalences of spaces, and since alternating sums are preserved under
chain-homotopy-equivalence of chain complexes, by the “Euler-Poincaré
principle.” This shows that the vanishing of Wall’s obstruction is neces-
sary for X to be homotopically finite, and Wall [52] in fact showed that
the vanishing is also sufficient, by a simple inductive construction.

Wall obstructions in various guises occur quite frequently in geomet-
ric topology, for instance in problems about putting a boundary on a
non-compact manifold [44], or about determining which groups can be
fundamental groups of spherical space-forms (quotients of a sphere by a
freely acting finite group of homeomorphisms) [47], [28]. A slight vari-
ant of Wall’s argument, involving a different ring R, gives equivariant
finiteness obstructions for a finitely dominated G-CW-complex to be
equivariantly homotopy-equivalent to a finite G-CW-complex, when G
is a finite group [2]. Similar Ky-obstructions also occur in other prob-
lems in equivariant homotopy theory [32].

§1.2. K; and Whitehead torsion. The next group of K-theory,
K, (R), naturally arises from the familiar problem of trying to put matri-
ces into a nice canonical form by performing elementary row and column
operations, in the “stable limit” when the size of the matrices tends to
infinity. Since, as is well-known, these operations come from multipli-
cation on the right and left by the so-called elementary matrices, it is
natural to introduce the groups

GL(R) = lim GL(n, R),
where as usual GL(n,R) denotes the invertible n x n matrices with
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entries in R, and

E(R) = IE}E(n7R)a

where E(n, R) is the subgroup of GL(n, R) generated by the elementary
matrices

Eij(a) =1+ aeij, a€R, i#j.

The first main result of algebraic K-theory is the following famous
result of Whitehead [31, Lemma 3.1):

THEOREM (WHITEHEAD). E(R) is exactly the commutator subgroup
of GL(R), and is itself a perfect group (i.e., is its own commutator
subgroup).

Thus it’s natural to define
Ki(R) = GL(R)/E(R) = H1(GL(R),Z).

This classifies the canonical forms for matrices in GL(R) modulo ele-
mentary row and column operations (involving adding a multiple of one
row or column to another).

Once again, this group arises rather naturally in topology, with R
the group ring of the fundamental group of a space. As in the case
of Ky, it is not really the whole group K;(Zx) that is of interest, but
rather the quotient of this group by the “trivial” subgroup generated by
GL(1,Z) = {+1} and by = itself. This quotient

Wh(r) = Ky (Zr)/({£1} x )

is called the Whitehead group.

The topological invariant that takes its values in Wh(x) is called
Whitehead torsion, and is explained in great detail in the books [7],
[41]. Just to illustrate its importance, let us consider the problem of
classification of (compact) manifolds up to homeomorphism or diffeo-
morphism, depending on whether one is in the topological or smooth
category. When one is given two manifolds M and M' that one suspects
are really the same, one might try to construct directly a homeomor-
phism or diffeomorphism between them, but this is usually a hopeless
task. Therefore one usually tries instead to construct an h-cobordism be-
tween them, which is a compact manifold W with boundary, having the
original two manifolds as its two boundary components, and such that
the inclusions of both M and M' into W are homotopy equivalences.
When everything is simply connected, the celebrated h-cobordism the-
orem of Smale (see, e.g. [30]) says that (in high dimensions) such an
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h-cobordism is necessarily a product, i.e. that W = M x [0,1]. Of
course this implies the desired conclusion that M & M', and even gives
a bit more.

In the non-simply connected case, the connection with K-theory is
given by:

S-COBORDISM THEOREM (41, §§6.19-6.21]. The (homeomorphism or
diffeomorphism) classes of h-cobordisms having M as one boundary com-
ponent are in one-to-one correspondence with the elements of the group
Wh(wy(M)), with the trivial cobordism M x [0, 1] corresponding to the
0-element of the group, provided that dim M > 5.

Thus the computation of the group Wh(r) for various groups = is of
significant geometric interest. The Whitehead group vanishes when = is
a free or free abelian group, but can be non-zero for rather simple finite
groups. The first non-trivial example, which will be rather instructive
for our purposes later, is the case where 7 is cyclic of order 5, say with
generator . Then one finds that

l-2?-2)x(1-z—-2*)=1¢€Z[z]/(z® - 1),

so that 1 — z? — z® defines an element of GL(1,Zx) and thus an ele-
ment of Wh(n). We claim this element is non-zero, in fact of infinite
order. The simplest way to prove this is to observe that 7 has a complex
representation ¢ in which z goes to €2™/5, and under this representation,

(1 — 2?2 — 2%) — 1 — 2cos(4n/5),

which has absolute value greater than 1. Now o induces a map of rings
o : I — C, which in turn maps Kj(Zr) to K1(C). However, since
the determinant of any elementary matrix is one, we have a well-defined
determinant

det : Ky(C) — C*,

which in fact is an isomorphism. And under the induced map
(1.1) det oo : K;(Z7) — C*,

the subgroup {£1} x 7 must go to the unit circle, since o is a unitery
representation and unitary matrices have determinant one. Since no
non-zero power of 1 — 2 cos(4x/5) has absolute value one, we must have
an element in the Whitehead group of infinite order, as claimed.
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§1.3. K; and pseudo-isotopies. The next of the K-groups, K2(R),
measures some of the complexity of the group E(R) of elementary ma-
trices. Alternatively, just as K;(R) may be defined as Hi(GL(R),Z),
K3(R) is closely related to Hy(GL(R),Z). It is not exactly this homol-
ogy group, since we don’t want to duplicate the information contained
in Kj, and the group extension

1 — E(R) - GL(R) - K;(R) —» 1

gives us a map Hy(GL(R)) — H,(K;(R)). The “correct” invariant, in
the sense that it fits into a long exact sequence with Ky and Kj, turns

out to be

Ko(R) ® Hy(E(R),2),

which of course maps to Hy(GL(R)). The group K> has a somewhat
more concrete description, which is nicely described in [31]. Recall that
E(R) was generated by the elementary matrices E;;(a). These satisfy
certain “obvious” relations such as

E;j(a) - E;j(B) = E;jj(a + B)

and
[Eij(@), Ejx(B)] = Eir(a-B), i#k.

Thus one can form a group, usually denoted St(R), the Steinberg group,
with generators Xjj(a), ¢ # j, a € R, subject to these “obvious rela-
tions” satisfied by the E;;(a)’s, and by construction, this group surjects
onto E(R). The kernel of this surjection, which measures the “non-
obvious” relations in E(R), turns out to be the same as the K,(R)
defined as Hy(E(R)) [31, Theorems 5.1 and 5.10]. Even though the
definition of K is substantially more complicated than that of K;, this
group has also shown up in topology, notably in the work of Hatcher and
Wagoner [16] (however, see the correction in the review, MR 51 #4278)
on pseudo-isotopies. A pseudo-isotopy of a manifold M is by defintion a
diffeomorphism of M x [0, 1] which restricts to the identity on M x {0}
and on M x [0,1]. The work of Hatcher and Wagoner shows that K, of
the group ring of the fundamental group of M comes up when one cal-
culates the set of connected components of the space of pseudo-isotopies
of a high-dimensional manifold. Without going into details, suffice it to
say that this then affects the structure of the diffeomorphism group for
any (high-dimensional) manifold.



§1.4. Higher K-theory. With the possible exception of K3(R), which
is sometimes defined as H3(St(R), Z) [14], there seems to be no way of
directly defining K;(R) for ¢ > 2 in a way similar to and compatible with
the definitions of Ky, K;, and K,. Of course, the words “compatible
with” must be explained—we would like, when I is a two-sided ideal in
R, to have relative K-groups K;(R,I) and a long exact sequence

«oo = Kip1(R/I) = Ki(R,I) - Ki(R)
— Ki(R/I) - K;_y(R,I) > ---.

However, there are several ways of defining an infinite series of K-groups
so that one gets such a long exact sequence and various other desirable
properties. The most important of these are due to Quillen and are usu-
ally known as the “plus-construction” and “Q-construction.” The plus-
construction is the easiest to define—the idea is to start with BGL(R),
the classifying space of the (discrete) group GL(R), and to change it
to a new space BGL(R)* with the same homology groups but with
abelian fundamental group. This is done by attaching 2-cells to kill the
commutator subgroup E(R) of

GL(R) = m(BGL(R)),

and then attaching additional 3-cells to correct the H;. For a fairly
readable exposition, see [1, pp. 84-88]. Then one defines

Ki(R) = n;(BGL(R)*Y) for i>1,

and of course this is compatible with our previous definition of K;(R)
as Hi(GL(R)). In fact, the Hurewicz homomorphism gives a functorial
map

K;(R) = m;(BGL(R)") — Hy(BGL(R)*,7)
= Hl(BGL(R)s Z) = Hl(GL(R), Z),
which is the same as the map we discussed earlier for K,, though this
requires some proof. The long exact sequence for I 4 R now arises as the

long exact sequence for the fibration obtained by taking the homotopy
fiber of the natural map

BGL(R)* — BGL(R/D*.

For many purposes, however, it is better to use the more categorical
Q-construction of Quillen or various variants thereof, due to Gersten,
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Segal, May, Thomason, Waldhausen, and others. Since this material is
very technical and an excellent bibliography is available in [27, §$D05,
D10, D15, and D30], we shall only give here a crude idea of what this is
all about, sufficient for our purposes in §3 below. The key idea is that
instead of thinking of K-theory as providing an infinite series of groups
K;(R), it is better to think of it as providing a single, more complicated
object attached to the ring R. This object is a generalized homology
theory, which we shall denote by K(R). (To be technical, we usually
use the associated reduced homology theory on spaces with basepoint,
which we denote by K(R).) The groups K;(R) are then obtained by
evaluating this homology theory on spheres:

Ki(R) € K(R)(SY).

Thus from this more sophisticated point of view, K-theory should really
be a functor from rings to homology theories.

The dual cohomology theory K(R)* has been given a convenient con-
crete description by Karoubi in [24, Ch. III]—the group K(R)*(X) is
the set of formal differences of equivalence classes (under a relation we’ll
describe in a minute) of diagrams

E
b
vy -, x,

where E = Y is a flat R-bundle over Y, that is a bundle with lo-
cally constant transition functions, whose fibers are finitely generated
projective R-modules, and f is an acyclic map, meaning roughly a ho-
mology equivalence, or more exactly, a map such that the homotopy
fiber over any point of X has vanishing reduced homology. For instance,
if X = S™ for n > 1, Y will be a homology n-sphere, generally with
large fundamental group. The equivalence relation is basically that two
such diagrams
elvlx
and , '
oy Lx

are considered equivalent if there is a third such diagram
J
Ei Y 5X

9



together with a commutative diagram

fl

Y — X

o’ lid

i
Yl———f-—)X

: T

vy - x,

such that
Egd*El, and E’Ea'*El.

The group operation comes from the Whitney sum of R-bundles, and
there is also a cup-product operation that comes from the tensor product
operation on bundles.

Now by the machinery of modern algebraic topology [1, Ch. 1], ho-
mology theories are representable, via gadgets called spectra, which in
fact are often identified with homology theories. (A spectrum is really
an infinite sequence {X;}$2, of spaces, together with maps X; — QX;41.
These maps of spaces induce maps of homotopy groups

Wn(Xi) — 7r,,.|.1(X,-+1).
The homotopy groups of the spectrum are by definition
mn(X) = 1111’1 Tnti(Xi)

Note that if all the maps X; — X4, are equivalences, then these
are just the homotopy groups of Xg.) For those who prefer to think of
single topological spaces (with extra structure), it is the same to deal
with what are called infinite loop spaces. For a generalized homology
theory E, the associated space Eq is characterized by the property that
the dual cohomology theory is computed by

EO(X) . [X7 EO]’

where [ , ] denotes the set of (based) homotopy classes of maps. Thus
the coefficient groups of the homology theory are just the homotopy
groups of the space Ey, at least if we stick to positive degrees. In the
case of algebraic K-theory, the infinite loop space K(R)y is just Quillen’s
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Ky(R) x BGL(R)*. (We need the factor of K since a connected space
such as BGL(R)* won’t have the right mg.)

In fact, one can go one step further in generality. Instead of thinking
of K-theory as a functor from rings to spectra, one can replace the ring
R by a suitable category of its modules (since that’s all that’s needed
anyway), and then generalize to a larger class of categories. Thomason’s
version of K-theory [49], for instance, is based on a functor from sym-
melric monotdal categories to spectra. Symmetric monoidal categories
are categories with a suitable @ operation; the prototype is the cate-
gory of finitely generated projective R-modules and isomorphisms, and
it is this category that gives rise to Quillen’s K-theory K(R). Later in
this paper we shall discuss a more concrete realization of this homology
theory, due to Pedersen and Weibel [36].

§1.5. Lower K-theory. It is also possible, and in fact often desirable,
to extend the infinite sequence of algebraic K-groups in the other di-
rection, i.e., in the direction of negative index. To motivate this, note
that the study of the Wall obstruction and of Whitehead torsion gives
us a good geometrical reason for wanting to compute Ky and K; for a
group ring Zw. If we replace the group 7 by the group 7 x Z™, which
corresponds geometrically to taking the product of our original space
or manifold with an n-torus (the classifying space for Z"), then we are
suddenly faced with computing

Ki(Z(r xI™) = Ki(Zx[z1,2z7", -+ ,20,27]), i=0, 1.

Hence we need to be able to compute K-theory of Laurent polynomial
rings.

If F is any functor, e.g. K;, from rings to abelian groups, Bass has
defined a new functor LF by

LF(R) = coker(F(R[z]) ® F(R[z~"]) = F(R[z, z~])).

Thus L"F(R) arises in computing F(R[z1, 27", -+, 2n,z;}]). It turns
out that
L"K; &2 K;_,, provided :>n >0,

and thus it makes sense to define K_,, = L*K, for n > 0. As we
have seen, these functors arise in computing Whitehead groups, so there
is particular interest in K_,(Z7). A fair amount about these groups
is known; for instance, if 7 is finite, they vanish for n > 1 and are
explicitly computed for n = 1 [6]. The K-theory long exact sequence for
I 4 R extends to a two-sided long exact sequence involving the negative
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K-groups. In fact, it is also possible to describe negative K-theory from
the point of view of spectra, since a spectrum (unlike a single topological
space) can have negative homotopy groups. It is known that there is a
spectrum [51] whose positive and negative homotopy groups capture
both higher and lower K-theory.

It is perhaps worth mentioning one more geometric application of
negative K-theory, which will implicitly play a role in §3 below. This
involves the concept, which has been increasingly important in geometric
topology, of topology with control. For simplicity, we consider one of the
simplest illustrations of this idea, as developed in [34]. Namely, we
consider h-cobordisms W between two manifolds M and M’ as before,
but this time with a conirol map p : W — R¥. The control map p is
required to be proper, and its restriction to either M or M’ is required
to be surjective. Of course, none of the manifolds W, M, or M’ will be
compact. We use the map p to measure “distances,” that is, we define

“dist” (z, y) = |p(z) — p(y)|.

Then we require that W have bounded fundamental group, i.e. that there
be a fixed constant C' such that for every z, y € W, and for every
homotopy class of paths from z to y, there be a representative for the
class of length < |p(z) — p(y)| + C, and similarly that null-homotopic
loops be contractible within a set of diameter < C + the diameter of the
loop. The result of [34] then gives a necessary and sufficient condition
for a “bounded” h-cobordism W to have a bounded product structure,
in terms of an invariant in K_j41(Zm;(W)), provided that dim W > 5.
If k = 0, this reduces to the usual s-cobordism theorem.

Of course, one way a bounded h-cobordism can arise is from a compact
h-cobordism W' with fundamental group 7 x Z¥. The projection of the
fundamental group onto Z* induces a map p' : W' — T*, and taking
coverings, we get a map

p=ﬁ:VAV:'=W—>Tk=Rk.

Theorem 1.7 of [34] identifies the associated invariant as the image of the
original Whitehead torsion in WhA(x x Z¥). But there are controlled non-
compact problems that do not arise so simply from compact situations.

§2. ALGEBRAIC K-THEORY AND OPERATOR ALGEBRAS

§2.1. Algebraic versus topological K-theory. Now we discuss the
special situation where the ring R is a unital Banach algebra, say a
C*-algebra. In this case, there’s another kind of K-theory attached to
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R, namely topological K-theory, as developed, say, in [3]. One way
of viewing this is by way of the fact that the Banach algebra structure
makes G L( R) into a topological group, so that it has a classifying space as
such, BGL(R)"*P. This is to be distinguished from the classifying space
we considered earlier, which we now write for emphasis as BGL(R)%sc,
By the Bott periodicity theorem, it turns out that BGL(R)'P is already
an infinite loop space, so that the plus-construction does nothing to it.
Its homotopy groups are by definition the topological K-groups; they
turn out to be periodic of period 8 in the real case, 2 in the complex
case. On the other hand, the (identity) map

GL(R)** — GL(R)"®

will induce a map of classifying spaces. Applying the plus-construction
gives a map of infinite loop spaces, or equivalently, a natural transfor-
mation of homology theories

K*§(R) — K'*P(R)

from algebraic to topological K-theory. Taking homotopy groups, this
can be viewed on the level of individual K-groups as a map K ?IS(R) —
K!°°(R). Though we’ve only defined it for i > 0, it’s not hard to extend
it to the negative K-groups as well. (Note that for topological K-theory,
these merely repeat the positive K-groups, by Bott periodicity.) For
¢ = 0, the map is always an isomorphism. However, it’s usually not
an isomorphism for other values of 7, and it’s an important problem to
learn as much about it as possible. Part of the reason is that topological
K-theory is by its nature related to index theory and the analytic theory
of operator algebras, and we would like as much as possible to relate this
to some of the algebraic and topolgical problems discussed above in §1.
We shall quickly survey now the known results about the comparison
problem between algebraic and topological K-theory. When i = 1,

K8(R) = GL(R)/E(R), while K!°°(R)= GL(R)/GL(R)",
and since E(R) lies in the connected component GL(R)® of GL(R), the

natural map is surjective. However, it’s not even injective for C, since
K¥%(C) = C* via the determinant, whereas K'°P(C) = Kop(pt) = 0.
As far is K is concerned, it’s known [31, pp. 59-62] that for commuta-
tive C*-algebras C(X), the image of the natural map

K28(C(X)) — KiP(C(X)) 2Ko(C(X)) (by Bott periodicity)
=K°(X)
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is (for X connected) the reduced K-group K°(X). For the higher K-
groups, there are results only for special C*-algebras. Just about the
best theorem available is a result of Higson [19, Theorem 5.4.1], which
says that the natural map from algebraic to topological K-theory is an
isomorphism in all degrees for C*-algebras of the form A® Q(B), where
A is unital, B is o-unital, and Q denotes the generalized Calkin algebra
construction, i.e.

QB)=M(BRK)/(BRK).

The tensor products here are all spatial C*-tensor products.

As far as negative K-theory is concerned, Karoubi [22, Théoréme 3.6]
showed that the natural map K*8(4) — K*P(A) is surjective for any
unital C*-algebra. There is no comparable result for K_,, as one can
see by looking at the simplest example A = C.

To better understand the nature of the comparison problem, it is im-
portant to keep in mind that topological K-theory has two key properties
which are not shared by algebraic K-theory in general. These are ho-
motopy invariance and ezcision. The first of these says that if A is a
Banach algebra, the map C([0, 1], A) —+ A given by evaluation at any
point t € [0, 1] gives an isomorphism in K-theory, independent of ¢. Ex-
cision says that the relative groups K{°®(4,I) associated to I 4 A are
independent of A, and can be defined purely in terms of the ideal I.
The analogue of a continuous function in algebra is a polynomial, so the
analogue of homotopy invariance in algebraic K-theory should concern
the evaluation map

K(R[z]) — K;i(R)

coming from setting £ = 0. The kernel of this map is by definition
Bass’ NK;(R), sometimes called Nil;_;(R), and though this is 0 for
regular rings, it is often non-zero. In fact, when it’s non-zero, it’s not
even finitely generated [37]). And as pointed out in [31, Remark 4, pp.
34-35], excision and the Mayer-Vietoris property also fail for algebraic
K-theory.

These drawbacks led Karoubi and Villamayor[25] to introduce a the-
ory, often denoted KV, (R), with properties intermediate between alge-
braic and topological K-theory. The Karoubi-Villamayor groups are de-
fined for any ring R (without a topology), and satisfy algebraic homoto-
py-invariance and excision. When R is regular, though not in general,
KV, (R) 2 K,.(R). And for any ring R, KV;(R) = K;(R) for : < 0.
When R is a unital Banach algebra, the map K2'8(R) — K!°P(R) factors
through KV,(R). Also, for general rings, there’s a “Gersten-Anderson
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spectral sequence”:
E,, = N?K,(R) => KV,4,(R), p>0,¢>1.

For details on all of this, see section D25 of [27]. It is possible that
this machinery will yet prove of value in studying the map from alge-
braic to topological K-theory. For instance, Higson [19, Theorem 6.3.14]
has shown that the map KV, — K:°® is an isomorphism for stable
C*-algebras. This provides further evidence for the conjecture [22] of
Karoubi that the map K38 — K!°P is an isomorphism for such alge-
bras. Of course, if A 22 AQ K is a stable C*-algebra, then A certainly is
not unital, so the algebraic K-theory must be suitably interpreted. One
possibility is to use the relative groups K.(M(A), A), for which the con-
jecture is true by a corollary of the theorem of Higson cited previously.
Another possibility, for which the conjecture has also been proved by
Higson [19, Ch. IV] in the case of K>, is to use a variant of the usual
definition of K-theory of unital rings, taking into the fact that A is al-
most unital in the sense that any element is a linear combination of
products, in fact in a semi-canonical way.

One final point about comparison between algebraic and topological
K-theory is that there is substantial evidence that the difference be-
tween the two tends to disappear when one uses K-theory with finite
coefficients. To make this more precise, recall that algebraic K-theory
assigns a homology theory (or a spectrum) K(R) to a ring R, and we
can then introduce coefficients into the homology theory (by smashing
with a Moore space). Thus for any positive integer k one gets a cofiber
sequence of spectra

K(R) 2+ K(R) — K(R; 1/k).

K-theory with Z/k-coefficients is by definition given by the homotopy
groups of the spectrum on the right, and is related to usual K-theory
by the Bockstein long exact sequence coming from the homotopy exact
sequence of the (co)fibration. This exact sequence can be rephrased as
a universal coefficient exact sequence:

(2.1) 0— K;(R)®Z/k — Ki(R; Z/k) — Tor(Ki_1(R), Z/k) — 0,

which splits under favorable circumstances (k¥ odd or divisible by 4).
Intuitively, the advantage of introducing finite coefficients is that al-

gebraic K-groups of algebras over C tend to contain a lot of “divisible

junk” which is killed with finite coefficients. This procedure is so efficient
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that K-theory with finite coeflicients has excision [53], {23, Appendice
1], provided one restricts attention to Q-algebras, just as for topological
K-theory. Karoubi [23, Théoréme 2.5] has shown that for any Banach
algebra A, the natural map

K'8(A; 2/k) — KI°P(A; Z/k)

is an isomorphism for ¢ = 1 (this follows from the fact that elements
of GL(A)° close to the identity have k-th roots), and is surjective for
¢ > 1. It has also been shown (see [12], [38]—the two authors were
working independently at the same time, both using methods developed
by Suslin [46]) that the map

K}'%(A; 1/k) — K{P(A; Z/k)

is an isomorphism for all ¢ > 1 when A is a commutative Banach al-
gebra with unit. This work is closely related to an analogous theorem
for algebraic varieties or schemes [50], the difference being that Thoma-
son formally inverts the “Bott periodicity element” in K. Karoubi [23,
Théoréme 2.5] and Higson [19, Theorem 6.4.1] have proved the corre-
sponding result for stable C*-algebras. The stability plays the role of
inverting the Bott element, since K_»(K; Z/k) (one can even replace
the compact operators by a Schatten ideal) contains an “inverse Bott
element” [23, Proposition 3.5]. Thus there seems to be good evidence
for the conjecture that for any C*-algebra, algebraic and topological
K-theory with finite coefficients coincide in positive degrees.

However, we are still left with the rather puzzling issue of the lower K-
groups. This contributes to some of the confusion in the literature, since
many authors, to avoid a definition of Ko(R; Z/k) which will involve
Tor (K_1(R), Z/k), give a somewhat ad hoc definition of this group that
doesn’t satisfy the universal coeflicient theorem (2.1) as we’ve stated it
and thus can’t match up well with K;°P(R; Z/k).

In fact, the lower K-groups with finite coefficients are quite interesting
for operator algebras, since they provide a measure of how “stable” the
algebra is. The following improvement in the Fischer-Prasolov Theorem
completely answers the question of what these groups are for commuta-
tive C*-algebras.

THEOREM 2.2. The functor
F™: X — K¥8(Co(X); 2/k)

is a generalized cohomology theory on the category of (second-countable)
locally compact spaces and proper maps, and in fact coincides with
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connective K-theory with Z /k-coeflicients:

K™(Co(X); Z/k) 2 ba (X*; Z/k), el

(Here Xt denotes the one-point compactification of X, not the Quillen
plus-construction.)

The same holds for real-valued functions with bu replaced by bo.

PROOF: Since K-theory with finite coefficients satisfies (algebraic) ex-
cision, it will necessarily give a cohomology theory (on the category
of second-countable locally compact spaces and proper maps) once we
prove that it is homotopy-invariant. The reason is that if Y is a closed
subspace of X, the short exact sequence of algebras

0= Co(X\Y)— Co(X) > Co(Y)—0

will by algebraic excision give a long exact sequence of K-groups in which
the relative groups only depend on the complement of Y in X, so that
(topological) excision is satisfied. The proof of homotopy invariance will
show at the same time that the theory is (countably) additive, i.e., that

([ x) = @ F(x.).

This is enough to determine the behavior of the theory under inverse
limits of compact spaces—it must have the property that

F*(fim X;) 2 lim F*(Xy),

and since arbitrary compact metric spaces are inverse limits of finite
complexes, we can determine the theory completely by knowing what
spectrum gives it on finite complexes. (For the mechanics of this sort
of reasoning, see [43], especially §5.) Now the homotopy groups of this
spectrum are just those of K*8(C; Z/k), since by definition this is the
spectrum that computes the theory when X is a point. And since C is a
field, its lower K-groups all vanish, so the spectrum is connective, i.e., has
vanishing negative homotopy groups. Finally, by [46], the map from al-
gebraic to topological K-theory induces an isomorphism of non-negative
K-groups of C with finite coefficients, which says just that K*8(C; Z/k)
is the connective K-theory spectrum bu(Z/k). Now we can see that
this is also the spectrum that computes F' for general finite complexes.
Indeed, suppose the one-point compactification of X is a finite complex.
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The natural transformation from algebraic to topological K-theory will
induce (by the result of Fischer and Prasolov) an isomorphism

K(Co(X); 2/k) — K{*P(Co(X); 1/k)
> Ri(XH Z/k) 2B (XY Z/k), i>0,

since connective and ordinary K-theory coincide in negative degrees.
But connective K-theory is characterized (see [1, p. 145]) as the unique
connective cohomology theory equipped with a natural transformation
to topological K-theory which gives an isomorphism in non-positive de-
grees.

Thus we’ve reduced the theorem to proving homotopy-invariance.
This and more is provided by the Fischer-Prasolov Theorem for the
higher K-groups, so it’s enough to prove homotopy-invariance of the
lower K-groups with finite coeflicients. Since these are in turn deter-
mined by the integral lower K-groups (via (2.1)), which in turn are
direct summands in the Ky of Laurent polynomial rings, the theorem
will follow from the following.

LEMMA 2.3. Let A be a separable commutative (unital) C*-algebra and
let r be a positive integer and o : C([0,1], A) — A be “evaluation at
zero.” Then the map

o, : Ko(C([0,1], A)[mih, T 7w1:!:]) - KO(Alwih’ T 1371:?])
is injective.
PROOF: The proof will be based on the homotopy lifting property for a
suitable fibration, so it is necessary first to set up what might seem like
peculiar notation. However, a little thought shows that the essence of
the problem is to understand a little more about the Laurent polynomial

ring
R, = C[z%,--- ,z¥]

and the group GL(R,). Note that since the negative K-groups and Nil-
groups vanish for C,

Ko(R,)=Z and
Ki(R,) = C* x (free abelian group on zy,--- ,,),

and thus GL(R,) is generated by scalar matrices, elementary matrices,
and the 1 x 1 matrices (1), -+ ,(z,). In fact, by stability theorems
proved independently by Suslin [45, §7] and by Swan [48], all finitely
generated projective modules over R, are free, and for n > 3, GL(n, R,)
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coincides with the subgroup G, generated by diagonal scalar matrices,
by E(n, R,), and by

31 0 v e 0 27,- 0 e 0
0 1 ... 0 o1 ... 0
0 0 ... 1 0 0 ... 1

We also define P, 1 to be the set of idempotents of rank k in M, (R, ),
i.e., those conjugate under G, , to

1 0

0 On—k )
By Suslin’s and Swan’s result, all idempotents are of this form for suit-
able n and k. Finally, we let

Vn,k,r = Pn,k,r X Pn,k,ra

Wakr={(0¢9): (0,¢) € Varr, g€ Ga,r, gpg—1 =q}.

We topologize these sets by noting that M,(R,) is naturally filtered.
We say an element has length < s if all its matrix entries involve only
monomials o _

eof g, fil 4o firl s

The elements of My(R;), Pok,ry Gy Vak,r, and Wy g, of length <
s constitute algebraic varieties over C, since they involve only finitely
many complex coordinates subject to certain polynomial constraints.
Therefore they have natural topologies and are homeomorphic to finite-
dimensional cell complexes. We give all the sets Myp(R;), Pnk,r, Gn,r,
Vak,r, and W, . the inductive limit topologies for the filtration by
length. Thus for a sequence to be convergent, the lengths of the elements
in the sequence must eventually stabilize, and the coefficients of the
relevant Laurent polynomials must converge. The advantage of this is
that G, becomes a topological group operating continuously on P, ¢ ,
by conjugation. (The continuity of all the operations except for matrix
inversion is easy to check. So the only real difficulty is to show that
matrix inversion is continuous on Gy, . It is here that our knowledge of
the generators of GL(n, R, ) comes in handy, since we know that each of
the generators, and thus every element of the group, has determinant of
the form cz{'z3?...z!r, c € C* and i; € Z. Then the classical formula
for the inverse of a matrix in terms of determinants of cofactors shows
that inversion is continuous.)
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We mention as motivation for our definitions that an element of
My(C(X)lzi, ..., 2¥])
can be always be viewed as a map
X — M,(ClzE, ..., z¥))

. With our definitions, this map is continuous, and all such continuous
maps arise this way. Similarly with P, V, and so on.

We claim now that the natural projection from W, i, to V, k. is
a (Hurewicz) fibration (that is, that it has the homotopy lifting prop-
erty with respect to maps from compact metric spaces), with fiber the
centralizer Hy, ; » in G, , of the matrix

1 0
0 On—k )
To prove this, note that all the spaces involved are paracompact, so that

the fibration property is local. By homogeneity, it is enough to know
that the map G, — Gp,r/Hp i, has alocal cross-section and that the

map
Lk 0\ _
9Hy(0k On_k)y !

is open near the identity matrix, from G, to Pp i, (so that Py, is
homeomorphic to Gy, r/Hy i r). However, matrices of the form

1 b 1; 0
0 1n—k a ln—k ’
with a and b suitable rectangular blocks, give the required local cross-

section in G, for a neighborhood of the identity coset in Gy v /Hp i r,
and map in P, . to

(1k +ba —-b-— bab)

a —ab

From this one can read off the bicontinuity of the map G, »/Hprr —
P, i r, since given a convergent sequence in the latter converging to

1% 0
0 On—k ’
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it eventually consists of matrices of fixed length of the above form, from
which one can continuously recover the a and the b (say by the implicit
function theorem).

We're finally ready to use all this machinery. Suppose A = C(X) with
X a compact metric space, and consider an element

[p] — [4] € ker(au) € Ko(C([0,1], A)[aF, -+ ,27]).

Stabilize p and g if necessary, by taking direct sums with a large enough

matrix of the form
1, 0
0 0/’

so that they give conjugate idempotents in some
Mn(A[mita e ,x':!:])

We may represent p and g by continuous functions from X X [0,1] into
the idempotents in M, (R,). (The continuity here involves the fact that
the lengths are bounded!) Since we know that such idempotents are
classified only by rank, p and ¢ can be assumed to each define a contin-
uous function from X x [0, 1] to some V,, t . (Rank is a locally constant
function, so if it’s not globally constant, we can divide X into finitely
many closed and open sets and argue separately on each one. The fact
that we end up in V, x , is due to the fact that the assumption

[p] — [g] € ker(as)

means that p and ¢ are equivalent over X x {0}, and thus certainly have
the same rank there.)

Now the fact that p and ¢ are conjugate over X x {0} translates into
the assumption that our map into the base of the fibration

Wn,k,r — Va,k,r

can be lifted over X x{0}. So by the homotopy lifting property, there is a
global lift. By the peculiar definition of the topology on Gy, ,, this means
there is an element of GL(n, C(X x [0,1])[zE,--- ,2¥]) conjugating p
to ¢, showing that [p] = [g] in K. This completes the proof of the
lemma. Jj

To complete the proof of the theorem, we should check the additivity
of F~*. For * > 0, this follows from a standard property of K-theory
with compact supports by the Fischer-Prasolov Theorem. So once again,
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we only need prove the result for lower K-theory, which again comes
down to consideration of Ko(A[zE,--- ,zE]). Suppose

A=0(X), X=([x9*=Vx}

(The wedge is topologized as a compact metric space.) We have seen
that elements of Ko(A[z3,- - , 2%]) arise from formal differences of maps

X - Pn,k,r

(in the notation of the proof of (2.3)), and any such map is determined
by its restriction to the X;’s, so that

Fr(]x:) — [ Fr(xs).

Furthermore, the image lies in the direct sum, since if p and ¢ are such
maps which agree at the basepoint, then they have the same rank nearby,
and locally define a map into V, . In a small enough neighborhood,
the fibration

Wn,k,r — Va,k,r

is trivial, so there’s a local lifting, and thus [p] — [q] is trivial in F"(Xj)
for ¢ sufficiently large.

As for the statement about the real case, note that everything goes
through exactly the same way, using the real case of the Fischer-Prasolov
Theorem and taking all matrices above to be real. J

We should point out that we’ve actually proved more than just the
statement of Theorem 2.2; we’ve actually shown the following statement
about integral negative algebraic K-theory.

THEOREM 2.4. If X is a second-countable locally compact space, there
is a natural isomorphism

KM(Co(X) 2 bu (X7), i<,
and similarly in the real case with bu replaced by bo.

PROOF: Define a Z-graded functor of X by

pioy = | E=E(Co(X) = Ki(X) = Ki(XT), i<0,
X = K¥8(Co(X)), i>0.

Recall that we already know by [25] that negative K-theory agrees with
KV-theory and thus satisfies algebraic excision, hence gives long exact
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sequences with relative groups that only depend on the ideal involved.
Since one can splice together the exact sequences in toplogical K-theory
and negative algebraic K-theory, the functor F' comes with a long exact
sequence for each pair Y C X (with Y closed). Hence the homotopy-
invariance result above shows it is a cohomology theory. Now one can
argue as before that this theory is connective K-theory. |

In fact (and I thank Chuck Weibel for this observation), the method
of proof of Theorem 2.2 also yields the following variant of the Quillen-
Suslin results on Serre’s problem.

THEOREM 2.5. Let X be a compact metric space, and let C(X) denote
the ring of either complex-valued or real-valued continuous functions on
X. If X is contractible, then for any s and t, every finitely generated
projective module over C(X)[y1, y2, -- ., Yss :z:ih, ..., z¥] is free. Even
if X isn’t contractible, every finitely generated projective module over
C(X)[y1, y2, -- -, ¥s] is extended from a projective module over C(X).

PROOF: Consider the first statement, and adopt the notation of the
proof of Lemma 2.3, except for allowing some polynomial generators as
well as Laurent polynomial generators. A finitely generated projective
module over

C(X)[yla Y25+« <y Ys, xiha seey 371:-':]

will be given by a map p from X into some P, , r, and we can take ¢
to be the constant map from X to the matrix

1; 0
0 1ok )

Putting p and ¢ together, we get a continuous map from X to Vi ks r.
Since X is contractible, we can lift to a map from X to Wy, ¢ s,r, proving
that our module is free.

For the second case, where we only allow polynomial generators but
don’t require X to be contractible, take p to be as before and let ¢ be
the map from X to scalar idempotent matrices corresponding to setting
all the y’s to 0. Consider the map

X x [0, 1] - n,k,s,0

defined by _
(z, t) = (p(z)(ty1, tya, - - -, tys), a(2))-
Since we can lift the map to Wy, & 50 over X x {0}, the map given by p

and ¢ has a lift by the homotopy lifting property, and so the module is
extended. fi
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Probably the above argument could be pushed to show that lower
algebraic K-theory with finite coefficients is a homotopy functor also on
non-commutative C*-algebras. The proof would be a bit nastier because
of various negative K-groups and Nil-groups that come in, even though
these should wash out after passage to finite coefficients.

§2.2. Algebraic K-theory for operator algebras. In this next sec-
tion, we recall a few contexts in which the algebraic, as opposed to topo-
logical, K-theory of operator algebras has arisen in problems of direct
interest to analysts. Since algebraic and topological K-theory coincide in
the case of Ky, and since not much is known about the direct interpreta-
tion of higher and lower K-groups, we shall mention mostly occurrences
of K, together with one occurrence of K, and of the higher K-groups.
It is an interesting challenge to look for other potential uses of algebraic
K-theory, especially higher K-theory, for operator algebras.

Thus we begin with algebraic K, which we recall is the abelianization
of the stable general linear group. Accordingly, any suitable notion
of a determinant for a unital operator algebra A, in other words, a
homomorphism from GL(A) to an abelian group, must factor through
K3 (A). (In this section we drop the superscript “alg,” since topological
K; will not be of interest unless we say so specifically.) As we mentioned
earlier, the classical determinant gives an isomorphism from K;(C) to
C*. But there are other determinants for operator algebras, notably,
the determinant for operators of the form 1+ (trace class), and the
Fuglede-Kadison determinant [13] for finite factors. When A is a II;-
factor, the latter gives a well-defined notion of |det(z)| for z € A, =
invertible, defined by writing

t=ulz|, u wunitary, |z|=¢€, t=1t*,

and setting
|det(z)] def  Tr (1),

Here Tr is the normalized trace on A, so Tr(1) = 1. Note that
though the Fuglede-Kadison determinant is initially defined only on
GL(1,A), it extends to GL(n,A) with the same properties, since this is
just GL(1, M, ® A), and M, ® A is a new II;-factor. A rather beautiful
extension of the work of Fuglede and Kadison is then:

THEOREM [11, PROPOSITION 2.5]. The Fuglede-Kadison determinant
induces an isomorphism

The idea of Fuglede and Kadison has also been used to produce notions
of determinant for other kinds of C*-algebras equipped with a trace
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(see [15], [10]). In K-theoretic language, this amounts to studying the
structure of K; through homomorphisms to C* or other abelian groups.
Exel’s determinants are defined on all of GL(A), hence on all of K;(A),
whereas some writers (cf. [15]) consider only determinants defined on
GL(A)°, the connected component of the identity. This is not so much
of a problem since

GL(A)/GL(A) = KI*P(4),

a “known” invariant. Exel’s work in particular shows that analysis of the
action of Aut(A4) on K;(A) can be a fruitful tool for studying automor-
phisms. The work of de la Harpe and Skandalis shows that knowledge of
the traces on a C*-algebra often, but not always, completely determines
K;.

Next we mention an occurrence of K and an apparent use of the
higher K-groups. This stems from the work of Helton and Howe ([17],
[18]) on algebras of almost commuting operators. In the simplest case of
this theory, they consider a family of bounded self-adjoint operators that
commute modulo the trace-class operators. Such families occur both in
the theory of single operators (from the study of hyponormal operators,
Toeplitz operators, etc.) and in more geometric settings, e.g., the study
of pseudo-differential operators on the circle. These almost-commuting
operators generate a C*-algebra of the Brown-Douglas-Fillmore type,
that is, an extension of some C(X) by K, but the fact that the commu-
tators are trace-class gives more, namely (cf. [17, Theorem 3.1]) that the
non-closed (unital) algebra generated by the operators can be completed
to a Fréchet algebra A fitting into a short exact sequence of topological
algebras:

(2.6) 0= L' A— C®(X)—0,

where the notion of C*®-function on X comes from the embedding of
X into a suitable C" (recall X is just the joint essential spectrum of
the generating operators). Here we are using the notation £? for the
Schatten p-class. If one prefers to deal with Banach algebras (as is more
convenient for introducing topological K-theory), it is possible also to
replace C* by CT for a suitable value of r.

In this situation, the (multiplicative) commutator of two invertible
operators in A will lie in the “determinant class,” and so the Fredholm
determinant gives a pairing

(2.7) (@, b) - det (aba™1b71).
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The theory of this pairing is developed in [17, §10] and in [4]. It turns
out that if the joint essential spectrum X lies in the plane and if a and
b have “symbols” f and g in C*°(X), then the pairing (2.7) is given by
an integral formula

2.8) exp (2_}; {’;;g-"} dm) ,

where the numerator involves the Poisson bracket on R%? and dm is a
certain measure introduced by Pincus. In some cases, the formula has
to be suitably interpreted.

Now it was discovered by L. Brown [5] that the pairing (2.7) has a
nice interpretation in terms of algebraic K-theory. Namely, consider
the extension (2.6) and the associated long exact sequence of algebraic
K-groups. The Fredholm determinant defines a map

det

K1(4, L) - K1 (B(H), L) — C%,

and composing with the connecting map of the long exact sequence of
(2.6), we get a map
Ky (C®(X))— C*.

On the other hand, there is a cup-product in algebraic K-theory, de-
scribed in very concrete terms in [31, §8], giving a skew-symmetric bi-
linear pairing

K1(C%(X)) x Ki(C=(X)) = Kx(C(X)),

and the determinant pairing (2.7) is just the composite of these two
maps.

In [4], Brown raises the question of trying to find an appropriate gen-
eralization of this observation to the “higher-dimensional case,” since
as shown in [18], the phenomenon of operators that commute modulo
L! is essentially one-dimensional in nature. The correct model for the
higher-dimensional case seems to be given by the crypto-integral alge-
bras of Helton and Howe, such as (to give the most important case) the
algebra ¥O(M) of pseudo-differential operators of order < 0 on a com-
pact smooth manifold without boundary, M™. The commutator ideal of
UO(M)is ¥~1(M), the pseudo-differential operators of order < —1, and
if these operators are thought of as acting on H = L?(M) (with respect
to some smooth measure), then ¥~1(M) C L**¢('H). Thus completing
UO(M) will give an algebra A and an extension

(2.9) 0L 5 A C®°(X)—0,
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where X is the cosphere bundle of M, a manifold of dimension 2n — 1.
Once again, we can make A into a Banach algebra (by abuse of notation,
denoted by the same letter) by replacing C* by CT, r sufficiently large.
The long exact sequence of (2.9) in topological K-theory gives the usual
index map of the Atiyah-Singer Theorem:

d: K°P(C"(X)) - Ko(L™t) = Z.

However, the analogue of Helton-Howe theory involves the odd algebraic
K-theory of £"*1, and thus is in some sense orthogonal to ordinary index
theory. The correct map has been identified by Connes and Karoubi [8],
and can be viewed in two different ways. Perhaps the simplest is to note
that the algebra introduced in [8], M2"~2, fits into an exact sequence

0—*[:2”—1—)./\42"_2—)3(%)—*0,

and since B(H) (being flasque) has vanishing K-theory, we obtain a
natural isomorphism

(210) K*(MZn—2) i K*(M2n-2, £2n—1) o K*(B(H), LG_l).

The generalized Helton-Howe “determinant invariant,” for n > 2, can
then be thought of as the following composite

(2.11)  Kan(C®(X)) > Kon_1(4, L)
— Kzn_l(B(H), LG_l)

Connes-Karoubi C %

Here 0 is the boundary map of the long exact sequence coming from
(2.9), and the Connes-Karoubi map comes from (2.10) and the construc-
tion of [8, §V]. The alternative construction of (2.11) is by another point
of view from [8]—we can make a 2n-summable odd Fredholm module
for the commutative algebra C°°(X), and this induces a map (again as
in (8, §V])
Kzn(C™(X)) - C*.

In principle it ought to be possible to give an explicit interpretation for
this map as restricted to the image of the 2n-th tensor power of C*°(X)

under the cup-product, similar to (2.7), and an integral formula as in

(2.8).
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§2.3. Algebraic K-theory of operator algebras applied to topol-
ogy. In this section we shall mention ways in which operator algebras
might be of use in studying two of the topological applications of K-
theory from §1, the Wall obstruction and Whitehead torsion. It seems
operator algebras might also be of use in studying negative K-theory,
but we will save this topic for §3.

We begin with the Wall obstruction. The idea here is work in progress
by John Miller [29], which is so pretty it deserves some extra publicity. If
A is a unital C*-algebra, Miller develops a theory of “elliptic Fredholm
complexes” {H;, d'} over A, where the H;’s are countable inductive
limits of Hilbert A-modules. Then he shows how to associate to such a
complex an indez in Ko(A). The idea of the construction is that if M is
a manifold, connected but generally non-compact, and A = C*(7,(M)),
then one can get such a complex out of the DeRham complex of the
universal cover of M, provided that M is “finitely dominated over A.”
This latter condition is strictly weaker than just being finitely dominated
in the usual sense, and when this is the case, the image of the index
in Ko(A) coincides with the image of the Wall obstruction under the
natural map

(2.12) Ko(Zny(M)) — Ko(A)

induced by the inclusion of rings. In principle this can be used to study
classical Wall obstructions for open manifolds, such as occur in [44], the
advantage of this approach being that the index can be controlled by
analysis on M and its universal cover. One might in turn be able to
relate this to, say, curvature properties. The only problem, as noted
in [29], is that there are no known cases in which the map (2.12) is
non-zero. In fact, one would not even expect any, since there is a long-
standing conjecture that I?dlr)va.nishes for any torsion-free group =,
and even that for general =, it is all “induced” from finite subgroups.
(This latter statement needs to be suitably interpreted, since there can
be a degree shift; for instance K_,(7) “shows up” in Ko(Z(Z x 7)).) On
the other hand, for a finite group 7, Ko(Zx) is finite, whereas Ko(C*(7))
is torsion-free and K_,(C*(m)) vamshes, even if one uses the real C*-
algebra in place of the complex one. Nevertheless, Miller’s construction
is still interesting for two reasons:

(1) if the conjecture about Kj is false, this might detect a counterex-
ample, and
(2) Miller’s obstruction is often defined and non-trivial for manifolds
that aren’t finitely dominated in the classical sense.
The homotopy-theoretic meaning of Miller’s invariant in this latter case
is not yet totally clear (at least to me).
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Next we consider the Whitehead torsion obstruction in Wh(x), a quo-
tient of Ky(Z#). This can potentially be studied by using the Fuglede-
Kadison determinant. As we indicated back in §1, non-zero elements of
Whitehead groups can often be detected by using a finite-dimensional
unitary representation of the group and applying the determinant. How-
ever, this method has the drawback that most infinite groups have very
few finite-dimensional representations, though every group has enough
(infinite-dimensional) unitary representations to separate points.

Thus suppose we are given a (possibly horrible) group = and and
element @ € GL(Z~), which we suspect represents a non-zero element of
Wh(r). How can we show that a cannot be transformed into the image
of {£1} X 7 via elementary row and column operations?

If o is a II;-factor representation of 7, we can consider (just as in

(1.1))
(2.13) |det(o(a))|,

where |det| denotes the Fuglede-Kadison determinant of the finite fac-
tor, which recall is well-defined on K;. Since o sends +1 and 7 to
unitary matrices, the quantity (2.13) only depends on the image of a in

the Whitehead group, and gives us a well-defined group homomorphism
Wh(r) — RX.

§3. ALGEBRAIC AND TOPOLOGICAL
K-HoMoLOoGY AND KK-THEORY

§3.1. Pedersen-Weibel K-homology. We begin this section with
a review of some of the work of E. Pedersen and C. Weibel on explicit
realization of the homology theory corresponding to the spectrum whose
homotopy groups give the algebraic (negative) K-groups. Then we shall
discuss how their construction is related to Kasparov’s KK-groups for
operator algebras.

We begin with a notion that already made its appearance in the theory
of controlled h-cobordisms, which we referred to briefly in the “Lower
K-theory” subsection of §1 above. Thus let S denote the category of
metric spaces and locally bounded maps, in which the morphisms are
maps that are not necessarily continuous, but that only change distances
by a controlled amount. In other words, if X and Y are metric spaces,
amap f : X — Y is a morphism in the category if there are positive
functions p; and p; (depending on the map f) such that

dist (z, y) < p1(f(z), dist (f(z), f(v))),
dist (f(z), f(¥)) < p2(dist (z, y)), =z, y€X.
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Thus the map collapsing X to a point will be a morphism in the cat-
egory if and only if X has finite diameter. Note that this is definitely
a metric notion; it doesn’t just depend on the topology of X, which is
relatively unimportant from this point of view. In fact, in this category,
the inclusion of Z into R (with both spaces given their usual metrics)
has a left inverse x + [z], where [z] denotes the greatest integer < .
The objects of the category S will be the parameter spaces for controlled
topology.

Now let R be a ring (with unit) and let X be a metric space, that is,
an object of §. Pedersen and Weibel define a category Cx(R) [35, Re-
mark 1.2.3], which one can call the category of configurations of finitely
generated projective R-modules over X, as follows. The objects of the
category are collections A = {A;},ex, of finitely generated projective
R-modules, such that for any ball B in X, A, # 0 for only finitely many
z € B. A morphism ¢ : A — C is defined to be given by R-module ho-
momorphisms ¢y : A; — Cy, 2, y € X, such that there exists k = k()
with @7 = 0if dist (¢, y) > k. The interesting point is thatif f : X - Y
is a morphism in §, then it induces a functor f, : Cx(R) — Cy(R),
sending an object A = {A;}zex to fu(4) = {D,cf-1(y) Ac}yey, a8
well as a functor f* : Cy(R) — Cx(R), sending C = {Cy},ey to
f*(C) = {Cf(z)}zex. Note that the boundedness of f is essential here
in showing that f«(A) and f*(C) satisfy the local finiteness condition
for admissible configurations.

LEMMA 3.1. Let X be a subspace of the metric space Y, and suppose
there is a retraction r : ¥ — X in S, satisfying the extra condition
that the function p; is uniform, i.e., a function of the distance but
not of the point x € X. (This is the analogue in S of a deformation
retraction.) Then the inclusion ¢ : X — Y induces an equivalence of
categories i, : Cx(R) — Cy(R), for any ring R.

PROOF: Clearly r, oi, = id, on Cx(R). On the other hand, i, or,
on Cy(R) merely “slides configurations over to X,” and so is naturally
equivalent to the identity functor. i

COROLLARY 3.2. For any ring R and any positive integer n, Crn(R) is
equivalent to Cz»(R), and for any compact (or bounded) non-empty
metric space X, Cx(R) is equivalent to Cpi(R), the category of finitely
generated projective R-modules.

PROOF: For the first assertion, use the product of n copies of the retrac-
tion R — Z given by the greatest-integer function [__]. For the second
assertion, note that the inclusion of a point into X has as a left inverse
the map collapsing X to a point. J§

30



Now, for any finite-dimensional compact metrizable space X, Peder-
sen and Weibel define a metric space O(X), the open cone on X, by
embedding X into some sphere S*~! and letting

OX)={t-z|te[0,00), zeX}

with the metric induced from R™. Of course, the actual metric obtained
depends on the choice of embedding of X into a sphere, but we only
need to consider O(X) up to isomorphism in the category &, which will
be independent of this choice. Notice that if X = S*~1, n > 1, then
O(X) = R" (metrically), and that if X is a point, then O(X) = [0, o0).
We will generally assume that X has a basepoint, which we can take to
be the vector (1, 0, ..., 0). The main result of Pedersen and Weibel on
K-homology is the following,.

THEOREM 3.3 (PEDERSEN-WEIBEL). For X a finite CW-complex,
E.(Cox)(R)) = K(R)s—1(X).

Here the groups on the right are as in §2 above, using the nonconnec-
tive K-theory spectrum, and the groups on the left are the K-groups of a
category. These are obtained by taking the symmetric monoidal subcat-
egory of isomorphisms in C and plugging into the “infinite loop machine”
to produce a spectrum. The groups in question are just the homotopy
groups of this spectrum. However, all this “abstract nonsense” can be
made much more concrete by taking * = 1. Then the group on the left
can be defined by the usual procedure for defining K;; it is the stable
abelianization of automorphism groups in the category. More explicitly,
K; of a category with short exact sequences is the abelian group gener-
ated by symbols [A, a], where A is an object of the category and a an
automorphism of A, subject to the relations

[A5 0[,3] = [A7 O‘] ot [A’ :B]

and

[Aa Ot] =t [Ca 7] = [-Ba ﬂ]

whenever there is a commutative diagram with exact rows:

0 — A » B — C — 0
I N &
0 — A — B — C > 0.
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The first goal of this section will be to prove the following theorem,
which has to do with the comparison between algebraic and topological
K-theory. Recall that by [42] or [40], Kasparov’s K K -functor is closely
related to topological K-homology, in the sense that for a o-unital C*-
algebra R, one can prove that

KK(Co(X), R) = K(R)g®(X™),

for X* (X with a point adjoined at infinity) a finite CW-complex.

THEOREM 3.4. Let R be a unital C*-algebra. There is a natural trans-
formation ¥ of homology theories (corresponding to the natural transfor-
mation from algebraic to topological K-homology), which we shall make
explicit below, which for any non-empty compact metrizable space X,
maps .

Ky (Coco(R) » KR(C(X), R).

Here the reduced Kasparov group is defined as the elements in
KK(C(X), R)

which are zero when restricted to the constant functions C C C(X).
When X = S°, the map ¥ is an isomorphism, which may be identified
with the identity map on Ko(R).

PROOF: Let us begin with an automorphism « of some configuration
A of finitely generated (right) R-modules over X. QOut of this data we
will construct a Kasparov (C(X), R)-bimodule which restricts on C to
a trivial bimodule. To begin with, we may assume O(X) C R"™ and that
Ap = 0, where 0 is the origin in R”, since we may “slide” R-modules a
short distance using Lemma 3.1 if necessary. We let

E=& @ &,

where & and &; are each suitable Hilbert R-module completions of the
direct sum of all the A4.;, t- ¢ € O(X). The R-valued inner product
( , )1 on & isthe usual one, inherited from the canonical R-valued
inner products on R™, m € N. However, as a may not be norm-bounded
with respect to the norm on &;, we let £ have the inner product

(€, mo = (a(§), a(m).

The local finiteness conditions on A and on « insure that this is well-
defined on the algebraic direct sum of the A;.,. Furthermore, the in-
vertibility of a and the fact that o commutes with the right action of
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R guarantee that { , )o satisfies the axioms for an R-valued inner
product. It’s now easy to check that a extends to an isometry £ — &
of Hilbert R-modules, with a~! as its Hilbert module adjoint. Thus if

-1
F=(g “0) on £E=E£8E,

then F € £(£) and F = F* = F1,
Now define a *-homomorphism

¥ : O(X) = L(£)

by defining 4(f) on A¢., (in either & or &;) to be multiplication by
f(z). The action is well-defined by our assumption that A = 0. We
claim that (£, ¢, F') defines a Kasparov (C(X), R)-bimodule.

To check that claim, we need to show that

[(f), Fl€K(E)  for f€C(X).

For this purpose, let £, n € Ay, .., , where £ is viewed as sitting in £ and
7 is viewed as sitting in £;. Then

0. F1(§) = X titen) - sty (550

t2, 22 at,-z,(&)
Now there exists £ > 0 such that
(@~ 1)iz =, a:;:z; =0 for |to-zs—1t;- 24| > k.

t2-zT2

By continuity of f, given € > 0, we can choose M sufficiently large such
that

|t1|>M, ||t2'$2—t1'.’l71||Skélf($2)—f($1)|<€.
This shows [¢(f), F] can be approximated to within any ¢ > 0 by an
operator of “finite rank,” as required.
Thus we can define ¥ by
‘I’([A7 a]) = [(€, ¥, F)] € KK(C(X)a R)

The image lies in KK (C(X), R), since by construction % is unital and
F unitary, so that (£, ¥|c, F) is a trivial Kasparov (C, R)-module. To
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check that ¥ is a homomorphism, well-defined on the Grothendieck
group K, note that it is obvious from the construction that

¥([A® B, a® f]) = ¥([4, o]) + ¥([B, A]),
so that to finish the proof, it is necessary to show that

T([4, a- B]) = ¥([4, o]) + ¥((4, B])

\1:([,4@3,((1) ?)]):0 in KK.

This is easily done by using the standard homotopies

EHNED
(7 1)=G )G )~ 16 5)

the latter by “rotation.”

For the last part of the proof, suppose X = S°. Then O(X) = R,
which by Corollary 3.2 we may replace by Z, and by the main theorems
of [33] or [35], K;(Cz(R)) = K¢(R). We similarly have

and that

KK(C(S°), R) @ KK(C, R) = Ko(R),

and we want to show that in this case, ¥ reduces to the identity map.
Thus let P be a finitely generated projective R-module. The element
[A, a] of K1(Cz(R)) corresponding to [P] € Ko(R) is by the proof of
(33, Lemma 1.15] given by letting A, = Pforalln € Z, 47 = 0
unless n = m+1, ¢, : Am — Am4i the identity on P. Applying
the construction above, we see ¥([A, a]) corresponds to the shift on
@ P, with '

multiplication by f(1) on summands with n > 0,

W) = {multiplication by f(—1) on summands with n < 0,
for f € C(S?%). When R = C, this is one of the standard realizations of

the usual generator 1 of KK (C(S°), C) & KK(C, C). For general R,
we clearly get the external Kasparov product of [P] € Ko(R) with 1,
i.e., [P] again. So ¥ is indeed the identity map. §
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Now let us further specialize Theorem 3.4, by taking X = S°, R =C,
and identifying K K(C(S®), C) as usual with Z. As before, we also re-
place O(X) by Z. Then an object of Cz(R) is just given by a collection of
finite-dimensional C-vector spaces, indexed by Z. An endomorphism (in
Cz(R)) of such an object is then given by a (two-sided) infinite matrix,
with a block decomposition into finite blocks, having finite bandwidth
with respect to this decomposition, e.g.,

(e )

M
[+ «] %«

\ _—

The theorem then reduces to the following (non-trivial) result of linear
algebra (or, if you prefer, operator theory).

COROLLARY 3.5. Suppose « is a (two-sided) infinite block matrix with
finite blocks, such that a also has an inverse of the same form. Let a4
denote the one-sided infinite truncation of a to its lower right-hand
corner. Then ay is Fredholm (in the sense of having finite-dimensional
kernel and cokernel for its action on (two-sided infinite) vectors with
only finitely many entries), with index independent of the point of
truncation, and a is a product of a block diagonal matrix and elementary
matrices (matrices such as a of the form 1 + (nilpotent)) if and only if
Indat =0.

PROOF: The fact that ay is Fredholm is a consequence of the finite
bandwidth condition, since any vector in the kernel of a4 must be sup-
ported within a fixed distance of the point of truncation, and similarly
all vectors (of finite support) supported sufficiently far away from the
point of truncation are in the image of ay. Furthermore, changing them
point of truncation only changes a4 by something of finite rank, and
thus leaves the index unchanged. The rest of the statement now follows
immediately from Theorem 3.4 and the formula for ¥. §

§3.2. Algebraic KK-theory. As one can see from §3.1 above, there
appears to be a close connection between Kasparov’s K K-theory and
algebraic K-theory. We intend now to make this relationship a little
more precise. To begin with, we would like to explain how Kasparov
theory can be obtained in a way very similar to algebraic K-theory.
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First assume that A and B are C*-algebras with B o-unital. Kas-
parov theory may be defined by first defining a category C(A, B) whose
objects are the Kasparov (A, B)-bimodules (€, ¢, F) with € countably
generated over B, where we only view the F as defined up to pertur-
bation by elements of K(€). In other words, we identify (£, ¢, F) and
(€, ¢, F') if F — F' € K(€). The morphisms in the category are taken
to be unitary isomorphisms, i.e., T € L(€, £') defines a morphism

(€, ¢, F) > (&, ¢, F')

if and only if T is unitary (T*T = 1g,TT* = 1g) of degree 0, T in-
tertwines ¢ and ¢', and T intertwines F' and F' up to a compact, i.e.,
TFT* - F' € K(&").

An object in C(A, B) is called degenerate if there’s a representative

(€, ¢, F) in its class (recall the F is only defined up to compacts) for
which

[Fa ¢(a')] =0, (F2 = 1)¢(a) =0, (F - F*)¢(a) =0
for all @ € A. In such a case, note that
(£°,¢°, F®)=(EQED---, 0D ¢D--- ,FOFD---)

is well-defined.

C(A, B) is a symmetric monoidal category under direct sum, and if
(€, ¢, F) is degenerate,

(€, ¢, F)® (£, ¢°°, F7) 2 (£, ¢%, F),

so that (£, ¢, F) is stably trivial.

We let KK(A, B) = group completion of the isomorphism classes
of elements of C(A, B). This is an abelian group and agrees with Kas-

parov’s definition (see [3]). We could also apply the infinite loop machine
of [49)] and form the spectrum

KK(4, B) ¥ sptc(4, B),

7o(Spt C(A, B)) =group completion of mo(BC(A, B))
=KK(A, B),
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where B denotes the classifying space functor of a category. The spec-
trum we have constructed gives the homology theory associated to K K.

All this now motivates the following construction. We intend to define
similarly an algebraic version of KK, which in the one-variable case
reduces to standard algebraic K-theory. Note that such a construction
(of something called K(A, B)) was given by C. Kassel in [26], though it
is our opinion that Kassel’s construction is not that close to the definition
of KK: it does not (as does Kasparov theory) come from the study of
problems about almost commuting operators, nor does it reduce in the
one-variable case to Quillen’s higher algebraic K-theory (it reduces to
Karoubi-Villamayor theory instead).

We suppose we are given a commutative ground-ring k and two unital
k-algebras, A and B. In standard applications, k will be either Z or
a field, and we will sometimes suppress mention of k. An algebraic
Kasparov (A, B)-bimodule (over k) will be a triple (E, ¢, F) with
E a Z;-graded countably generated projective right B-module, ¢ : A —
Endpg(FE) a unital k-linear ring homomorphism of degree 0, and F ¢
Endp(E) of degree 1 with F2 — 1 and each [F, ¢(a)], a € A, contained
in the ideal Fg(E) C Endg(E) of “finite-rank operators,” i.e., B-linear
maps contained in some End g(P) (as naturally embedded in Endg(E) =
Endp(P @ P')) for some finitely generated projective B-submodule P
of E (depending on a in the second case). Note of course that if E is
itself finitely generated, then there are no restrictions on F.

We define a category C(A, B) as before, whose objects are equivalence
classes of such bimodules, in which we identify (E, ¢, F') with (E, ¢, F")
if F—F' € Fg(E). The morphisms in C are defined by conjugation by B-
module isomorphisms E — E'. As before, this is a symmetric monoidal
category under @, and we get a spectrum

KK(A, B) ¥ sptc(4, B)
with

KK(¥8)(A, B) =mo(KK(4, B))
=Grothendieck group of iso. classes

of Kasparov (A, B)-bimodules.

One fairly trivial example of a Kasparov bimodule, though neverthe-
less useful, and mentioned in [26], occurs when A = M,(B). Then

Ey = B" is a Morita equivalence bimodule between A and B, and along
with E; = 0 and F = 0 it defines an element of K K(A, B). This also
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works the other way around, in fact, between any two Morita-equivalent
rings.

Suppose now that k = A = Z. Then for any Kasparov bimodule
(E, ¢, F), the ¢ is trivial and the only restriction on F is that F2 —1 ¢
FB(E). One can easily see then that we can write our object in the form

(degenerate) @ (P, 0, 0)

with P finitely generated projective. Alternatively, one can stabilize so
that

Ey = E; = B,

and use [26, Proposition 6.1] to deduce that giving F amounts to giving
an invertible element of what is called in [25] LB, whereas we know
that K;(XB) = Ko(B). In either event, using the fact that degenerate
elements die in the Grothendieck group, we deduce that

KK(Z, B) = mo(KK(Z, B)) = Ko(B).

In fact, the whole category C(Z, B) is equivalent to the category of
formal differences of finitely generated projective B-modules, so that

KK(Z, B) ~ K(B),

and we recover ordinary (higher) algebraic K-theory.

Of course, one of the most useful features of Kasparov’s KK is the
product, the construction of which relies on the so-called “Kasparov
technical theorem.” Unfortunately, we have not been able to find an
appropriate analogue of this result in our context, so we are forced to
content ourselves with a fairly simple case. However, we should point
out at least that KK is a covariant functor in the second variable and
a contravariant functor in the first variable, which means in effect that
there is a well-defined product (on either side) between a K K-class and
a homomorphism.

We will show now that an algebraic Kasparov (A, B)-bimodule sets
up maps in algebraic K-theory K,(A) — K,.(B). For this we need to
know that we get a “lax” functor of symmetric monoidal categories

C(Z, A) — C(Z, B).

Given a finitely generated projective A-module P, it’s defined by some
idempotent e = €? in a matrix ring over A. Since we’ve already explained
how to get a Kasparov bimodule from A to M,(A) which induces the
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usual transfer on algebraic K-theory, we may as well replace M,,(A) by
A and assume e € A. Consider an object of C(Z, A), represented by a
Kasparov bimodule (E, ¢, F). Then ¢(e) is an idempotent in Endp(E)
and defines a submodule eE. Since F' almost commutes with ¢(e), it’s
cutdown to eE is well-defined up to elements of F4(eE), as required.
The map we get on objects this way is clearly compatible with direct
sums.

As for morphisms, note that if @ € A conjugates e to f, then ¢(a) is
a B-map from eF to fE, etc. So we get the desired functor and thus a
pairing

KK(A, B) ® K,'(A) — K,(B)

Unfortunately, algebraic KK as we have defined it seems at the mo-
ment to be almost impossible to compute, except in fairly trivial cases.
We shall therefore just say a few words about it and mention some ex-
amples that might indicate how it might come up in some situations.
By the way, note that if A has characteristic p (i.e., p-1 =0 in A), then
there are no unital maps from A into an algebra of characteristic 0 or
some other prime, so that for instance K K(A, Z) = 0. When dealing
with algebras over a field, it seems best to use the version of the theory
with k = the ground field.

Here now is an example of an element of KK (k[t, t~!], k) which one
might think of as an algebraic analogue of a pseudodifferential operator
on S* (think of the algebra of trigonometric polynomials inside C*°(S)).

Define a Kasparov bimodule by letting Ey = E; = k[t, t~!] with the
identity action of k[t, 1] and by letting

o multiplication by + 1 on span (1, t, t%, ...),
multiplication by — 1 on span (t71, ¢72,...).

Of course we have F? = 1, but the more interesting thing is that F,
the analogue of the Hilbert transform, approximately commutes with
the multiplication operators. There is also no way to perturb F' by an
operator of finite rank to make it commute exactly. This should be a
prototype of a kind of algebraic Kasparov module corresponding to a
differential or pseudodifferential operator on an affine variety.

Finally, here’s an example modeled on a construction in [21], that
might be a prototype of a construction useful for studying the algebraic

K-theory of group rings. Suppose a group I' acts on a tree X. Define a
class in KK(k[I'], k) as follows.

Let { E, =free abelian group on the vertices A°,
e

E; =free abelian group on the edges Al.
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Fix an origin z¢ in X and as in [21] let
B: AN {zo} — A!

be defined by B(z) = edge pointing “in” from z to zo. Define F : By —
El by
0 ifz ==z,

F(o:) = {5,,@) if 7 # .

Then F is “almost” an isomorphism. The action of k[I'] on E of course
comes from the action of I' on X, and as in [21], this action almost
commutes with F. Presumably, the Kasparov bimodule one gets this
way could be used in algebraic K-theory the same way Julg and Valette
use its completion for studying topological K-theory of the group C*-
algebra.
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