Transverse geometry

The ‘space of leaves' of a foliation (V,F) can
be described in terms of (M,I"), with M =
complete transversal and I = holonomy pseu-
dogroup. The ‘natural’ ‘transverse coordinates’
form the crossed product algebra

Al = (M) x T,

consisting of finite sums of monomials of the
form

> fUS, feCE(FM),¢eTl,
with the product

fUG -gUy = (f -9l9) Uy

How to find a geometric structure — spectral
triple that is ‘invariant’ under the holonomy 7
D cannot be taken elliptic, unless the foliation
admits a transverse Riemannian structure.
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Diff t (M)-invariant structure

First, one replaces M by PM = FTM/SO(n),
where FtTM = J1(M) = GLT(n,R)—principal
bundle of oriented frames on M. The sections
of m : PM — M are precisely the Riemannian
metrics on M.

Canonical structure on PM: the vertical sub-
bundleV ¢ T(PM), V = Ker rs, has GLT (n,R)-
invariant Riemannian metric, since its fibers =
GLT(n,R)/SO(n). The bundle N = T(PM)/V
has tautological Riemannian structure: every
point ¢ € PM is an Euclidean structure on
Tw(q)(M) = Ny via 7x.



Hypoelliptic signature operator

The hypoelliptic signature operator D on PM
is uniquely determined by Q = D|D|,

Q = (dy, dy —dy dy,) ® vy (dg + dp) ,

acting on  Hpy = L2(AN V@ AN*, volpyy) :
dy, = vertical exterior derivative,

vy = grading for the vertical signature,

d = horizontal exterior differentiation with re-
spect to a torsion-free connection,

volpys = Diff T (M)-invariant volume form.

*If n = 1or2(mod4), one takes PM x S! so that the
dimension of the vertical fiber be even.



Theorem 1. The operator () is selfadjoint and
so is D defined by Q = D|D|. Moreover,
(AI';M,HPM,D) is a (nonunital) spectral triple
with simple dimension spectrum
>p={kecZT, k§p:=%—l—2n}.

Proof — By means of adapted pseudodifferen-
tial calculus = a version of WDQO for Heisen-
berg manifolds:

A-E= (X €, N &), £ = (u,6n) , NERY |
lell’ = (lleoll* + llenl?) ™,

o' (z,X-&) =\ o' (x,¢), o = g—homogeneus.

In particular, the residue density of R € W/ DO

. 1
o (2m)p—n

/”f||/:1 U/—p(R)(CL £)dEdg.



Example (codimension 1): S1/Diff(s1)

H = L2(FS! x S, dsdfda) @ C?

1 1
Q = —2050a71 + - e “Ogy2 + (332 — 95 — Z) Y3,

where ~1,7v2,7v3 are the Pauli matrices

~Jo =il 1 o]

the dimension spectrum is > = {0,1,2,3,4}.
The components of the Chern character are
{¥1,%3} and are given by:

_Jo 1

01(a®, al)

_I_

I_
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(a®,al,a? a3) =

( )][ (a°[Q.a")[Q, a] -+ [Q,a°)(@*)%/?)
( )][(aOV[Q7 1[0, 2] - - [Q. a3](Q2)~5/2)
3.4 ( )][MO[Q» 'V ([Q, a?][Q, a)(Q?) /2
1

- 527 (5) f@Q.a11Q.aAVIQ.*1@D) %),

The computation is purely symbolical, but re-
quires the symbol ¢’_,, hence about 103 terms!
It eventually yields the following result:

(90].)(1)(&17&1) = 0, vaoaal € A,
in fact, each of the 4 terms turns out to be 0O;
on the other hand

©3
1
31 2
1 5
41 2

1

1
12 73/2

(p3)(1) = (fi + by,

where
A OUggs [ Upys -+ fPUps) = 0, wop192¢3 7 1
— /foﬁf%(dfl) A (0ow1) (df2) A (wop1es)* (df3).



Underlying algebraic structure

W.l.0.g. can assume M = R", with the flat
connection; {Xj; 1 <k <n}, {Y/; 1 <i,j<n}
horizontal, resp. vertical vector fields. The
operator (@ is built of these vector fields, and
the cocycle involves iterated commutators of
them acting on A%, .

E.g. in case n =1,

Y=y3 and X zyﬁ,
oy Ox

acting as

Y(ngo) =Y (f) Ug, X(ngo) = X(f) Ugp.
However, while Y acts as derivation
Y(ab) =Y (a) b+ aY (b)), a,be A" .

X satisfies instead

X(ab) =X(a)b+ aX(b)+61(a) Y (D).



d d
61(fU,1) = v (Iog —SD) fUg1.

d1 IS a derivation,

d1(ab) = d01(a) b+ ady1(b),
but its higher commutators with X

d" do
5n(fU _1) — y d—n (Iog %) ngO_l’ \V/’I'L > 1,

satisfy more complicated Leibniz rules.

All this information can be encoded in a Hopf
algebra Hq. As algebra = universal enveloping
algebra of the Lie algebra with presentation

[YaX]:Xa [Yaén]:n&%a
[X75n]:5n—|—17 [5k75€]207 n,k,£>1.



The coproduct is determined by

AY Y®R1+1QY,
AX = XQR14+1X+1 Y
Adl = 011 4+1®49q,
A(63) 03®14+1®o3+
+ 62 ® 81 + 361 ® b2 + 657 ® 41

the antipode is determined by

S(Y)=-Y,S5(X)=-X+4+4§6Y,S01) =-9
and the counit is
e(h) = constant term of h € H7.
The canonical trace 7+ on Al satisfies
mr(h(a)) = é6(h) Tr(a) Vh € Hi,a€ A
where § € H] is the character

S(Y)=1, &6(X)=0, 6&(,)=0.



While S?2 # 1d, the é-twisted antipode,

S(h) = 8(h(1y) S(h(2)),
is involutive: S2 =1d .

Finally, the cochains {1,903} can be recog-
nized as belonging to the range of a certain
cohomological characteristic map.

More precisely, requiring the assignment
yr(h'®...@ A" @Y, ..., a")
= 7-(a® Y (aD) ... K™ (a™)),
to induce a characteristic homomorphism
XT_ : Hclﬂilopf (Hl) — HC*(.Ar),

practically dictates the definition of the
Hopf cyclic cohomology.

| A. Connes & H.M., Hopf algebras, cyclic Co-
homology and the transverse index theorem,
Commun. Math. Phys. 198 (1998)]



H = Hopf algebra over a field k containing Q,
(6,0) =modular pair: § € H* character , and
cceH, A(c) =0®o,e(c) =1, with §(c) = 1.
One also requires 52 =Id.

Then the following is a (co)cyclic structure:

s _ " .
Hisyy = CoDHT -
n>1

So(hl®...@hr" D 1ohl®...@ K" 1

S;(ht®...@h" 1) M. AW @...@ "1
1<j<n-1

Sn(ht®...@r" 1) Mleo... o oo

ocihle... o™ = hlg.. @ ™He...on" 1

0<i:<n

S - (W2 ®...9h"® o).

m(ht ® ... @ h")



Equivalence of characteristic maps
[Gelfand-Fuchs-Bott-Haefliger] = Hopf

JOM = {jg(); ¥ : R" — M },
71 J°M — JIM = FM projection
with cross-section

oy(u) = jg°(expy ou) ,  u€ FpM

given by connection V; Va € GL,(R),Vp eI

oy oRqg = Rgoo0oy and Jv<p=g5_1oavo§5.
Define  ov(po,...,9p) : AP X FM — J*°M
by

O-V(9007 IR Spp) (t7 ’U,) — JV(¢O,,,,,¢p;t) (U) )
p

where V(po,-- - ppit) =) V¥,
0

O-V(SOO Eyeeey @p@)(ta u) — 6—10-V(9007 R Spp)(ta QAO/(’U,))



C*(an) = Gelfand-Fuchs Lie algebra cohomol-
ogy complex of a,, = Lie algebra of formal vec-
tor fields on R™.

For w € C4(ay), define Vnp e Q' (FM),

(Cpm(@)(p0, .- pp)in) =
m(m—+1)

(-1) > nAoy(eo,---,ep) (@)

/APXFM

Cy (@) = Y. Cpa(@) : C*(an) — C* (M QE(FM)) ;
defines a map of (total) complexes,

Cy(dw) = (6 + 90)Cv(w).

For the relative (to SO,) cohomology, one con-
structs similarly a homomorphism

which can be followed by Connes’ map
ol 1 HE(PM) — HC*(A%, ), vielding

Xop @ H*(an, SOn) — HC*(Ab ).



Composing xi, with the natural restriction
PHC*(A%, ) — PHC*(C(PM)

one recovers the Pontryagin classes of M as
images of the universal Chern classes

€24y " " €24, € H*(an,S0p), 2i1+...4+2ip <n.

From Hopf cyclic to cyclic : M = R"

vr(h1®@...@h™ @Y, ..., a") = 7(a®hl(al) ... K" (™)),

inducing characteristic homomorphism

Xtopf © HCliopt (Hn, SOn) — HC* (App)(1y-

Theorem 2. There is a canonical isomorphism
kg © H*(an, SOn) — PHCY o5t (Hn, SOn),

such that Xfriopf oKL = XE?F :



Summary: Transverse Index Theorem

Theorem 3. There are canonical constructions
for the following entities:

e a Hopf algebra H, with modular character 6,
and with (8,1) modular pair in involution;

e a co-cyclic structure for any Hopf algebra
with a modular pair in involution (4,0);

e an isomorphism k}, between the Gelfand-Fuks
cohomology H¢ e (ar), resp. Hie(an, SOy), and
HP*(Hn; Cs), resp. HP*(Hn, SOn; Cs),

e an action of H, on Ar(FR"™), inducing a
characteristic map xf : HP*(Hn,SOn,;Cs) —
HP(*l)(Ar(PIR{”)) = H«(PR"™ x EIlN);

e a class Ly € H5(an,SOn), such that
ch*(Ar(PR“),H(PR”),D)(l) = (xfokp)(Ln).



