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Quantitative theory of current-induced step bunching on Si„111…
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We use a one-dimensional step model to study quantitatively the growth of step bunches on Si~111! surfaces
induced by a direct heating current. Parameters in the model are fixed from experimental measurements near
900 °C under the assumption that there is local mass transport through surface diffusion and that step motion
is limited by the attachment rate of adatoms to step edges. The direct heating current is treated as an external
driving force acting on each adatom. Numerical calculations show both qualitative and quantitative agreement
with experiment. A force in the step down direction will destabilize the uniform step train towards step
bunching. The average size of the step bunches grows with electromigration timet as tb, with b'0.5, in
agreement with experiment and with an analytical treatment of the steady states. The model is extended to
include the effect of direct hopping of adatoms between different terraces. Monte Carlo simulations of a
solid-on-solid model, using physically motivated assumptions about the dynamics of surface diffusion and
attachment at step edges, are carried out to study two-dimensional features that are left out of the present step
model and to test its validity. These simulations give much better agreement with experiment than previous
work. We find a step bending instability when the driving force is along the step edge direction. This instability
causes the formation of step bunches and antisteps that is similar to that observed in experiment.
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I. INTRODUCTION

In 1989 Latyshevet al.1 made the startling discovery tha
a direct heating current can induce step bunching on vic
Si~111! surfaces. When the sample is resistively heated w
direct current, steps can rearrange into closely spaced
bunches separated by wide terraces. Around 900°C, the
train is unstable towards step bunching when the current
the step-down direction, but is stable when the current dir
tion is reversed. Surprisingly, as the temperature is increa
to 1190° C, the stable and unstable current directions
reversed, i.e., the step train is unstable with step-up cur
and stable with step-down current. There is another s
reversal as the temperature is increased further.

Since then the phenomenon has received a great de
attention. Theoretical work has mainly concentrated on t
goals: understanding the microscopic physics underlying
instability towards step bunching and the reversal of the
stable current direction with temperature,2–4 and determining
the mesoscopic evolution of the surface morphology a
result of the instability.5–11 Recently Williams and
co-workers12–15 carried out a series of measurements
Si~111! surfaces at 900 °C, to provide a quantitative und
standing of the dynamics. By controlling the experimen
system and comparing with theoretical models, they w
able to extract detailed information about the mechanism
to determine quantitative values of relevant parameters.
though the details of the microscopic mechanisms leadin
the change in the destabilizing current direction with vary
temperature are still not fully understood,2–4 we show here
that there exists a reliable mesoscopic theory that can
vide quantitative agreement with a variety of experimen
570163-1829/98/57~23!/14891~10!/$15.00
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results in the temperature regime~900 °C! studied by Will-
iamset al.

In Secs. II and III, we briefly review some of the expe
mental and theoretical work that led to our present mod
We focus on the case where thestep motion is limited by the
attachment rate of adatoms to step edges~in contrast to be-
ing limited by the diffusion rate on terraces!. We also assume
local mass transportby surface diffusion. These assumptio
yield a minimal mesoscopic model that is consistent with
previous experimental results. In Sec. IV we give numeri
results from this model using realistic parameter values
interpret and analyze some of the results in Sec. V.
briefly discuss in Sec. VI some effects of ste
permeability16,17 ~direct adatom hops from one terrace to a
other!, which might be important in other systems, e.
Si~001!. In Sec. VII we present some results of Monte Ca
simulations of a microscopic solid-on-solid model, usi
physically motivated assumptions about the dynamics of s
face diffusion and attachment at step edges. These result
in qualitative agreement with experiment, in contrast to p
vious work9–11 using conventional Metropolis dynamics
They also help in the understanding of additional tw
dimensional~2D! features and instabilities that cannot b
described by the simple 1D step model. Final remarks
given in Sec. VIII.

II. 1D STEP MODEL WITH EXTENDED
VELOCITY FUNCTIONS

Vicinal surfaces, which are created by a miscut along
low-index plane below the roughening temperature, are m
naturally and usefully described by a model of interacti
14 891 © 1998 The American Physical Society
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14 892 57DA-JIANG LIU AND JOHN D. WEEKS
steps of the same sign. Because of the inherent anisotrop
the underlying crystal structure, these surfaces often exh
quasi-one-dimensional features, thus making a 1D s
model useful and accurate. Also the number of steps is o
conserved as the surface evolves, permitting further sim
fications in the analysis.

The change in the morphology of vicinal surfaces can
described in terms of the velocity of each step as long as
steps are created or destroyed. The clas
Burton-Cabrera-Frank18 ~BCF! treatment assumes that th
mass transfer is governed by a set of adatom diffusion eq
tions on each terrace, with steps acting as perfect sinks
sources for adatoms~or vacancies! so that local equilibrium
is always maintained. However, the original BCF picture
valid only for simple materials where adatom diffusion is t
rate limiting process. Extensions of the BCF model can
made to include a finite attachment/detachment term in
boundary conditions. This is needed for materials like s
con, where the atom exchange rate between steps and
races is not fast enough to permit the adatom concentra
near the step edge to achieve local equilibrium.

In his important work on the instability induced by a d
rect heating current on Si~111!, Stoyanov2 proposed such a
modified BCF model, including both a finite adato
attachment/detachment rate at step edges and an adatom
velocity ~or equivalently, an external driving force due to th
electric field!. Natori7 extended the work of Stoyanov to in
clude step repulsions. The idea of incorporating step inte
tions in a generalized BCF model has been further develo
by Sato and Uwaha.6

To describe the exchange of atoms or vacancies betw
steps and their neighboring terraces~attachment/
detachment!, we use a linear kinetics theory and write the n
surface flux from stepn to terracen ~see Fig. 1 for the
labeling! as

j n
15

k1ceq

kT
@mn2m t~xn

1!#, ~1a!

and the flux from stepn to terracen21 as

2 j n
25

k2ceq

kT
@mn2m t~xn

2!#, ~1b!

wheremn is the atom chemical potential at stepn, defined as
the increase in free energy per atom when atoms attach to
step. For a 1D step train with elastic and entropic step re
sions, this can be written as19

mn52gh3a2S 1

wn21
3

2
1

wn
3D , ~2!

FIG. 1. Illustration of the labeling of steps and terraces a
kinetic coefficients.
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wherea2 is the area of a single atomic cell on the surfaceh
the single step height, andwn[xn112xn the width of terrace
n. Here the parameterg is just the coefficient of thes3 term
in the well-known Gruber-Mullins20 form for the projected
free energy of vicinal surfaces with slopes. m t(xn

6) is the
adatom chemical potential on the terrace adjacent to sten,
approachingxn from the right-hand (1) and left-hand (2)
side.21 ceq is the equilibrium adatom concentration on te
races. We assume there is no asymmetry for the kinetic
efficient for adatom attachment from upper and lower t
races (k15k2).

To determine the adatom chemical potential on terra
m t(x), we need to know the mass transport mechanism
the surface. If it is much easier for adatoms to hop direc
across a step edge from one terrace to another one in c
parison to attachment at the step edge, then the ada
chemical potential becomes a constant on all terraces.
refer to this asnonlocal mass transport~caseA). The other
limit is when there is no significant hopping of adatoms ov
the step edge, as assumed in the BCF model; we call this
limit of local mass transport~case B). Experiments on
Si~111! show that the relaxation rate of a step bunch withN
steps scales withN2a wherea54.360.5. As we have dis-
cussed in detail elsewhere,14,22 this is consistent with thelo-
cal mass transport limit~caseB), and we will assume this
limit in most of this paper. In Sec. VI we will consider
more general scenario.

Assuming local mass transport, the step velocitiesvn(t)
can be determined by solving the diffusion equation for a
toms on terraces with boundary conditions at step edges
erned by linear kinetics. The equations can be written gen
ally in an extended velocity function form:23,24

vn5 f 1~wn ;mn ,mn11!1 f 2~wn21 ;mn21 ,mn!. ~3!

We will not write down the general form for the velocit
functionsf 6 for the electromigration problem since it is ver
complicated and not very instructive for our purpose.
simple limit that is consistent with experiment will be di
cussed below. More general expressions have been give
many authors.25

In studies of surface dynamics, it is often convenient
consider idealized models where the kinetics is limited b
few slow processes on the surface, and the rates of o
faster processes are taken to infinity. For BCF models,
glecting evaporation and deposition, there are two ba
rates, the attachment/detachment ratek, and the adatom dif-
fusion rate Ds . Bartelt et al.26 estimated the attachmen
detachment rate from the step fluctuations of Si~111! at 900
°C under the assumption that attachment/detachment is
rate limiting process, while Pimpinelliet al.27 estimated from
the same data the diffusion rate under the assumption
adatom diffusion is the rate limiting process. It is useful
define a length scaled[Ds /k. When d is very small, the
step dynamics is said to bediffusion limited, and whend is
very large, the dynamics isattachment/detachment limited.

However, direct estimation of this ratio is difficult. Fo
example, Table I lists several sets of parameters that g
good agreement with experiments15 on the electromigration-
driven relaxation of step bunches on Si~111!, with d ranging
from 10 to 105 Å. Physicallyd has to be finite and whethe
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57 14 893QUANTITATIVE THEORY OF CURRENT-INDUCED STEP . . .
a system is diffusion limited or attachment/detachment l
ited depends on the comparison ofd with other length scales
e.g., the typical terrace width. Here we refer to the ma
ematical limitd→` as thecomplete attachment/detachme
limited model, and we call the limitd→0 thecomplete dif-
fusion limitedmodel.

As suggested by Table I, the relaxation experiments
be explained using an effective chargeq of the adatoms tha
reaches a finite and physically reasonable value asd→`. In
contrast,q must tend to the unphysical limit̀ whend→0.
Therefore the complete attachment/detachment lim
model is well defined, and we will use this limit to illustra
the mechanism for electromigration. As we show below, E
~3! simplifies considerably in this limit. Moreover, a value
d>3000 Å is predicted by extrapolating the diffusion ra
from higher temperatures using a diffusion activati
energy13 of 1.1 eV. However, numerical solutions of Eq.~3!
using any of the parameter sets in Table I are consistent
the step bunching experiments, including the power law
coarsening.

As in the Stoyanov model,2 we assume that there is
force F acting on each adatom because of the electric fi
The adatom flux on terracen under this driving force is

j n5
Dsceq

kT S 2
]m t

]x
1F D . ~4!

With complete attachment/detachment limited kinetics,Ds
tends to infinity relative to the attachment ratek, or j n .
Therefore the adatom chemical potentialm t(x) has acon-
stant gradient Fon each terrace. In general,m t(x) is affected
by the motion of the neighboring steps, but usually the st
move very slowly so that they can be treated as effectiv
stationary as far as the diffusion of adatoms is concern
Under thisquasistatic approximation,28 at any given time,
the total surface flux into terracen from the two neighboring
steps (j n

12 j n11
2 ) equals the total amount of evaporatio

from this terrace, which is given byceqwn /t[wn /te , where
t is the average lifetime of an adatom on the terrace befo
evaporates. With these approximations, the step velocitie
Eq. ~3! can be written in the simple form23,24

vn5
kceqa

2

2kT
~2 mn2mn112mn21!1k1wn1k2wn21 ,

~5!

where

k656
kceqa

2F

2kT
1

1

2te
. ~6!

TABLE I. Sets of parameters that give a good fit to the rela
ation of step bunches. We useG52ceqa

4k (ceqa
250.2 ML) to

compare with previous work. The table is taken from Ref. 15.

Parameter set d ~Å! q(e) G(Å3/s) Ds(Å
2/s)

A 100 000 0.006 33107 5.2 31011

B 5000 0.006 43107 3.4 31010

C 100 0.03 33108 5.2 3109

D 10 0.2 23109 3.5 3108
-
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III. EXPERIMENTAL DETERMINATION
OF THE PARAMETERS

Williams et al.devised a series of experiments to meas
the various parameters and also test the assumptions a
the mass transport limits discussed in the previous sect
As mentioned earlier, on Si~111! at 900 °C, the relaxation o
step bunches is consistent with the local mass transport li
The step interaction parameterg can be measured29,30 from
the distribution of terrace widths and step positions at eq
librium, and has an estimated value around 0.015 eV/2.
Assuming attachment/detachment limited kinetics for m
transport, the kinetic coefficientk can be measured indepen
dently from the thermal fluctuations of the steps and
relaxation of step bunches. Rather than usingk, we define
G52ceqa

4k to compare with earlier work.G gives the step
mobility for the Brownian motion of an isolated step26 and is
measured to be around 53107 Å3/s. This value also gives a
good fit to the relaxation of step bunches, thus provid
additional evidence supporting the local mass transport
sumption aside from the scaling behavior mentioned befo

The force on adatoms due to the direct heating current
be measured from the relaxation of the step bunches
occurs after reversing the current to the stable directio15

The force acting on each adatom can be conveniently
scribed in terms of an effective chargeq, with F5qE, where
the experimental value ofE57 V/cm. Table I lists four sets
of parameters that give good fits to the decay of step bunc
with a direct current in the stabilizing direction at 900 °C. A
mentioned before, asd becomes very large, the values ofq
and G reach limiting values, which we use in the comple
attachment/detachment limited model. Other relevant par
eters include the average terrace widthw051100 Å, and the
evaporation time for one monolayerte51250 s.13

IV. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTS

When the adatom drift velocity is in the step down dire
tion (F,0), one can show from a linear stability analys
using the parameters in Table I that a uniform step train
unstable towards step bunching. The evolution of the s
bunches is determined by numerically integrating Eq.~3!,
starting from a step train with small random deviations fro
uniform spacing. The system continues to coarsen by fo
ing larger and larger step bunches. Figure 2 shows the a
age bunch sizeNave for a system of 2049 steps as a functio
of time, using Eq. ~5! for the complete attachmen
detachment limited model. A bunch is defined by a num
of adjacent steps with no terraces between them larger
w0/2. The average bunch size is defined by(nnrn /(nrn ,
wherern is the number~or density! of bunches consisting o
n steps. It can be fitted by atb growth rate withb'0.50.
Results using the more complicated velocity functions in E
~3! obtained from solutions of a generalized BCF equat
and parameter setA are almost indistinguishable on th
scale.

This compares very well with the STM results of Yan
Fu, and Williams.13 They show at both 945 °C and 1245 °
that the growth of the facet sizesZ between two step bunche
satisfiestb whereb'0.5. It is a good approximation to re

-
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14 894 57DA-JIANG LIU AND JOHN D. WEEKS
late the average number of steps in a bunchNave to Z/w0.
They observed that at 945 °C, after about 120 min of ann
ing time, the average terrace width between step bunc
grows to about 3500 Å. In the numerical simulations, t
average terrace width grows to about 6800 Å in the sa
time. We consider this quite satisfactory agreement, gi
the uncertainties in the values of the experimental parame
we used. Thus, not only does the step model give the cor
power-law growth rate, it also gives good quantitative agr
ment with experimental results at 945 °C.

Simulations using other sets of parameters in Table I p
duce slightly different results, but all agree with the expe
mental data within the errors in measured parameters. M
over, they all have approximately at1/2 coarsening rate
during the time simulated and experimentally observ
Therefore we cannot determine a unique set of microsco
parameters accurately from the coarsening rate alone.

Dobbs and Krug11 also obtained at1/2 coarsening rate
from simulations of a 2D solid-on-solid model using M
tropolis dynamics. However, they obtained thet1/2 behavior
only when there is significantlateral fluctuations of step
bunches as can sometimes occur in the later stages of c
ening, while initially the growth law they observed went
t1/4. Experimentally there is no such transition, and we obt
this kind of coarsening from a 1D model with straight ste
Moreover, as discussed below in Sec. VII, there are ot
unphysical surface features that arise from the use of
tropolis dynamics to describe Si~111! and related systems
and we suggest there an alternative dynamical scheme
gives good qualitative agreement with experiment.

As another application of the step model, we also simu
the step bunching occurring undergrowth conditions. It is
well known that a Schwoebel barrier31 has very different
effects on growth and evaporation. For example, if there
an additional barrier for an adatom to attach to a step e
from the upper terrace, a 1D step train will be stabiliz
under growth and destabilized under evaporation. Howe
even in the absence of a Schwoebel asymmetry~that is, even
whenk15k2) as assumed here, simulations of the pres
step model under growth conditions show adecreasein the
bunching rate with increasing deposition rate. Figure
shows the dependence of the average bunch size as a
tion of time for different growth conditions. It is useful t
define R̃5Rt/ceq as the ratio between deposition and d

FIG. 2. Evolution of the average bunch size using paramete
A. The solid line is a fit totb with b50.50.
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sorption rates. AsR̃ increases, the bunching rate decreas
in good agreement with the experimental results of Yang,
and Williams.13 This decrease in the coarsening rate w
increasing deposition was also noted by Tersoffet al.32 in
their study of stress-induced step bunching. As Kandel
Weeks5 argued, when the step train is traveling in a certa
direction ~e.g., due to deposition or evaporation!, a step at
the front end of a step bunch can leave the bunch and
with the step bunch in front of it, causing an exchange
steps between step bunches. As the growth rate increase
velocities of these crossing steps get larger and larger
more debunching occurs, thus reducing the coarsening
A detailed study of the effect of debunching requires a
model and is beyond the scope of this paper.

V. ANALYSIS: QUASI-STEADY STATE
AND COARSENING RATE

In this section we will try to understand analytically som
of the numerical results. Although it is straightforward to u
the solution of the diffusion equation to determine the velo
ity functions in Eq.~3! when simulating the step bunchin
numerically, it is more convenient and instructive to consid
the simple linear velocity function model of Eq.~5!. Initially
we also neglect any deposition or evaporation.

When the surface fluxj is a constant everywhere, th
surface is in a steady state. As we will show later, suc
steady state is possible whenF is in the step down direction
Figure 4 is snapshot of the profile of the surface during o
particular simulation. Assuming that the step bunch betw
A andB is in a steady state with a surface atom fluxj * , we
have from Eqs.~1a!, ~1b!, and~14!,

~Ns21! j * 5
kceq

2kT
~mA2mB1F wAB!, ~7!

et
FIG. 3. Effects of growth conditions on the step bunching.

FIG. 4. Typical profile of step configurations when step bunch
are induced by a force acting on adatoms in the step down direc
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57 14 895QUANTITATIVE THEORY OF CURRENT-INDUCED STEP . . .
whereNs is the number of steps in the bunch andwAB is the
distance betweenA andB. On the flat terrace betweenB and
A8 the flux is given by

j * 5
kceq

2kT
~mB2mA81F wBA8!. ~8!

For a periodic array of step bunches,mA5mA8, and the
steady-state flux is then

j ss* 5
1

Ns

kceq

2kT
F wAA85

kceq F w0

2kT
. ~9!

Therefore the steady-state adatom current is independe
the size of the step bunches. This result is valid for a perio
array of step bunches and is important in determining
time scaling exponent, as will be shown at the end of t
section.

The steady-state profile of the step bunch can be ca
lated numerically. Here we go to the continuum limit, whi
is a good approximation when the number of steps in
bunch is large. Ifz(x) denotes the height of the surface, th
the slope iszx(x) []z/]x. Using the continuum version o
the Gruber-Mullins free energy functional20,33

H5LyE guzx~x!u3dx, ~10!

which is appropriate for vicinal surfaces below the terra
roughening temperature, we can write the adatom chem
potential as33

m~x!5a2h
dH

dz
526ga2huzxuzxx . ~11!

Herezxx is the second derivative ofz(x) with respect tox.
As in the step model discussed earlier, we can drop the lin
step energy term if no new steps are created. Note that in
continuum description slopes of different signs correspon
positive and negative steps. Here we consider step pro
with positive slopes everywhere and thus can setuzxu5zx . In
the attachment/detachment limit, the surface flux is given

j ~x!5
kceq

2 kT

h

zx
FF2

]

]x
m~x!G . ~12!

The above equation has the physical property that the
tom mobility ~as the response to an external field! is in-
versely proportional to the slopezx . To calculate the step
bunch profilez(x), we can neglect the first term in Eq.~12!
if the terrace width inside a bunch is much smaller than
distance between bunches. For an isolated step bunch
j (x)5 j * , using Eq.~11!, we have

3gh2kceq

kT

]

]x
~zxzxx!5 j * zx . ~13!

This can be reduced to

zx
35

j * kT

2kgh2ceq

@~z2z0!22~H/2!2#, ~14!

where z0 and H are integration constants. The step bun
profile z(x) can be easily calculated numerically by integr
of
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ing Eq.~14!, or analytically in terms of hypergeometric func
tions. Equation~14! was first derived by Nozie`res33 in his
study of surface dynamics below the roughening transiti
The maximum slope of the step bunch withj * ,0 is given
by zx

max5@2 j * (H/2)2kT/(2kgh2ceq)#1/3. For a true steady
state with a periodic array of step bunches,j * 5 j ss* @Eq. ~9!#.
We expectj * to fluctuate around this value for a system in
quasi-steady state.H is approximately the height of the ste
bunch for large bunches. We havezx

max;Ns
2/3 since j ss* is

independent ofNs . This can be experimentally tested b
measuring the average slope of the step bunch as a fun
of the average bunch size. Note that the continuum li
breaks down near the edges of a step bunch where s
changes in the local slope occur.

Strictly speaking, the above analysis only holds f
steady-state profiles with complete attachment/detachm
limited kinetics, but we expect it to be a good approximati
for the quasi-steady-state profiles that arise as the
bunches slowly coarsen with time. Indeed simulations a
experiment agree that the step bunches coarsen with tim
tb with b'0.5. This t1/2 power law can be justified by a
scaling argument. We assume that ast→`, there is only one
characteristic length for the system, which scales astb. We
can thus write all the variables on the surface in terms of
scaled lengthx/tb at time t. We have noted that the stead
state flux is independent of the size of the step bunches@Eq.
~9!#. For a system in a quasi steady state, we thus assume
the flux can be written as a function of the scaled length o
and there is no extra time dependence, i.e.,

j ~x,t !5J~x/tb!. ~15!

In contrast, the surface profile should maintain a const
average slope and thus must have the following scaling fo

z~x,t !5tbZ~x/tb!. ~16!

Substituting these into the equation expressing microsco
mass conservation:

]

]t
z~x,t !;2

]

]x
j ~x,t !, ~17!

we haveb51/2 by comparing the leading exponents on bo
sides of this equation. This prediction is in good agreem
with both the experimental and the numerical work,
shown in Fig. 2.

VI. EFFECTS OF STEP PERMEABILITY

In the previous sections we focused our study of the s
model on vicinal Si~111! surfaces around 900 °C. Our bas
approach can be applied more generally, though the lim
we used above are not necessarily satisfied. However as
as the mass transport is local, other differences from
present model, e.g., a finite diffusion length or asymme
step edge attachment rates~Schwoebel barriers!, can be stud-
ied using the extended BCF model and the velocity funct
approach of Eq.~3! in a more or less straightforward way.

We will not detail this work here, but instead turn to th
conceptually interesting case ofstep permeability, which can
make the extended BCF picture no longer valid. This is m
tivated in part by recent work by Tanakaet al.17 and
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14 896 57DA-JIANG LIU AND JOHN D. WEEKS
Stoyanov.34 In the classic BCF picture with local mass tran
port, the only way to achieve adatom transport from o
terrace to another is through attachment to and subseq
detachment from the step edge separating them. Howeve
there isdirect hoppingof adatoms across a step edge witho
incorporating into the step edge first, this causes a coup
of diffusion fields on adjacent terraces that must be ta
into account.

In a BCF-like picture, the adatom chemical potentials c
have discontinuities at step edges either because step
perfect sinks, or because there is a strong diffusion bar
near the step edge. In their analyses of island flattening
Si~001!, Tanakaet al.17 introduced an adatom hopping ter
between adjacent terraces over a step edge proportion
the difference between the chemical potentials on the
terraces. Although this interterrace hopping could be f
compared with attachment of adatoms to the step edg
could still be slow compared with diffusion on flat terrace
thus allowing discontinuities in the adatom concentrat
field at step edge positions. Here we take this limit, assum
that the adatom diffusion rate on flat terraces is always m
faster thanboth the attachment and interterrace hoppi
rates.

The effect of step permeability on the relaxation of st
bunches due to step repulsions can be studied straigh
wardly. In the absence of an external driving force, the a
tom chemical potential on each terrace is a constant den
by mn

t ~see Fig. 1 for the labeling of terraces!. We can write
the net surface flux at the right-hand side of stepn as

j n
1;k ~mn2mn

t !1p ~mn21
t 2mn

t !, ~18a!

and the flux at the left-hand side of stepn as

j n
2;k ~mn21

t 2mn!1p ~mn21
t 2mn

t !. ~18b!

Assuming again the quasistatic limit wherej n
15 j n11

2 , we
can solvemn

t for any given set ofmn from a system of linear
equations. The analytic solution is given in the Appendix
is easy to see that thep5` and p50 limits correspond to
caseA and caseB dynamics, respectively.

As mentioned in Sec. II, experiments14 on the relaxation
rate of step bunches on Si~111! near 900 °C show a siz
scaling exponenta54.360.5, consistent with thep50 limit
(a54). In comparison, if we assumep52k, we obtaina
53.6 for the bunch sizes used in experiments and largep
will give even smallera. Therefore we concludep,2k and
can dismiss the importance of step permeability for Si~111!
at 900 °C. However,p can be large for other systems,
even perhaps for Si~111! at different temperatures. Tanak
et al.17 estimatedp536k on Si~001! at 950 °C. Here we
discuss some interesting effects step permeability has
electromigration, which could be a way to detect any sign
cant permeability if it exists.

The adatom concentration field has a constant gradien
each terrace when there is a driving force. We need to
more precise in our description of the microscopic origin
step permeability to obtain a complete theoretical desc
tion. Here we consider the case where the step permeab
is proportional to the difference between thelocal adatom
chemical potentials immediately to the left- and right-ha
sides of the step. Equations~18a! and ~18b! then become
e
ent
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j n
1;k @mn2m t~xn

1!#1p @m t~xn
2!2mn

t ~xn
1!# ~19a!

and

j n
2;k @m t~xn

2!2mn#1p @m t~xn
2!2mn

t ~xn
1!#. ~19b!

m t(x) can be determined in much the same way as before
assuming there is a gradient,F, in m(x) on each individual
terrace. In a uniform step train, the external force create
local chemical potential gradient, and introduces a ‘‘leak’’
surface flux from the permeability term. We now show th
the ‘‘leak’’ will create a long wavelengthbunching instabil-
ity, in contrast to the pairing instability familiar from th
BCF picture.

In a linear stability analysis, the step positions are writt
as

xn~ t !5(
f

einf1v~f!tuf~0!1nw0 , ~20!

where

uf~0!5
1

N(
n

e2 inf@xn~0!2nw0#, ~21!

for small perturbations from uniform configurations. Figu
5 plots the amplification exponentv of a uniform step train
as a function of a dimensionless wave number (f5p corre-
sponds to the pairing mode!. The solid line is forp/k5100
and the dashed line is forp50. The maximum linear insta
bility has shifted to much longer wavelengths. Note that ve
strong repulsive interactions could also produce such a sh6

However, for systems with step permeability, there is a v
rapid ~almost linear! growth in the average size of ste
bunches in the initial stage, which then crosses over to
t1/2 behavior. In contrast, for the purely repulsive system,
growth rate is approximatelyt1/2 at all times. These charac
teristics could be used to detect step permeability if it is v
large.

FIG. 5. Linear instability of a uniform step train. The loca
hopping of adatoms over step edges~step permeability!, coupled
with the step repulsions, moves the maximum instability away fr
the step pairing mode (q5p) to longer wavelengths. The solid lin
is for p/k5100 and the dashed line is forp50. Other parameters
are taken from setA in Table I, although we do not attempt t
describe Si~111! realistically here.
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VII. MONTE CARLO SIMULATIONS
OF THE 2D SOLID-ON-SOLID MODEL:

MODIFIED ARRHENIUS DYNAMICS

For Si~111! at 900 °C the steps are mostly straight and
1D model is adequate for most purposes. However, at hig
temperatures, there exists noticeable bending of steps.
example, at around 1100 °C when evaporation is signific
2D arrays ofcrossing stepsform between step bunches. Ka
del and Weeks5 proposed a~quasi! 2D step model where the
velocity of each step depends only on thelocal neighboring
terrace widths in the direction perpendicular to the aver
step edge direction. This model reproduced many feature
the crossing arrays quite accurately.12 Further developments
along these lines have been reported in Refs. 23 and 24

A full 2D step model taking account of 2D adatom diffu
sion on terraces with boundary conditions on the mov
curved steps is very difficult to study. Also it is necessary
go beyond the BCF framework, which excludes the creat
of new steps to explain the antistep bunches reported
Latyshevet al.35 Here we study a generalized 2D solid-o
solid ~SOS! model that takes explicit account of astep edge
barrier in the kinetics of adatom attachment/detachmen
step edges. We believe this is probably the simplest 2D
croscopic model that can provide a physically reasonable
scription of both adatom diffusion and step motion in Si~111!
and related systems. However, there is almost no hop
simulating the long time behavior of such a microsco
model using realistic parameter values. Thus, in contras
the 1D step model we studied above, here we concen
only on qualitative properties. Specifically, we consider
very large external driving force along with a very sm
average terrace width. These extreme choices will per
significant step motion in the computer time available to

The SOS model is defined on a square lattice with to
energy

H5(̂
i j &

euhi2hj u, ~22!

where hi is the column height and̂i j & denotes nearest
neighbor pairs on a square lattice. Surface diffusion is sim
lated by exchange of atoms on top of a nearest-neighbor
of columns (hi→hi21 and hj→hj11, where i , j are
nearest-neighbor sites!. A driving force is simulated by
asymmetric attempt frequencies in directions along and
posite to the force direction. For example, when the force
in the x direction, we assume the attempt frequencies in
1x and2x directions satisfy the following relation:

p1x /p2x5exp~2Fa/kBT!. ~23!

Our next task is to describe how the probabilityG i j for an
adatom hopping fromi site to j depends on surface configu
rations. Often in statistical physics,Metropolis dynamicsis
used, where the hopping probability depends on the ene
difference between the final and initial stateDEi j through the
relation

G i j 5min@1,exp~2DEi j /kT!#. ~24!

This dynamics often has the virtue of fast equilibration in t
absence of a driving force since there are no barriers
a
er
or
t,
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movements with no change in energy, but it does not usu
provide a physically realistic description of actual dynamic
processes.

Krug and Dobbs9–11 have studied in detail the effects o
an external driving force combined with Metropolis dynam
ics in a SOS model. They used these simulations along w
a continuum model to ‘‘describe theuniversal features’’ of
the electromigration problem. However, the resulting surfa
structures have several artificial features that do not resem
experiments on Si~111! surfaces. For example, in their simu
lations, a surface instability develops regardless of the c
rent direction and then there are no extended flat region
the surface with¹h50. Experiments on Si~111! generally
reveal flat terraces and individual steps coalescing i
bunches when the current is in the unstable direction,
reversing the current direction willstabilizethe uniform step
train.

Of course it is possible that at much later times so
limiting features of both the experiments and simulatio
could be insensitive to the choice of dynamics, and he
universal. For example, most driven surfaces eventually
come ‘‘rough’’; because of transverse step fluctuations36 this
probably holds true in principle for the experiments at su
ciently large length and time scales even when the curren
in the nominally ‘‘stable’’ direction. We show here that wit
a more physically motivated choice of dynamics, the S
model can provide a qualitatively accurate description of
length and time scales probed by present experiments
well as of any longer time ‘‘universal’’ features, if such ex
ist.

Diffusion on surfaces is usually an activated process w
an energy barrier. A different dynamical scheme,Arrhenius
dynamics,takes this physics into account in an extreme w
by assuming that the energy barrier is simply the bind
energy of the atom, independent of the final configurati
However, Kruget al.10 found that there isno morphological
change for this dynamics under an external driving for
They showed in general that instabilities in a continuu
model are associated with the dependence of the adatom
bility on the local slope, while instabilities in a microscop
model require a dependence of the hopping probability
the final configuration. Here we obtain such a configurat
dependence by modifying the original Arrhenius dynami
which provides a reasonable description of activated p
cesses such as surface diffusion, to include anextra barrier
that arises from the presence of steps.

This energy barrier is motivated by the physics of rebon
ing and surface reconstruction that can occur near steps.
surface atoms near steps on Si~111! surfaces usually rear
range themselves and rebond in characteristic ways to lo
the step energy.37 To incorporate anadditional adatom into
the step usually involves the collective motion of many
oms as this rebonding is modified. This process has a hig
activation energy than the simple pairwise additive bond p
ture in the usual SOS model would suggest. Also, in ma
cases the repeatable step unit, the kink, has a complex s
ture, and requires the incorporation of two adatoms to br
about its movement. To take account of this physics in
simulations in a simple way, we assign an additional bar
for any movement that lowers the energy, since all atta
ment events are associated with a decrease in energy. So
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detailed balance holds in equilibrium, the same barrier m
also be added to a movement that increases the energy
call this schememodified Arrhenius dynamicsand thus as-
sume

G i j 5H exp~22 e ni !, DEi j 50

b exp~22 e ni !, DEi j Þ0,
~25!

where b,1 and ni is the number of horizontal bonds th
surface atom at sitei has.

This way of introducing an attachment barrier was su
gested by Barteltet al.38 in their study of step fluctuations
We view modified Arrhenius dynamics as a convenient
not necessarily unique microscopic scheme that produce
‘‘right’’ boundary conditions ~giving in particular a finite
value for the kinetic coefficientk) in the mesoscopic ste
models discussed in previous sections. Thus the dynam
behavior of mesoscopic and macroscopic scale feature
the simulations should be physically meaningful.

We start the simulations with a uniform step train wi
steps orientated along the vertical (y) direction. The height
of the surface increases along the positivex direction. Peri-
odic boundary conditions are used along they direction. In
the x direction we requireh(x1Lx ,y)5h(x,y)1N0, where
N0 is the initial number of steps in the system. For a syst
of size Lx3Ly , the initial average terrace widthw0
5Lx /N0. With a diffusion bias in the average step dow
direction (p1x,p2x ,p1y5p2y), the system is unstable to
wards step bunching. The step bunches continue to coa
consistent with the results of previous sections. Figure 6
snapshot of a typical configuration after some bunching
occurred. The dark regions are step bunches, and si
height crossing steps are visible between them.

The qualitative features of the simulations are very sim
to the experiments, and also to the predictions of the s
model. Vicinal surfaces are stable during the time simula
when the driving force is in the step up direction, and u

FIG. 6. Snapshot of a simulation using a solid-on-solid mo
with a diffusion bias perpendicular to the step edge direction, a
about 2.13106 Monte Carlo steps. Parameters used here arekT
50.8e, px50.3, p2x50.7, py5p2y50.5, and the size of the sys
tem is 5123512. The dark lines are normal~up! steps and white
lines are antisteps~down steps!.
st
We
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al
in

en,
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le
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d
-

stable towards step bunching when the force is in the s
down direction. Crossing steps form when there is signific
evaporation. Preliminary results show that the coarsen
rate is consistent with thet1/2 power law, but so far the
system size and simulation time are too small to determ
the exponent accurately.

In the 2D step model studied in Refs. 5 and 24, the st
are all ascending~or descending! at a giveny position. Al-
though there is significant step bending, steps cannot f
overhangs since step positionsxn(y) are defined as single
valued functions ofy. In the SOS model, there is no suc
restriction. Indeed, we can see from Fig. 6 that some cros
steps have bent so much that they have createdantistepsat
certainy positions, i.e., steps of opposite sign to the init
ones at particular fixedy positions. In our simulations, the
temperature is still well below the roughening temperature
the flat surface, but it is not energetically forbidden to cre
new steps or overhangs, in contrast to the step models
viously studied.

It is interesting to compare these results with the exp
ment by Latyshevet al.35 They observedantistep bunch for-
mation taking place after step bunch formation. The fir
stage of the antistep bunch formation occurs through
bending of the single height crossing steps between the
bunches, creating a region of bunched steps of the oppo
sign. Indeed, we have directly observed step bunches cre
from this kind of step bending in our model with modifie
Arrhenius dynamics when we applied the external force i
directionparallel to the initial ~and average! step edge direc-
tion. In Fig. 7, the initial~and average! step edge direction is
in the vertical (y) direction. The bias is in the downward
(2y) direction. The dark regions are step bunches form
by steps bending in the opposite direction to those individ
steps~black lines! on the terraces. As in the previous cas
following the bias (2y) direction, there are regions of step
going up, and regions of antistep bunches going down.
derive elsewhere39 from a 2D BCF-like model a new linea
instability when the diffusion bias is parallel to the step ed
direction that we believe underlies the patterns seen her

These features obtained from simulations of the new S
model are quite different from the ripple structure report

l
r

FIG. 7. The same parameters as in Fig. 6, except that the dri
force direction is parallel to the average step edge directionpy

50.3, p2y50.7, px5p2x50.5). The initial steps are along th
vertical (y) direction.
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by Dobbs and Krug11 using Metropolis dynamics, wher
there are no distinct steps and facets after the surface d
ops large structures. Here the steps and terraces are e
discernible. Because of our more realistic treatment of
physics of surface diffusion and attachment at steps and
favorable comparison with experiment, we believe th
modified Arrhenius dynamicsprovides a better descriptio
for current-induced step bunching on Si~111!.

VIII. CONCLUSION

In summary, the evolution of the structure of Si~111! sur-
faces during electromigration at 900° C can be underst
quantitatively using a one-dimensional step model, with
rameter values and the mass transport mechanism d
mined from experiment. Specifically, thet1/2 power-law
growth rate for step bunch sizes is reproduced. We conc
trate on the case where mass transport is limited by the
of adatom attachment to a step edge, but the method ca
easily generalized, as illustrated by our discussion of dir
adatom hopping between different terraces.

The 1D step model has averaged over the individ
movement of adatoms and atomic scale fluctuations of
steps, thus permitting simulations of the long time behav
using realistic parameter values. However, at higher te
peratures, when 2D effects such as step bending can be
even the quasi-2D step models considered to date5,24 may not
be sufficient. Moreover an exact BCF-like treatment of f
2D diffusion problem seems prohibitively difficult. To exam
ine these issues, we carried out Monte Carlo simulations
2D solid-on-solid model, using physically motivated a
sumptions about the dynamics of surface diffusion and
tachment at step edges. In particular we usedmodified
Arrhenius dynamicswith an extra barrier for attachment o
adatoms at step edges and find good qualitative agree
with experiment. A new step bending instability is se
when there is a force acting on adatoms along the step e
direction that may be related to experiments by Latysheet
al.35 In general we believe that this approach of combin
information from experiment, microscopic simulations, a
mesoscopic step models may prove useful in a numbe
different problems in surface science.
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APPENDIX

By requiring j n
15 j n5 j n11

2 and imposing periodic bound
ary conditions in Eqs.~18a! and ~18b!, we arrive at the fol-
lowing system of linear equations for the terrace chemi
potentials for a system ofN steps:

F c0 c1 0 ••• c1

c1 c0 c1 ••• 0

0 c1 c0 ••• 0

A A A � A

c1 0 0 ••• c0

GF m1
t

m2
t

m3
t

A

mN
t

G5kF m11m2

m21m3

m31m4

A

mN1m1

G ,

~A1!

where

c052~k1p! c152p, ~A2!

andm i
t5m t@(xi1xi 11)/2#. m i

t can be solved for analytically
since the matrix on the left-hand side of the equation i
circulant40 matrix. The result can be expressed as

mn
t 5(

m
Km~mn1m1mn1m11!, ~A3!

where in the limitN→`

Km5
k

2~k1p!

1

A12a2S 12A12a2

a D m

, ~A4!

and

a5
p

k1p
. ~A5!

Km describes the correlation between the adatom chem
potential at a given terrace with the adatom chemical pot
tial m steps away.Km decays exponentially asm increases. It
is convenient to defineNc as the number of steps over whic
Km decreases by half, i.e.,

KNc
5K0/2. ~A6!

Whenp@k, we have

Nc' ln~2!A p

2k
. ~A7!

Since Nc is the range of correlation between the chemi
potential values on different terraces, the mass transpo
effectively nonlocal over a number of steps much sma
than Nc , and is local over a number of steps much larg
thanNc .
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