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SOME RESULTS ON COHOMOLOGY WITH BOREL COCHAINS,
WITH APPLICATIONS TO GROUP ACTIONS ON OPERATOR ALGEBRAS

Jonathan Rosenberg *)

0. INTRODUCTION

This paper is an outgrowth of joint work with Richard Herman [5] and lain
Raeburn [13] In both of these projects, questions concerning group actions on operator
algebras naturally led to a study of obstruction classes in H2(G,U(A)), where U(A) is the
(suitably topologized) unitary group of an abelian operator algebra A. The appropriate
cohomology theory here is the "Borel cochain" theory of C.C.Moore, as developed and
systematized in [8). In case A is a von Neumann algebra, U(A) is essentially what Moore
calls U(X,T) (X here is some standard measure space), and machinery for computing the
relevant cohomology groups is developed and applied in [8] and [9].

We were interested, however, in problems concerning separable C*-algebras. In
this case, U(A) becomes C(X,T), the continuous functions into the circle group T on a
second-countable topological space X. The study of H™G,C(X,T)) now becomes more a
matter of topology than of measure theory, and techniques different from those of [8]
are called for. The purpose of this paper is to compute the Moore cohomology groups in
certain cases relevant to operator algebraists, and then to translate some of these
calculations back into statements about operator algebras.

I wish to thank my coworkers Richard Herman and Iain Raeburn for their help in
getting me started on the work described here. It will be obvious that my results depend
heavily on the machines developed in [8] and [17]. Finally, I wish to thank the Mathema-

tical Sciences Research Institute for its congenial and stimulating environment.

1. NOTATION AND REVIEW OF KNOWN FACTS

In this section we shall establish notation and review some known facts about
"cohomology with Borel cochains" and its relation to problems concerning group actions

on C*-algebras. If G is a second-countable locally compact group and A a Polish G-
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-module (that Iis, a metrizable topological G-module complete in its two-sided
uniformity — see [8], §2), then Hn(G,A) (n > 0) will always denote the cohomology groups
defined by C.C.Moore in [8]. As noted there, these are the cohomology groups of either

of the complexes {Cgorel(G’A)’ 8} or {gn(G,A), 8}, where

Cgorel(G’A) = {Borel functions G" — A},

§ is the usual coboundary operator, and gn(G,A) denotes the quotient of Cgcrel(G,A) by
the equivalence relation v, where fl J‘f2 if f) = f2 almost everywhere (with respect to
Haar measure on G").

We shall sometimes also refer to the "continuous cohomology" groups
Hgont(G,A), in other words, the cohomology groups of the complex {Czont(G,A),ﬁ} of
continuous cochains. Continuous cohomology does not in general have good functorial
properties, because of the fact that the functor A HCZont(G’A) is only left exact.
Thus a short exact sequence of Polish G-modules need not give a long exact sequence in
continuous cohomology, unless one considers only short exact sequences which are
topologically split (see [4] for a systematic development). Nevertheless, continuous
cohomology is sometimes more computable than Borel cochain cohomology. This makes
it appropriate to study the relationship between the two theories. One always has
Hn(G’A) - HZont

HZ(G,A) classifies topological group extensions of G by A ([8], Theorem 10), whereas

H(Z:ont(G’A) classifies extensions which split topologically.

(G,A) for n<1 (this is essentially [8], Theorem 3 and corollaries);

If X is a paracompact topological space and G a topological group, H”(x,g) will
denote the sheaf cohomology, which may be computed by the Cech process, of X with
coefficients in the sheaf G of germs of continuous functions with values in G. This
makes sense for all n if G is abelian, and only for n =0 or 1 if G is non-commutative.
Recall that via the correspondence between bundles and systems of transition functions,
HJ(X,Q) classifies equivalence classes of locally trivial principal G-bundles over X. If G
is discrete, G is the constant sheaf G and we have usual Cech cohomology H"(X,G).

Now suppose A is a separable C*-algebra, not necessarily unital. We denote by
M(A) the multiplier algebra of A (see [11], § 3.12), which is separable and metrizable in

the strict topology defined by the semi-norms
x = [|xal||+ ||ax]| , a€A.

Aut(A) will denote the group of x-automorphisms of Aj; this is a Polish group in the
topology of pointwise convergence. Inn(A) denotes the inner automorphisms, i.e., those

of the form
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a + (Adu)a) = vau®,
where u € U(M(A)), the unitary group of M(A). Note that the map
Ad: UM(A)) —Aut(d)

is a continuous homomorphism for the appropriate Polish topologies, with image Inn(A)

and kernel
Z(UM(A))) = U(Z(M(A))) = C(Prim A,T)

(by the Dauns-Hofmann Theorem, [11], Corollary 4.4.8). Here T is the circle group and
C(Prim A,T) is the group of continuous functions from the primitive ideal space of A (or
what is the same, its maximal Hausdorff quotient X) into T. The strict topology on
U(M(A)) restricts to the compact-open topology on C(X,T). In general, Inn(A) is not

closed in Aut(A). However, the following results from [13] will be useful.

THEOREM 1.1. ((13], §0). a) If A is any separable C*-algebra, Inn(A) is a Borel

subset of Aut(A), and any continuous homomorphism or crossed homomorphism
$: G —Aut(A)

from a Polish group G which takes its values in Inn(A) is automatically continuous for
the Polish topology on Inn(A) coming from its identification with the quotient
U(M(A))/C(Prim A,T).

b) If X is a second-countable locally compact space with HZ(X, Z) countable (in
particular, if X is compact or has a compact deformation retract) and if A is a separa-
ble continuous-trace algebra with spectrum X, then Inn(A) is closed in Aut(A). Further-
more, Inn(A) is open in the subgroup AUTCO(X)A of automorphisms of A that leave X
pointwise fixed. =

Now let G be a second-countable locally compact group, A a separable C*-al-
gebra. An action of G on A (sometimes called a C* -dynamical system or locally com-
pact automorphism group) means a continuous homomorphism a: G —Aut{A), where
Aut(A) as usual has the topology of pointwise convergence. From such an action one can

construct a crossed product A x G, and when G is abelian, a dual action of &. The action
o

a is said to be inner or unitary if there is a (continuous) homomorphism u: G —

— U(M(A)) such that o = Ad ug for all g € G. In this case A x G = A®C*(G) (the crossed
o

product for the trivial action of G), and the isomorphism is equivariant for the dual

action of G in case G is abelian. More generally, two actions g and g of G are said
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to be exterior equivalent if o B_l = Adu_ for some l-cocycle u: G = UM(A)) (with
respect to the action of G on A given by B), or equivalently if @ and B may be realized
as opposite "corners" of an action of G on MZ(A) ((11], Lemma 8.11.2). Thus a is unitary
if and only if o is exterior equivalent to the trivial action. A weaker equivalence
relation, which still implies isomorphism of A >& G with A>é G (equivariant for G when G
is abelian), is exterior equivalence composed with conjugacy, i.e., exterior equivalence
of & with g = YBgY_l, for some Y € Aut A. Further refinements of this will be studied in
§ 4 below.

REMARK 1.2. Given an action a of G on A, there are two obstructions to its
being unitary. First of all, a(G) must be contained in Inn(A), and in particular must act
trivially on A. (Note that if A has continuous trace and HZ(A Z) is countable, then this
is automatic by Theorem I.l(b) if G is connected, once OL(G)CAutC A)A .} Then by
Theorem 1.1(a), & may be viewed as a homomorphism into U(M(A))/C(Prlm A,T), and

one must be able to lift this homomorphism to some

u: G = UM(A)).
By the cohomology exact sequence for

1 = C(Prim A,T) = U(M(A)) — UM(A))/C(Prim A,T) = 1,

which is valid as far as HZ(G,C(Prim A,T)) despite non-commutativity of U(M(A)), the
obstruction to this is precisely a class in HZ(G,C(Prim A,T)) (where the G-module has
trivial G-action). Similarly, given two actions o and 8 of G on A, there are two
obstructions to their being exterior equivalent. First, we must have a B_gl € Inn(A) for
all ge G, and secondly, once this is the case, there is an additional obstruction in
HZ(G,C(Prim A,T)) (this time the G-action on the module is non-trivial and comes from
the action of either of a or B on Prim A). In the special case A = K, the algebra of
compact operators on a separable infinite-dimensional Hilbert space, every autoror-
phism of A is inner, and an action a of G on A just amounts to a projective unitary
representation of G. In this case the obstruction class of a in HZ(G,T) is the usual
Mackey obstruction to lifting a projective representation to an ordinary representation,
and the obstruction to exterior equivalence of o and B is the difference between their

Mackey obstructions. u

Remark 1.2 was implicitly used in [5], where we noted that if o and B are two
actions of a connected group G on a separable C*-algebra A, all of whose derivations
are inner (this applies both to simple C*-algebras and to continuous-trace algebras),

such that Hug - BgH <2 for all g in a neighborhood of the identity element e in G, then
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agB; € Inn(A) for all g and the obstruction to exterior equivalence of a and B lies in

HZ(G,C(Prim A,T)). This is somewhat relevant to certain problems of stability in
quantum field theory and quantum statistical mechanics; for a discussion of physical
implications, see the references quoted in [5].

A final notion we shall need is that of a locally unitary group action. Given a
type I C*-algebra A, an action o of G on A is said to be pointwise unitary if for each
T e A there exists a strongly continuous unitary representation u of G on H such that

ﬂ(ag(a)) = ugﬂ(a)u"g forallge G, oA .

Equivalently, ¢ fixes A pointwise, and all Mackey obstructions in HZ(G,T) vanish. Then ¢
is said to be locally unitary if there is a covering {Ui} of A by open sets (locally closed
sets will also do if their interiors cover A) and if the restrictions of o to the correspond-
ing ideals (or subquotients) of A are unitary. Locally unitary actions were studied in
great detail in [12] (using a slightly stronger definition: the implementing map u;

: G = UM(A. )) where A, Is the subquotient of A with spectrum U, was supposed to
come from a map G — M(A) This was never used in an essential way, and anyway we
shall only be interested in the case where A is separable and A Hausdorff, in which case
the two definitions are equivalent. The reason is that then we may refine our original
covering to a covering by compact, hence closed sets, so that the A s are all quotients
of A. Then the natural maps M(A) — M(A. ) are surjective ([11], Proposmon 3.12.10)
continuous maps of Fréchet spaces, and so have continuous sections by a selection
theorem of E.Michael ([6], Corollary 7.3)).

2. COHOMOLOGY WITH COEFFICIENTS IN A TRIVIAL MODULE
AND OBSTRUCTIONS TO AN ACTION BEING UNITARY

The elegant description of locally unitary group actions given in [12] makes it
natural to ask when a pointwise unitary action is locally unitary. We shall give a
substantial improvement of [12], Proposition 1.1, showing that this is automatic under
very mild conditions. The tool needed is a generalization of Theorem 2.6 of [5], which in
view of Example 1.2 of [12] is best possible if G is abelian.

THEOREM 2.1. Let X be a second-countable locally compact space and let G be
a second-countable locally compact group with HZ(G,T) Hausdorff and with the
abelianization G ab = G/[G,G] compactly generated. (It suffices, but is not necessary,
for G to satisfy one of the following: a) G is abellan and compactly generated, or
b) G =[G,G), or ©) G ab ¢ompactly generated and H (G T) countable, or d) G a connect-
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-ed, simply connected Lie group.) Let C(X,T) be given the compact-open topology and
the trivial action of G, and let [0]le H (G C(X,T)) be pointwise trivial. (In other words,
for each x e X, we assume that (e [a]=0 in H (G ,T), where e, :C(X,T) =T is
evaluation at x.) Then [0]is locally trlwal, i.e., there is an open covermg {v. } of X such
that the image of [a]is zero in each H (G,C(Vi,T)).

PROOF. Let a: GxG — C(X,T) be a Borel 2-cocycle representing the class [a].

Proceeding as in the proof of [5], Theorem 2.6, we may view @ as a continuous map
i e X > BAGT) = cG,1)/Hom(G,T).

Now a priori, fa is contmuous (using [8], Proposition 6) only for the relative topology on
B (G T) as a subset of C (G ,T), but this coincides with the quotient topology if H (G T)

is Hausdorff. So to prove the theorem, it is enough to show that the quotient map
q:clG,1) = cl(G,T)/Hom(G,T)

is locally trivial (topologically), for given U open in X and sufficiently small, it will fol-
low that f |U can be lifted to a continuous mapU — C1 G,T) which will provide (for
reasons we wxll discuss below) an element of C 1(G,c(U,T)) of which a|U is the cobound-
ary. By the Palais local cross-section theorem (101, §4.1), local triviality of q is auto-
matic provided Hom(G,T) is a Lie group. But Hom(G,T) = Hom(Gab,T) is just the Pontry-
agin dual of G_;, which will be a Lie group if and only if G_ is compactly generated.
There is a point still to be settled, Wthh is to see why a contlnuous map
Y:U—C (G T) with coboundary f |U e C(U,C %G ,T)) gives an element of C (G Cc(,1)
with coboundary a|U e C (G,C(U,T)). (There is no obvious reason why C"(G,C(U,T)) and
c(u, Cn(G T)) should be isomorphic, though the first includes in the second.) The point is
that by [8], {CBor l(G 9} and {C(G, -)} give the same cohomology groups, so we may
represent y by a Borel function ¢: G xU —T with §(y) = a|U (as a Borel function on
G xG xU) everywhere, not just almost everywhere. The problem is then to show that if
X, = x in U, then ug,x,)) — (g,x) for all g. By definition of the topology of C(U,C LG , T,
we know that y( ,xn) — {f,x) in measure (as functions on G). Furthermore, since

8(y) = o|U is a Borel function from G xG to C(U,T), we have for g,,g, €G,

d(d))(gl,gz,xn) =k 5(¢)(g1’g2’)‘)’
1€y

() g o g, UG B, = g XU e )

Now if there is a g € G for which Ug,x_) 7> ig,x), we may pass to a subsequence and
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assume [¢(g,xn) - (g,x)| > >0 for all-n. By [8], Proposition 6, however, after passage
to a further subsequence there is a null set N in G such that \p(gl,xn) —np(gl,x) for
g, ¢ N. Since Vg% )+ Y(g,x), it follows from (x) that also ¢(ggl,xn)++q)(ggl,x) for
8 ¢ N. Since (G\N)Ng(G\N) £ @, this is a contradiction, and so Y has the necessary
continuity.

Finally, we comment on sufficiency of condmons (a) - (d). If G is abelian,
H (G T) is Hausdorff by [9], Theorem 7. If G =[G ,G), H (G T) is Hausdorff by [9],
Theorem 13. If H (G T) is countable, it is automatically Hausdorff by [9], Proposition 6.
And if G is a connected, simply connected Lie group, HZ(G,T) is a (Hausdorff) vector

group by [7], Theorem A and subsequent remarks. B

COROLLARY 2.2. Let G be as in Theorem 2.l. Then any pointwise unitary ac-

tion o of G on a separable continuous-trace algebra A is automatically locally unitary.

PROOF. Since A is locally compact and the problem is local, we may assume
without loss of generality that A is compact. Then HZ(A,Z) is countable and Inn(A) is
open in AUtCO(R)A by Theorem L.1; in fact

2
Aute (g)A1nnA GH K,z

topologically by [12], Corollary 3.12 together with [13], §0. Since o is pointwise unitary,
in particular q(G)gAutC (A)A’ and by passage to the quotient we get a continuous map
o

2:G — HAA, 2.

This map must factor through G ab’ which by assumption is compactly generated, so
since H (A Z) is countable and discrete, the image of g is finitely generated. Choose a
finite set of generators for o(G) and an open covering {Ui} of A which simultaneously
trivializes all these cocycles. (Just choose a covering for each generator and take
appropriate intersections.) Then g, is trivial over each U, i e, o takes G into Inn(A [U )
for each i. By Remark 1.2, the only obstruction to g bemg unitary over each U is a
class [a|U Jin H (G C(U ,T)), and this class is pointwise trivial since ¢ was assumed

pointwise unitary. The conclusxon now follows from Theorem 2.1. N

The most interesting case of the above occurs when G is abelian and compactly
generated in which case the above proof suggests a link between the Moore cohomology
group H (G C(X,T)) and the Phillips-Raeburn classification of locally umtary G-actions
on continuous-trace algebras with spectrum X in terms of locally trivial G-bundles. The

key to a more precise analysis is the appearance in the proof of the quotient map q. The
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significance of this may be seen in the following results, due essentially to D.Wigner,

which will also be used in § 3 below.

LEMMA 2.3. Let (Y,u) be a standard measure space without atoms and let A be
a Polish group. Then U(Y,A) as defined on p.5 of [8], that is, the set of equivalence
classes (modulo agreement p-a.e.) of A-valued Borel functions on 'Y, with the topology

of convergence in measure, is contractible.

PROOF. We may assume Y is the unit interval [0,1] and p is Lebesgue measure.

Then as pointed out on pp.86-87 of [17],

£(x) if x> 1,
h (£)x) =
e, the identity of A, if x<t,
gives an explicit homotopy from the identity map hy on U([0,1],A) to the map h|
collapsing U({0,1],A) to a point. n

PROPOSITION 2.4. a) If G is a second-countable locally compact abelian group

which is compactly generated and non-discrete, then
q: clG,m) — cl(G,T)/Hom(G,T) ~ BXG,T)

is a universal G-bundle, and §2(G,T) is a classifying space for G.

b) Let G be any Lie group with countably many components, or more generally,
any second-countable Banach Lie group (e.g., the unitary group of a separable unital
C* -algebra). Then

u(0,1),G) — U(0,1},G)/G

is a universal G-bundle and U([0,1],G)/G is a classifying space for G.

c) If A is a locally arcwise connected Polish abelian group, then so is BA =
- U([0,1},A)/A, and BA is a weak classifying space for A. (This means Hl(X,A) ~ [X,BA]
for X a Cw-complex, where [X,BA] denotes homotopy classes of maps from X into BA.

Equivalently, BA has the weak homotopy type of a classifying space for A.)

PROOF. a) Since G is non-discrete, G is non-atomic with respect to Haar
measure. But as a space QI(G,T) is the same as U(G,T), which is contractible by Lemma
2.3. The map q is a locally trivial principal G-bundle by [10], §#.1, and of course
QZ(G,T) is metrizable, hence paracompact. Thus all conditions for a universal G-bundle
are satisfied ([3], Theorem 7.5).
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b) works exactly the same way, except that if G is not a Lie group, local
triviality of the bundle can still be proved by [6], Corollary 7.3. (In case G is the unitary
group of a unital separable C*-algebra, G is locally isomorphic to the real Banach space
of skew-adjoint elements, via the exponential map.)

c) is similar except that the hypothesis is not strong enough to guarantee that
the quotient map to BA is locally trivial. It is, however, a Serre fibration by [17],
Proposition 3. As is well known, this is sufficient to make BA a weak classifying space,

but for completeness we give the argument here. Let EA = U([0,1},A). Then
0—~A —EA —BA =0

is a short exact sequence of Polish abelian groups. If X is a CW-complex (it's enough to

consider the case of a finite complex), we obtain an exact sequence

of sheaves over X. The map EA — BA is surjective as a map of sheaves since EA — BA
is a Serre fibration so that a continuous map X —BA can be lifted (by the HLP,
homotopy lifting property) in a neighborhood of any point in X. Thus we have a long

exact sequence in sheaf cohomology
0 0 1 1

Here Hl(X,E_A) = 0 since EA is contractible (either by the theory of [3] or else by
Lemma 4% of [2]), so HI(X,é) is a quotient of

HO(X,BA) = C(X,BA).

But by contractibility of EA, a continuous map X — BA with a lifting X ~— EA must be
null-homotopic, and conversely, any nuil-homotopic map X - BA has a lifting by the
HLP. Thus

HL(X,A) = C(X,BA)/ {null-homotopic maps} = [X,BAL n

Parts (b) and (c) of the above proposition were only included here for
completeness, since they logically belong with Lemma 2.3. However, part (a) can be

used immediately to prove the following.

THEOREM 2.5. Let G be a connected, second-countable, locally compact abelian
group, and let X be a second-countable locally compact space with HZ(X, Z) countable

(for instance, a compact metric space). Let A be any separable continuous-trace alge-
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bra with spectrum X and a: G — Aut A any action of G on A inducing the trivial

ColX)
action on X. Then:

a) aG) consists of inner automorphisms, and o is locally unitary if and only if it
is pointwise unitary (which is automatic if G is compact),

b) the pointwise trivial part of HZ(G,C(X,T)) is naturally isomorphic to Hl(X,Q),
and

c) when ¢ is pointwise unitary, the obstruction in HZ(G C(X,T)) to o being

unitary may be identified under the isomorphism of (b) to the Phillips-Raeburn obstruc-
tion (o) e H Lx, G).

PROOF. (a) Since o{G) is a connected subgroup of Au‘cC (X) , it must lie in
Inn(A) by Theorem 1.1 (b). Thus an obstruction [o] € H (G C(X,T)) is defined by Remark

1.2, and this is the only obstruction to o being unitary. We know a will be pointwise
unitary if and only if the Mackey obstructions (e W[ol e H (G , T, x € X all vanish. Thus
it is useful to note that by [7], Proposition 2.1 and Theorem 2.1, H (G T)=0if G is
compact, since then G is an inverse limit of tori. If a is pointwise unitary, it is then
focally unitary by Corollary 2.2.

(b) The proof of Theorem 2.1 shows that if o is pointwise unitary, the

“obstruction [¢] may be identified with the obstruction to finding a lifting in the diagram

i
,C'GT)

X ——2 L B%G,T).

By Proposmon 2.4(a), this is the same as determining the homotopy class of f in
[X BE) = H (X G) In this way one obtains an injection from the pointwise trivial part of
H (G,C(X,T)) into H (X,Q), and the map is obviously surjective since any continuous
f:X ——+§2(G,T) gives rise to a pointwise trivial element of ZZ(G,C(X,T)). (This part of
the argument doesn't use connectedness of G except to imply G is non-discrete.)

(c) Note by the structure theory of locally compact abelian groups that if K is
the maximal compact subgroup of G, then G =K xR" for some n, so that actually
H1(X,6) = HY(X,K). Thus it is only the compact part of G that really matters, although

we shall not use this.
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Let's compere [a] € HZ(G,C(X,T)) with z(a) € HI(X,Q). The latter is computed by

covering X by sets Xj over which o is unitary, so that one has maps
v G — UMA |xj))

implementing a locally. On the overlap sets Xjk = Xjﬂ X v} and vk must implement the
same automorphism group, hence they differ by some

JK e Hom(G,C(Xik,T)) P c(xjk,é),

Then {vjk} is a Cech cocycle in ZI(X,Q) whose cohomology class is the obstruction g{a)
to patching the Vs to a global homomorphism G — U(M(A)). But the Xj's also trivialize
[al € HZ(G,C(X,T)), which under the isomorphism of (b) goes to the "patching data" for
local liftings X. —»gl(G,T) of f . This is clearly the same cohomology class obtained
from the {vjk}. : ¢ "

3. CONTINUOUS VS. BOREL COHOMOLOGY AND INDUCTION

In this section we first show that H(G,A) often coincides with Hgont(G,A) if G
is a vector group. Then we discuss "continuous induction” and the expected form of a
"Shapiro's Lemma" for continuously induced modules. This is applied to the computation
of the cohomology groups of certain R-modules that sometimes arise in applications.
We also mention some results on cohomology of modules for compact Lie groups,
complementing some results in [5] and [13], and explain how to generalize to general Lie
groups.

Our first result is an interesting curiosity that is perhaps known to topologists,
but which we haven't seen in the literature. The hypothesis on A could be weakened

provided BA is an infinite loop space.

PROPOSITION 3.1. Let X be a CW complex, A a locally arcwise connected Po-

lish abelian group. Then for q> 1, there is a natural isomorphism
H(X,A) = [X,B9A],

where the iterated (weak) classifying spaces BA, B%A = B(BA), ...,BIA = B 1a) may
be constructed to satisfy the same conditions as A by the procedure of Proposition
2.4 (c). In particular, Hq(X,Q) = 0 for all q > 1 provided either X or A is contractible.

PROOF. Let us show, using Proposition 2.4 (c), that for all g> 1,
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HYx,A) = HI L(x,BA).

Since we already know that Hl(X,A_) = [X,BA] and that BA can be constructed to have
all the same properties as A, the result then follows by iteration. But recall from the

proof of Proposition 2.4 (c) that we have a short exact sequence of sheaves over X
0~+A —EA —BA =0

Furthermore, since EA is contractible, the sheaf EA is acyclic by [2], Lemma 4. So we

get the result immediately from the long exact sequence
0= HI"l(x,EA) — HI L(x,BA) = HI(X,A) — HUX,EA) = 0. n

PROPOSITION 3.2. Suppose G is a vector group (i.e., R" for some n) and A is a
Polish G-module with "property F" of [17]. (It suffices for A to be locally arcwise

* * . . .
connected.) Then the natural map Ccont(G’A) — CBorel(G’A) induces isomorphisms

n n
HE i (GoA) = HY(G,A)

for all n. In particular, every extension of G by A splits topologically.

PROOF. By [17], Theorem 2, there is a natural spectral sequence converging to
H*(G,A) with
P9 . 49 P
BT % Hipeplls o
and

. eP0 _ ~p p+1,0 _ ~p+l
dj s E)7 = CC o ((GA) — E] = Clont(GrA)

the usual coboundary operator §. (Caution to the reader: there is a misprint on p.91, 1.6
of [17] p and q are reversed there.) Since G, hence GPis contractible, we have ET’q =0
for g> 0 by Proposition 3.1. Thus the spectral sequence degenerates at E2 and gives the
desired result. Of course, the statement about topological splitting of extensions, which
may be read off from the equality Hzont(G’A) = HZ(G,A), also follows directly from the
HLP built into the definition of property F, except for the problem that the definitio.n

deals only with abelian extensions.

Now if G is a locally compact group, among the most commonly encountered G-
-modules are modules induced from a closed subgroup. When the induction process is
the "Borel induction" of [8], p.14, the cohomology of the induced module is given by
Moore's version of "Shapiro's Lemma", [8], Theorem 6. Often, however, one is interested

in continuous induction, so we outline here the analogous theory.
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Suppose H is a closed subgroup of a second-countable locally compact group G,

and A is a Polish G-module. We define the continuously induced G-module to be
-1
Indy , gA = {f € C(G,A) [ f(gh) = h™"+f(g) for all h e H},

equipped with the topology of uniform convergence on compacta and with the action of
G by left translation. When G/H is discrete, IndH+GA may be identified with Moore's
IE(A) (which is defined similarly using measurable functions in place of continuous func-
tions). Usually, however, the two will differ. For instance, if A =T with trivial H-ac-
tion, Ig(T) is the unitary group (with the weak topology) of the von Neumann algebra
L™(G/H), whereas Indy , (T) = C(G/H,T) = UM(Co(G/H))), equipped with the strict
topology. Thus continuous induction is related to problems in C*-algebra theory in the
same way Borel induction is related to problems in von Neumann algebra theory.

We would like to prove a variant of Shapiro's Lemma for continuous induction;
Hagh) H™(H,A). The problem is that
the functor A IndH1~GA (from Polish H-modules to Polish G-modules) is left exact

however, it is not true in general that Hn(G,Ind

but not usually right exact. For in the simplest case where
0 A =B —-C =0

is a short exact sequence of Polish abelian groups with trivial H-action, exactness of
IndH&G would mean that every continuous map G/H — C can be lifted to a continuous
map G/H — B. This will rarely be the case, even if B — C is a fibration, since G/H may
not be contractible.

The correct formalism is suggested by homological algebra. If A, B, and C are
abelian categories with enough injectives and T: A ~ B, S:B — C are left-exact
functors, recall that one can define right-derived functors R™M:4 — B, R"'S:B — C,
and R™(SeT): A — C. Under a mild technical condition, one has a "composition of

functors" spectral sequence

RUSRIT(AN=>RP IS0 T)(A),

and in fact most of the familiar spectral sequences of homological algebra are of this
type. Here is a standard example: the Hochschild-Serre spectral sequence in group
cohomology. Suppose A<qT are abstract groups, and take ‘

A = category of I'-modules,

B = category of T'/A-modules,

C = category of abelian groups,



314

T:A — B the functor A = A A, "fixed points under A",

T/A

S:B — C the functor B B , "fixed points under T/A".

Then SoT:A+ AL, R"T =H™a, ), R"S=H™T/A,_ ), and the spectral

sequence is the usual one
HP(r/a,HY(A,AN=SHPHY(T,A).

In our situation we do not have abelian categories with enough injectives, but
for G a Lie group, A the quasi-abelian S-category of Polish H-modules with property F,
B the category of Polish G-modules with property F, C the category of abelian groups,
T = Ind

sort

HA G and S: A — AG, the same formalism suggests a spectral sequence of the

HP(G,R YInd,, , ~A)=>HP"9(H,A),

H4+G

which should enable one to compute H*(G,IndI_MGA) in terms of H*(H,A), provided one
can obtain enough information about the "derived functors" of IndH+G' (Compare the
situation for Zuckerman's "cohomological induction functor" in [15], Theorem 6.2.14.)
For lack of compelling applications, we refrain from trying to work out the
theory in this generality, and content ourselves with a few special cases. First we use
Proposition 3.2 to prove "Shapiro's Lemma" in the one case one would expect it in the

usual form.

PROPOSITION 3.3. Let A be a locally arcwise connected Polish abelian group,
G a vector group. Then Hn(G,IndHGA) = 0 for n> 0. (Since, clearly, HO(G,IndHGA) ~
=~ {constant functions G — A} = A, this is the same as saying Hn(G,Ind1 1~GA) ~ H™(1,A)
for all n.)

PROOF. Observe that if A is locally arcwise connected and Ay is the path
component of 0 in A, then Ag is open in A and C(G,Ap) = IndHGAO is open in IndMGA.
Since G is contractible, every continuous function G — Ay is homotopic to a constant
function, and so C(G,A) is path connected. Thus IndHGA is locally arcwise connected
and so has property F by [17], Proposition 3. Applying Proposition 3.2, we obtain
Hn(G,IndHGA) = HZont(G’IndHGA)' The vanishing is now implicit in [17] and much
easier than Theorem & in [8): given f:G" --»IndHGF\ a continuous n-cocycle, we

define a continuous (n - 1)-cochain with values in Ind A by

ﬂ -1 a
hig s oo )X = £g )-8y 8o g g7,
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and a direct calculation with the cocycle identity shows

(8h)gys -+ 8,) = £1(g)s -+ 8 u

We specialize now to the case H=2, G =R, A a Polish abelian group with
trivial H-action, so that Ind ,, pA is just C(R/ZA). Now if A has property F and we

have a short exct sequence
0 A -»B =-C =0

of Polish groups, this is a Serre fibration and we obtain the long exact homotopy

sequence
.= (B) =7 (C) = mo(A) = mo(B) — mp(C) — 0.

This means that we should regardﬂno(A) = AlAg as RllndzﬂzAr since this is what we

must add on the right to continue the exact sequence

0 — Ind A — Ind B — Ind

ZiR Z4iR z+R“

In other words, we should expect a degenerate spectral sequence
HPR,RInd ; , p A)=H" (Z,A),

; p;,0 _ P
with E2 =H (R’IndZ‘}R

establish this by mimicing the usual process of resolving A, applying Indzﬂz, and

A), Eg’l = HPR,A/A ), and Eg’q = 0 for g> 1. We proceed to

resolving again to get a double complex. Actually carrying out the process and
indentifying explicitly the modules obtained leads to the following lemma. We make the
technical hypothesis that the path component of 0 in A should be closed, since it is not

clear if this is always the case in a Polish group.

LEMMA 3.4. Let A be a Polish abelian group, viewed as a Z-module with trivial
action. Assume the path component Ao of 0 in A is closed, hence Polish in the relative
topology. Then the following sequence of Polish R-modules is exact (topologically)

B
0 _’IndZ+RA _)IndlfRA — Inle;Ao - 0,
where B is given by (Bf)s) = £(s + 1) - £(s), for f € C(R,A).

PROOF. Identifying periodic functions R — A with a subset of the continuous

functions gives an obvious embedding of Ind A as a closed submodule of Indl 1~RA'

Z+R
Furthermore, the indicated formula for B gives an R-module map from Indl +RA to it-



316

self whose kernel consists precisely of functions f: R — A satisfying f(s + 1) = {(s) for
all s, i.e., fe C(R/Z,A) = Ind z+RA+ Thus it's enough to show that the image of B is
precisely Indl TRAO'

First of all note that if f: R = A is continuous, its image must lie in a single
path-component of A; hence the difference of two values of f lies in Ag. Thus B maps
into IndHRAO. To show B maps onto this module, choose any continuous ¢ : R = Ag.
We shall construct a continuous f : R = A with ¢ = B(f). To do this, we begin by setting
£(0) = 0, £(1) = ¢(0). Since ¢(0) € Ay, there exists a continuous path from £(0) to f(1);
choose one and let it define f(s) for 0<s< 1. It's then easy to see that the functional
equation

(s + 1) - £(s) = ¢(s)

has a unique continuous solution defined for all real s and extending f as already defined
on [0,1]. This shows B maps onto Ind, 4 Aoy and of course B is continuous. Since all
groups involved are Polish, the open mapping theorem says 8 is open, i.e., the exact

sequence is topological.

THEOREM 3.5. Let A be a Polish abelian group viewed as a Z-module with

trivial action, and let A, be the path-component of the identity in A. There are natural

isomorphisms
A, ifn=0,
H™(R,Ind Z+RA) ® { Ao ifn=landAgis closed in A,
0, ifn>1and AgisopeninA .

PROOF. Consider the long exact cohomology sequence coming from the short

l 1
exact sequence of Lemma 3.4. Recall that H (R’IndHRA) = Hcont(R’IndHRA) = 0 (by
Proposition 3.3). Thus we have the exact sequence
0 By 1
0 - H'(R,Ind A) - A =" Ag — H (R,Ind A) — 0.

Z4R ZAR

It is clear that HO(R,Ind Z+RA) — A is an isomorphism and that B, = 0, which gives us
the result H'(R,Ind ,, 1 A) = A (when A is closed in A).

When also Ag is open in A, then A and Ay are locally path-connected and we
may apply Proposition 3.3 to conclude that all higher cohomology groups of ]ndMRA
and of IndHRAo vanish. Plugging this back into the exact cohomology sequence coming

from Lemma 3.4, we conclude that H"(R,Ind Z+RA) =0forn>2. |

COROLLARY 3.6. Let A be a locally path-connected Polish abelian group, with

A the path-component of the identity in A. Then there are natural isomorphisms
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A ifn=0,
Hn(T,IndMTA) = {A/Ay ifn=2,46,...,
0 if n odd.

PROOF. If we view Ind“q.A as the R-module Ind Z‘PRA’ then Z acts trivially

and so

Ind A ifg=0orl,

14T
0 if q> 1.

HY(Z,Ind A) =

Z4R

Since these groups are always Hausdorff, we may apply the spectral sequence of [8],

Theorem 9, p.29. We obtain a spectral sequence with Ez—terms

p o
P _ H,(T’Ind1+TA) ifg=0or 1,
2 0 W g

converging to HPI(R, Ind Z+RA)' The only differential which is possibly nonzero is
. ebl p+2,0
d2 g E2 = E2 s

But by Theorem 3.5, we must have E?;O =iy El:;q =0 for p>1 or p=1, q= 1. Finally,

we must have an exact sequence

1,0

0 b0 wa, -2 w0

But

I

1
H'(T,Ind -

A) =H (T,Ind) y7A) = 0,

14T

S0 E:O = 0 and E%l = Ao. This gives the exact sequence

12 d2
1 = A __»Eg,o

0 Ay = F)

—}O’

Bl ol ,
so EZ, =H (‘l',Ind1 H.A) = A/A. Since
2,1

2 hEy

—-—rE;’O

must be an isomorphism to give Ei:l = 0 and Ef:o = 0, we have
4,0

4 L2l
Ey" =H'T,Ind| yqA) =E3" = A/A.

Continuing this way by induction we obtain the result. ]



318

REMARK 3.7. Recall that if
0—A —>B—=>C 0

is a Serre fibration, then the sequence

T (A) =T (B) =1 (C) = WG(A) = mg(B) — WG(C) =0

is exact. This suggests that for A locally path connected, one should have

1

R Ind B = A/Ao (: "Q(A)),

14T
R%Ind) 1A = 0 for g> 1.

Then one should have the "composition of functors" spectral sequence

HP(T,qundl +TA)=}+1P"q(1,/5\),

0

and once again one could obtain the same result as before for Eg’ = HP(T,Ind A),

14T
knowing that it must cancel against

ED! - HP(T,A/A).
However, A/A, is discrete and carries trivial T-action, so by [17], Theorem 4,
HP(T,A/A ) = HEOP(BT,A/AO),

which gives A/Aq for p = 2,4, ... by the universal coefficient theorem. (H:op(BT’ Z)is a

polynomial ring on a single generator in degree 2.) "

REMARK 3.8. One can also compute Hl(R,Indz,rRA) directly from the
definition, using the fact ([8], Theorem 3) that any Borel l-cocycle is automatically
continuous. An element of ZI(R,IndZ,rRA) may be viewed as a function
¢:RxR/Z —A which is (jointly) continuous and satisfies the cocycle identity
&s + t,r) = &s,r) + §t,r - 5). From this it follows that ®0,r) = 0 for all r € R/ Z and that
®n,r) is independent of r € R/ Z for fixed n €Z. The isomorphism HI(R,IndZ+RA) Ao
of Theorem 3.5 is then given by

(6] = ¢(L,r).

This is independent of t and lies in Ag since it is path-connected to o,r) = 0. u

Using Proposition 3.3 and Theorem 3.5 in the case where A is of the form
C(Y,T) (where Hl(Y,Z) should be countable so that A is locally path-connected) it is
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easy to deduce the vanishing of Hn(R,C(X,T)), n> 2, for suitable R-spaces X on which
the action of R is proper. In [13], Theorem 4.1, we gave a stronger vanishing theorem
that allows arbitrary R-action on X. We conclude the present section with an analogous

vanishing theorem for actions of compact semisimple Lie groups (e.g., SU(N)).

THEOREM 3.9. Let G be a connected, simply connected compact Lie group, and
let X be any second-countable locally compact G-space with HO(X,Z) and Hl(X,Z)
countable (it suffices for X to be compact). Give C(X,T) the topology of uniform
convergence on compacta and the action of G coming from the G-action on X. Then the
cohomology groups Hn(G,C(X,T)) are countable for n > 1 and vanish for n = 1,2.

PROOF. As in the proof of [13], Theorem #4.1, we use the short exact sequences
of G-modules
| = C(X,T)o = CX,T) = HI(X, 2) = |
and

1 = H%X,Z) = C(X,R) = C(X,T)g — I.

These are topological short exact sequences of Polish groups by the countability
assumptions on HO(X,Z) and Hl(X, Z), together with Proposition 6 of [9]. Now since
C(X,R) is a topological vector space and G is compact, H™(G,C(X,R)) = 0 for n>1 by a
generalization of the "averaging argument" of [7], p.60, or else by reduction to
continuous cochains using [17], Theorem 3, followed by [4], Corollaire III.2.1. On the
other hand, since HO(X, Z) and Hl(X, Z) are discrete and G is connected, the G-action on
them is trivial. But for A a countable group with trivial G-action, Theorem 4 of [17]
gives H"(G,A) = H™BG,A), which is countable for all n. By the long exact cohomology

SeqUenCeS, we now get an exact SeqUenCe
H" BG,H%(X, Z) = HN(G,C(X,T)) — H(BG,H (X, Z)

for any n>l. This proves the countability. Furthermore, the assumptions on G
guarantee that G is 2-connected ([16], p.198), hence BG is 3-connected and we deduce
vanishing of H™(G,C(X,T)) for n = 1 or 2. n

COROLLARY 3.10. If G and X are as in Theorem 3.9 and a and B are actions of
G on a separable continuous-trace algebra A, such that A= X and o and B induce the

same action of G on X , then a and B are exterior equivalent.

PROOF. This follows from Theorem 3.9 together with Remark 1.2. u
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COROLLARY 3.11. If G and X are as in Theorem 3.9 and A is a separable C* -
-algebra with A = X and with all derivations inner, then any two norm-close actions of G
on A are exterior equivalent.

PROOF. As we noted in §1, this follows from Theorem 3.9 together with th;

analysis in [5]

REMARK 3.12. In fact, compactness of G was only used at one point in the
proof of Theorem 3.9. Since any connected, simply connected Lie group is 2-connected
even if non-compact, the same argument together with Theorem 3 of [17] and
Corollaire IIL.7.5 of [4] (a form of Van Est's Theorem) shows that for any such G (and X

as above)

H2(G,C(X,T)) =HA(G,C(X,T)y) = HA(g,kC(X,R) ),

the relative Lie algebra cohomology for the Lie algebra of G relative to the Lie algebra
of a maximal compact subgroup, with coefficients in the Fréchet space of continuous
real-valued functions on X which are smooth along orbits of G. There are some cases in
which this will be computable. For instance, if X = G/H is a homogeneous space of G,

we get

H2(G,C(G/H,T)) = H2(g,ksC “(G/H)),

which may be computed by the methods of [1]. For instance, if H is a lattice subgroup
and G is semisimple of real rank > 3, the cohomology must vanish by [1], Theorem V.3.3.
This has implications such as those of Corollaries 3.10 and 3.11 for G-actions on C*-
-algebras with spectrum G/H (as a G-space). Of course, vanishing of the cohomology

when G acts trivially on X was already proved in [5], Theorem 2.6. n

4. BUNDLES AND PULL-BACKS

This section is based on ideas of [13] and a suggestion of lain Raeburn, for which
I am grateful. It concerns the situation of a principal G-bundle p:  — X, where G is a
suitable group (the most interesting case being G = T), and a comparative analysis of
H*(G,C(Q,T)), where G acts via the free G-action on &, and of H*(G,C(X,T)), with G
acting trivially on C(X,T). Then we apply this to study certain group actions on
C¥ -algebras. Though it would probably be possible to work with a somewhat larger class
of groups (using some of the techniques discussed elsewhere in this paper), we limit the
discussion to tori and "solenoids". The finite-dimensionality hypothesis on G is only

needed so that we can apply Theorem 4 of [17], and is probably unnecessary.



321

THEOREM #4.1. Let G be a compact finite-dimensional connected metrizable
abelian group, and let X be a locally compact second-countable space with HO(X,Z) and
Hl(x,z) countable (for instance, a compact metrizable space). Let p:Q — X be a
principal G-bundle, and let G act trivially on C(X,T) and via the action on Q on C(Q,T).
Then HO(G,C(X,T)) = HO(G,C(Q,T)) = C(X,T), and for all n>0, the groups HYG,C(X,T))
and Hn(G,C(Q,T)) are countable. In particular, HI(G,C(X,T)) £ HO(X,C) maps via p* onto

Hl(G,C(Q,T)) ~ HO(X,G)/image of HI(Q, Z),
and

H(X,8) = HAG,C(X, T, HAG,C@,T) via p* .

PROOF. Note that the assumption on G means G is a countable torsion-free
abelian group of finite rank. Since G is an inverse limit of tori and Cech cohomology
commutes with inverse limits, HZ(G, Z)~G = HZ(BG, Z). In fact, since the cohomology
ring of BT is a polynomial ring on a 2-dimensional generator, H*(BG, Z) is all concen-
trated in even degrees and is isomorphic to the symmetric algebra on &. Note, too, that
HO(Q, Z) ~ HO(X, Z) and that HI(Q, Z) is related to HI(X, Z) by the following exact Gysin
sequence (the sequence of edge terms of the Leray-Serre spectral sequence for p):

1 P Pl 9 2
0 =H (X,Z) —> H(Q,Z) — H(X,8) — H*(X,2Z).

Now consider the following commutative diagrams of short exact sequences:

0 = C(X,T)y — C(X,T) — HL(X,T) =0,

A) lp* lp* lp*

0 = C(Q,T)o — C(Q,T) — HQ,T) — 0,

0 = H9(X,2) = C(X,R) = C(X,T)y — 0

© lp b |

0 — 1%, Z) — C(,R) — C(2,T)y — 0.

As all maps are equivariant for the action of G and all groups are Polish by the
countability assumptions, we can consider the associated diagrams of long exact
sequences in G-cohomology. As in the proof of Theorem 3.9, all higher cohomology
vanishes for C(X,R) and C(Q,R). Furthermore, since HO(X, Z), HI(X, Z) and HI(Q, Z) are
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all trivial discrete G-modules, we may use the fact that by [17], Theorem 4, H*(G,M) =
= H*(BG,M) = H*(BG, ZY®M for such a module. (The last equality follows from the
universal coefficient theorem.) Of course the calculation of Ho is obvious. From (B) we

obtain the commutative diagram

HM(G,C(X,T)g)— H™ ! (BG, @M (X, 2)

=~ 1P* ~ L)*
H"(G,C(@,To) = H™®G, 22@H"(X, 2)

for any n> l; note in particular that H™G,C(Q,T)) = 0 for n even. Then from (A) we

obtain commutative diagrams of exact sequences

0 = C(,T)g = COGT) = HAX, 20— HY(G,CX,T)g) = HL(G,C,T) — 0

IR R I A

0 — C(X,T) — C(X,T) — H(@, 2) = H1(G,Cc@,T)) —H (G,C@T) =0
and (for n> 1)

0— H2Y(G,C(X,T)) = HZBG, 2@H (X, 2) = H2" }(G,C(X,T)) — HZM (G, C(X,T) = 0

A
0— H2N(G,C(0,T) = H2(BG, Z2QH (9, 20— H2" L (G,c(0,T)0)— HZ™ L (G,c,T) = 0

from which we can read off almost all we want. In particular,

p* : HN(G,C(X,T)) = H2(G,C(9,T))

is injective and

2n+1

p* : H2M (G cx, 1) = v (G, c,1))

is surjective. Though this would suffice for most of our purposes, we would like to know
that p* : HZ(G,C(X,T)) —*HZ(G,C(Q,T)) is actually an isomorphism, when G =T, and
then say something about p* for general G.

When G = T, first note that the exact sequences up to H! reduce to
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HOx, Z) = Hl(G,cx,T)

0o —n'x 25 nle,2 - 1%, 2 = nlc,cor) — o

We would like to identify the map HI(Q, Z)—*HO(X,Z) as the Gysin map p,.
This is not hard to do, modulo a sign which depends on a choice of orientatio'n
conventions, since the map must be natural for all T-bundles and have the correct
kernel, hence must be of the form p, followed by multiplication by an integer. To check
that the integer is (%)I, it's enoug.h to know that when p is a trivial bundle (so p, is
surjective), HI(G,C(Q,T)) = 0. But in this case, C(,T) = Indlﬂ.C(X,T), so the vanish.ing
of H! follows from Corollary 3.6. In fact, 3.6 tells us that in this case,
H2N(G,C(@,T) = HL(X, 2) and H2™1(G,C(@,T) = 0 for n > L.

Now (going back to the case of general p, but still with G = T), once we've
computed HI(G,C(Q,T)), everything else follows by "periodicity". For we have (by [8],

Theorem 9) spectral sequences
HP(T,HY(Z,C(X, T =>HP IR, C(X,T)
l p* 1 p*
HP(T,HY(Z,c(@,TN=HP"IR,C(2,T)),

and since the R-cohomology vanishes for p + q> 2 (by [13], Theorem #4.1), we must have

a commutative diagram of periodicity isomorphisms

HP(T,C(X,T)) — HP*2(T,C(X,T))

L

HP(T,C(Q,T)) — HP*4(T,C(,T))

for p> 1. This means the maps

2

H2BG, 2@H (R, 2) = H2" (G, c@,T)) = H™ (G,c@T)

must reduce to
1 P 2n+1
HY(Q,Z2)— H" (X, Z) —H"""(G,C(8,T)) — 0

for all n > 1, and since the kernel of p, is p* Hix, 2),
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¥
p
1lx, 2) = H2YG,C(X,T) — HZYG,C@,T))

is in fact an isomorphism, while H2n+l(G,C(Q,T)) = coker(p,).

The case of general G is similar, but for simplicit}./ we concentrate only on the
calculation of H1 and Hz. (In fact, noting that HZ(BG, Z) = G and HB(G,C(Q,T)O) =
= HQ(BG, Z)®HO(X, Z) = 52(6)®HO(X, Z), one may identify the map

H2BG, 2@H (@, 2 = E®H! @, 2 — 12 (G,c@,T)o) = s2EO®H X, Z)
with the Gysin map
p, : H'@,8) = HOx,G®C),

which has kernel p* (HI(X,G)), followed by the map induced by the projection @G —
—+52@&).) By Theorem 2.5, HAG,C(X,T) = H!(X,8), and H(G,C(X,T) = HA(BG, 2®
®HO(X, Z) = HO(X,G) by our exact sequences. The first step in computing HY(G,C@,T))
(n = 1,2) is to compute them when p : & = X is a trivial bundle. For this we need a sub-
stitute for Corollary 3.6. For any A and any G, H'(G,Ind, ycA) = H__(G,Ind | 44A) = 0
as in Proposition 3.3. Furthermore, if G is as in our theorem and A has property F, we
may form EA = U([0,1L,A) as in (8], which is contractible by Lemma 2.3. Then lndl?GEA
is also contractible, and by the argument of [17], p.91, Hn(G,IndHGEA): H" (G,

cont
,Ind EA) = 0 for n> 1. As in the [)l‘OOf of Proposition 2.4 (C), one can see that

0 —PInd1+GA —*Indl*GEA —*Indl,tGBA —[G,BA] =0

is exact (the non-trivial part being exactness on the right). Applying the long exact
cohomology sequence together with the vanishing of Hl(G,Indl *G")’ we conclude that

H2(G,Ind | 4 ;A) = H'(G,(Ind | , -BA)o) = [G,BAL

14G

Taking A = C(X,T), this says H1(G,C(G x X,T)) = 0 and gives an explicit calculation of
HZ(G,C(G x X,T)). In other words, when p : § — X is trivial,

p* : HI(G,C(x,T) = HL(G,C(Q,T)) is zero
and
p* :HZ(G,C(X,T)) —-*HZ(G,C(Q,T)) is an injection, but not always an isomorphism.
Then by naturality (in X) of the diagrams
Hox,8) = HY(G,c(x,T)

- e

E.3
0 »nlx, 22 nle 2 —Ho%x,8) = ulG,c@T) —o
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and

H2G,cx,T) = HYX,&)

e e

0 — HAG,c(T) = HL(9,8) = sAORHX, Z)

it is easy to see that in general,

H1(G,C@,T) = coker(p, : H(2,2) = HO(X,E)
and

Now we apply the theorem to the situation of [13], §l. Let p: @ =+ X be a
principal G-bundle as in the theorém, and B a stable separable continuous-trace algebra
with spectrum . Then if B: G —Aut(B) is an action of G on B inducing the G-action on
Q (free with quotient X), by Theorem 1.1 of [13], there is an isomorphism of B with p*A,
where A is a continuous-trace algebra with spectrum A and p*A means the pull-back of
A in the sense of [14], i.e., CO(Q)®CO(X)A. Furthermore, by Corollary 1.3 (loc.cit.), one
may arrange this isomorphism so that B is exterior equivalent to p*id, the action
coming from the tensor product of the translation action t of G on Co(f) and the trivial
action of G on A. Using Theorem 4.1, we can obtain an interesting complement to the

results of [14] and [13] concerning pull-back actions.

PROPOSITION 4.2. Let G be a compact, connected, finite-dimensional, metri-
zable, abelian group, and let p : 2 — X be a principal G-bundle with H™(X, Z) countable
for n<2. Let A be any separable continuous-trace algebra with spectrum X, and let
B = p*A. Then if @, and a, are two locally unitary actions of G on A (recall that by
Theorem 2.5, this is automatic if o and o, are any actions fixing X pointwise), then
p* o and p* 0, are exterior equivalent as actions of G on B if and only if @, and o, are
exterior equivalent as actions of G on A.

PROOF. By Remark 1.2 and Theorem 2.5, the obstruction to exterior equiva-
lence of a; and a, is the class C((! )-C (az)eH (G C(X,T)) = H (X G), and the
obstruction to exterior equivalence of p* @, and p* a, is a class in H (G C(Q,T)), which a
simple calculatxon shows xs just p (C(a ) - tla,)). So the result follows from injectivity
of p* 1 HAG,C(X,T)) — H2(G,C(Q,T)). .
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REMARK #.3. One might think, since we showed that p* HZ(G,C(X,T)) —
—+H2(G,C(Q,T)) is often surjective, that every G-action B on p*A, inducing the given
G-action on , is exterior equivalent to some p*a,a a locally unitary action on A.
However, as was shown in Example 1.9 of {13], this is false in general. The reason is the
following. Since G acts trivially on X, there is a natural map g that to any G-action
trivial on X associates a class in HZ(G,C(X,T)). However, there is no such map sending a
G-action on p*A inducing the given G-action on @ to a class in HZ(G,C(Q,T)). Instead,
an obstruction in HZ(G,C(Q,T)) is only defined given a pair of such actions, and the
obstruction associated to a pair (a,Yy) is not necessarily the sum of the obstructions for
(a,B) and (B,Y), because of non-commutativity of the unitaries that appear in the

relevant formulae. While one might be tempted to think that the map
B += (obstruction to exterior equivalence of B and p*id)

would have good additivity properties, it does not. In fact, the whole notion of the
"basepoint” p*id for the G-actions on p*A inducing the G-action on Q can be non-
-canonical, since it might be that p*A = p*C, and yet p*(idA) and p*(idc) are not

exterior equivalent. (This is what happens in the example given in [13].) n

As we mentioned in §l, conjugacy together with exterior equivalence defines
an equivalence relation on the G-actions on B which is weaker than exterior equivalence
but still implies G-equivariant isomorphism of the crossed products. We studied this
phenomenon to some extent in Theorem 1.5 of [13], where we saw that (in the situation

of Proposition 4.2) the following conditions are equivalent (assuming A is stable):

(a) pr* oP is G- and Co(X)-equivariantly isomorphic to G Xo* id B;

(b) < gla),[p]l> = 0, where the pairing is the cup product between H 1(X,é\) and

H(X,G), with values in H2(X,T) = H3(X, 2);
(c) p* ais exterior equivalent to y(p*id)y_l for some y € Aut @
o

This suggests a natural question: how unique is the vy in (c)? For instance, when can one
take it to be the identity? The following answer (when G = T) was conjectured by lain

Raeburn. With more work (which we leave to the reader), it could probably be adapted

to the generality of Proposition 4.2.

THEOREM #&.4. Let p: @ — X be a principal T-bundle, with @ and X second-
-countable, locally compact, and with the homotopy type of finite CW-complexes. Let A
be a stable separable continuous-trace algebra with spectrum X, and let a: T —AutA
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be an action which fixes X pointwise, such that Z(@)U[p] = 0. Then p*o (on p*A = B) is
exterior equivalent to y(p*id)y'1 for Y €Aute (Q)B, and the class [y]eHz(Q, Z) =
o

= Aut B/Inn B satisfies p'['Y] =Cgo) e HI(X, Z). Here p, is the Gysin map. The class

Col(®)
[y] is uniquely determined modulo p* (H2(X, z)).

PROOF. As we said above, it was shown in [13] that if Z(@)U[p] = 0 in HB(X, Z),
then p*ais exterior equivalent to some Y(p* id)Y_l. Conversely, for every Y€ Autc (Q)B,
Y(p*id)Y'I is an action of T on B inducing the standard action of T on {2, hence thets)e is a
well-defined class ¢(y) € HZ(T,C(Q,T)) = Hl(X, Z) which measures the obstruction to ex-
terior equivalence between Y(p*id)‘Y_l and p*id. Since exterior equivalence classes don't
change under conjugation by inner automorphisms, ¢(Y) only depends on [Y] € Hz(ﬂ, z).
We shall show ¢ induces a homomorphism HZ(Q z) —*HI(X, Z) with the same formal
properties as p;, then deduce that the two coincide.

First we show that ¢ is a homomorphlsm Ifyis mner, then y(p* 1d)Y and p*id
are exterior equivalent, so ¢ sends 0 € H (Q, Z) to 0€H (X, Z). We must check that
®y)vp) = oy)) + ¢(Y2). To see this, recall ¢(y) is the coboundary in HZ(T,C(SZ,T)) of the

l-cocycle

£ > y(p*id) Y ¥ i) 1+ T — UMB)/C@,T).

In other words, ¢(Y) is defined by choosing (in a Borel fashion) unitaries v implementing

t
Y(p*id)tfl(p*id)t_l, then defining a 2-cocycle by

(t,8) = v, (v, (p" i) (v )}

(which takes values in U(Z(M(A))) = C(,T) since Vis
same automorphism). Now given Y, and Yo choose in this way {Vt} corresponding to Y

and vt(p*id)t(vs) implement the

and {w } corresponding to Y, and let w} Yl(w ). Then
YY" id)tY_zlY_ll(P* i) _y = Y, 0,p" id)tv'zl(p* id) - 1" id)t)ﬁ'(p* id) ) =
=Y,(Ad wt)(p* id)tY_ll(p* id)t_l =Ady(w)Adv, = Ad(wiv ).
Thus the 2-cocycle defining ¢(Y1Y2) is
(w v (p* id)t(w‘svs))_l =

(t,) = ts Vis

= WiV P id), (v ! _lv Je™id) (wy)” _tl(wlt)—l =
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= [vts(p*id)t(v_sl)vt_ l]w'tsv,[(p*id),((w's)_lv_tl(w't)-1 =
P | . _ -
= Ly P id), (v vy ]Yl(Wts)YL(P*ld)tYll(Yl(Ws)) ‘I(Y(Wt)) Y=
= L™ id)t(v—sl)"t_ l1‘*1[“%5(‘*’* id)t(ws)_l""_tlj'

Since vy, was assumed to act trivially on the center of M(B), we see ¢(Yly2) = ¢(Yl) +
+ ¢(y,), and ¢ is a homomorphism :HZ(Q, z) —*HI(X,Z). By [13] and our previous
remarks, ¢ also has the property that ¢(y)ULp]l = 0 for all y. Furthermore, ¢ vanishes on
the image of p* : HZ(X, z) —*Hz(ﬂ, Z), since if v is pulled back from an automorphism
§ eAutCO(X)A, i.e., Y comes from the automorphism id®@¢ of CO(Q)®CO(X)A, then

obviously y commutes with p*id = T®id. Thus ¢ has all the formal properties of the
Gysin map p; : HZ(SZ, zZ) — HI(X, Z).

To check that ¢ = p;, we should note that ¢ does not depend on the choice of the
continuous-trace algebra A, or equivalently, of its Dixmier-Douday invariant in
H3(X, Z). This can be seen as follows. Let C = Cy(X,K) be the stable, stably commutati-
ve continuous-trace algebra over X. Then A = A®C0(X)C and B = B®Co(9)p*C- Since

every class in HZ(Q, Z) arises from a locally inner automorphism of p*C, we may assume

our automorphism is of the form id&S§, GGAutC (Q)p*C, with respect to this
ol

decomposition, and then clearly ¢(y) = #(8). Thus, without loss of generality, we may
assume A and B are stably commutative.

To show that ¢ and p, coincide, at least when X has the homotopy type of a
finite complex, observe that .both maps are natural, in the sense that if (p: & — X,
X € HZ(Q, Z)) is the pull-back of (p': Q' — X', y € HZ(Q', Z)) under some map of T-bundles

Q —

f
X ———— X',
then ¢(x) = £*(¢'(y)) and p,(x) = £* (p}(y)). Thus it is enough to show that ¢ = p, on
_ "universal examples". But given p: 2 — X and x € H2(X, Z), the pair (p,(x) € n'x, 2),
[ple H2(X, Z)) is pulled back from a map

X = K(Z,1)xK(Z,2) = slxcp®,
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and since p,(x)U[p] = 0, the map can be lifted to a map f: X — Y, where Y is the
homotopy fiber of the map

K(Z,1)xK(Z,2) —+K(Z,3)
corresponding to the cup product. The composite

fiber inclusion 2nd projection
Y —————— K(Z,1)xK(Z,2) ———— K(Z,2)

induces a principal T-bundle 7 : W — Y, and from the Serre spectral sequences for the

fibrations
Y — K(Z,1)xK(Z,2) sl o w
K(Z,3) Y

we see that HY,Z)=Z for n=0, 1, 2 and that HZ(W,Z) is infinite cyclic, say with

generator w. Furthermore,

7 : HA(Y, Z) — HA(W, Z)

is the zero map, and 'n!(w) is a generator z of HI(Y, z).

Now by our construction, (p:Q — X)=f(m:W--Y), and p(x)=1*(z) =
= £ (m(w)) = p,(£* (W)). Thus x - £*(w) € ker p, = p* H2(X, ). Suppose we could ignore
the dif‘ficulty :chat Y isn't locally compact, so.that our definition of ¢ doesn't quite make
sense for the bundle 7 : W — Y. If we could make sense of ¢(w), it would have to be +z
(since ¢ is supposed to surject onto the kernel ofU[n]). Adjusting if necessary the
choice of sign in the definition of the Gysin map, we can suppose ¢(w) = z = TI’!(W), and

then since ¢ vanishes on the image of p*,

dlx - £(w)) = 0,
hence
() = (E* (W) = £* (W) = 1% (2) = py(x).

But if X has the homotopy type of a finite complex, then by cellular
approximation the map f : X — Y can be chosen to factor through some finite skeleton
Y, of Y (which is compact metric, so that C(Yn,K) makes sense). For n large enough,
Yn‘—* Y induces isomorphisms on cohomology through degree 3, and the above

argument works with Yn in place of Y. L
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