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Quantitative theory of current-induced step bunching on S{111)
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We use a one-dimensional step model to study quantitatively the growth of step bunché&kldnssirfaces
induced by a direct heating current. Parameters in the model are fixed from experimental measurements near
900 °C under the assumption that there is local mass transport through surface diffusion and that step motion
is limited by the attachment rate of adatoms to step edges. The direct heating current is treated as an external
driving force acting on each adatom. Numerical calculations show both qualitative and quantitative agreement
with experiment. A force in the step down direction will destabilize the uniform step train towards step
bunching. The average size of the step bunches grows with electromigration s, with 8~0.5, in
agreement with experiment and with an analytical treatment of the steady states. The model is extended to
include the effect of direct hopping of adatoms between different terraces. Monte Carlo simulations of a
solid-on-solid model, using physically motivated assumptions about the dynamics of surface diffusion and
attachment at step edges, are carried out to study two-dimensional features that are left out of the present step
model and to test its validity. These simulations give much better agreement with experiment than previous
work. We find a step bending instability when the driving force is along the step edge direction. This instability
causes the formation of step bunches and antisteps that is similar to that observed in experiment.
[S0163-182698)03923-X

[. INTRODUCTION results in the temperature regint@00 °Q studied by Will-
iamset al.

In 1989 Latysheet al! made the startling discovery that  In Secs. Il and Ill, we briefly review some of the experi-
a direct heating current can induce step bunching on vicinanental and theoretical work that led to our present model.
Si(111) surfaces. When the sample is resistively heated withVe focus on the case where thiep motion is limited by the
direct current, steps can rearrange into closely spaced stétachment rate of adatoms to step edgescontrast to be-
bunches separated by wide terraces. Around 900°C, the stég limited by the diffusion rate on terrage$Ve also assume
train is unstable towards step bunching when the current is ifPcal mass transpory surface diffusion. These assumptions
the step-down direction, but is stable when the current direcyield a minimal mesoscopic model that is consistent with all
tion is reversed. Surprisingly, as the temperature is increasgdf€vious experimental results. In Sec. IV we give numerical
to 1190° C, the stable and unstable current directions arfeSults from this model using realistic parameter values and
reversed, i.e., the step train is unstable with step-up currefiterpret and analyze some of the results in Sec. V. We
and stable with step-down current. There is another suchriefly discuss in Sec. VI some effects of step
reversal as the temperature is increased further. permeability®*’ (direct adatom hops from one terrace to an-

Since then the phenomenon has received a great deal 8the), which might be important in other systems, e.g.,
attention. Theoretical work has mainly concentrated on twoSi(001). In Sec. VIl we present some results of Monte Carlo
goals: understanding the microscopic physics underlying théimulations of a microscopic solid-on-solid model, using
instability towards step bunching and the reversal of the unPhysically motivated assumptions about the dynamics of sur-
stable current direction with temperati#é,and determining ~ face diffusion and attachment at step edges. These results are
the mesoscopic evolution of the surface morphology as # qualitative agreement with experiment, in contrast to pre-
result of the instability~! Recently Wiliams and Vious work~** using conventional Metropolis dynamics.
co-worker$?~15 carried out a series of measurements onThey also help in the understanding of additional two-
Si(111) surfaces at 900 °C, to provide a quantitative underﬂimensional(ZD) fegtures and instabilities Fhat cannot be
standing of the dynamics. By controlling the experimentaldescribed by the simple 1D step model. Final remarks are
system and comparing with theoretical models, they werdiven in Sec. VIII.
able to extract detailed information about the mechanism and

to determine qu.antitative v.alues of.relevant p_arameter;. Al- Il. 1D STEP MODEL WITH EXTENDED
though the details of the microscopic mechanisms leading to
- _— - . . . VELOCITY FUNCTIONS
the change in the destabilizing current direction with varying
temperature are still not fully understoéd, we show here Vicinal surfaces, which are created by a miscut along a

that there exists a reliable mesoscopic theory that can prdew-index plane below the roughening temperature, are most
vide quantitative agreement with a variety of experimentanaturally and usefully described by a model of interacting
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wherea? is the area of a single atomic cell on the surface,
the single step height, and,=x,,, ; — X,, the width of terrace
n. Here the parametey is just the coefficient of the® term

in the well-known Gruber-Mullir® form for the projected
free energy of vicinal surfaces with slope u'(x;) is the
adatom chemical potential on the terrace adjacent torstep
approaching,, from the right-hand ¢) and left-hand ¢)
side?! Ceq IS the equilibrium adatom concentration on ter-

ces. We assume there is no asymmetry for the kinetic co-

. . . r
steps of thg same sign. Because of the inherent anisotropy B?ficient for adatom attachment from upper and lower ter-
the underlying crystal structure, these surfaces often exhib ces . =x_)

T=K_).

qua;jsrlone—;jllmer:jsmnal fteatxlres,ththus rgaklnfg ta 1D sf'iep To determine the adatom chemical potential on terraces
model usetul and accurate. AISo the number of SIeps 1S o e./rlt(x), we need to know the mass transport mechanism on
conserved as the surface evolves, permitting further simpli

ficati in th si the surface. If it is much easier for adatoms to hop directly
ications 1n the analysis. - across a step edge from one terrace to another one in com-
The change in the morphology of vicinal surfaces can b

) . ; arison to attachment at the step edge, then the adatom
described in terms of the velocity of each step as long as NBhemical potential becomes a constant on all terraces. We
thelis CaLe Cliearg[e&d(B C(I):; ; dizstroyt/ed. The h iliﬁs'?efer to this asionlocal mass transpoficaseA). The other

urton--abrera-Fra reatmént assumes that e i i< \when there is no significant hopping of adatoms over
mass transfer is governe.d by a set Of. adatom d|ffu3|o_n €qugne step edge, as assumed in the BCF model; we call this the
tions on each terrace, with stc_eps acting as perfeqt. S'.nks alfhit of local mass transport(case B). Experiments on
sources for adatom@r vacanciesso that local equilibrium Si(111) show that the relaxation rate of a step bunch it
is always maintained. However, the original BCF picture is

valid only for simple materials where adatom diffusion is theStelos scales withl " where«=4.3%0.5. As we have dis-
only P . cussed in detail elsewhet?this is consistent with theo-
rate limiting process. Extensions of the BCF model can be o ; :
) > . cal mass transport limi{caseB), and we will assume this
made to include a finite attachment/detachment term in th

boundary conditions. This is needed for materials like siIi-ﬁm't in most of this paper. In Sec. VI we will consider a
more general scenario.

con, where the atom exchange rate between steps and ter- Assuming local mass transport, the step velocitieét)

races is not fast enough to permit the adatom concentratio(r;an be determined by solving the diffusion equation for ada-
near the step edge to achieve local equilibrium. y 9 d

In his important work on the instability induced by a di- toms on terraces with boundary conditions at step edges gov-

. . erned by linear kinetics. The equations can be written gener-
rect heating current on Qil1), Stoyano% proposed such a v i tended velocity function forfa2*
modified BCF model, including both a finite adatom ally in anextended veloctly function for
attachment/detachment rate at step edges and an adatom drift
velocity (or equivalently, an external driving force due to the on=fu(Wnittn o) H - (Wooaiin-1.0). - (3)
electric field. Natori’ extended the work of Stoyanov to in- We will ite d h | f for th loci
clude step repulsions. The idea of incorporating step interag- ew not write down t € general form or_t e ve ocity
tions in a generalized BCF model has been further developeéimcuqnSfi for the electromlgratlon .problem since itis very
by Sato and Uwahé. complicated and not very instructive for our purpose. A

To describe the exchange of atoms or vacancies betweezljbrggleed I:argllt)\scal;[/l:)Sr:ogilzzlntexwtgses)i(gr?s”rk?ae\?é \évélér?e islesr; b
steps and their neighboring terracegattachment/ : 9 P 9 y

5
detachment we use a linear kinetics theory and write the net™any author§. L .

. In studies of surface dynamics, it is often convenient to
surface flux from step to terracen (see Fig. 1 for the

. consider idealized models where the kinetics is limited by a
labeling as
few slow processes on the surface, and the rates of other
faster processes are taken to infinity. For BCF models, ne-
(18 glecting evaporation and deposition, there are two basic
rates, the attachment/detachment ratand the adatom dif-
fusion rateD. Bartelt et al®® estimated the attachment/
and the flux from stem to terracen—1 as detachment rate from the step fluctuations @fL$1) at 900
°C under the assumption that attachment/detachment is the
o KCeq o 1b rate limiting process, while Pimpineklit al“* estimated from
In= kT [sn=w (X )1, (1b) the same data the diffusion rate under the assumption that
adatom diffusion is the rate limiting process. It is useful to
wherepu, is the atom chemical potential at stepdefined as define a length scald=Dg/x. Whend is very small, the
the increase in free energy per atom when atoms attach to tlstep dynamics is said to lffusion limited and whend is
step. For a 1D step train with elastic and entropic step repulvery large, the dynamics ittachment/detachment limited

FIG. 1. lllustration of the labeling of steps and terraces and
kinetic coefficients.

.. K4Cgq

In =" [n— ' (X7)],

sions, this can be written s However, direct estimation of this ratio is difficult. For
example, Table | lists several sets of parameters that give
1 1 good agreement with experimetiten the electromigration-
Mn:29h3a2< T —) , (2 driven relaxation of step bunches on(1i1), with d ranging
Wh-1  Wj from 10 to 16 A. Physicallyd has to be finite and whether
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TABLE |. Sets of parameters that give a good fit to the relax- Ill. EXPERIMENTAL DETERMINATION

ation of step bunches. We u§é=206qa4/< (ceqa2:0.2 ML) to OF THE PARAMETERS

compare with previous work. The table is taken from Ref. 15.

Williams et al. devised a series of experiments to measure

Parameter set  d (A) qe) T(A¥s)  D(A¥s) the various parameters and also test the assumptions about
the mass transport limits discussed in the previous section.

A 100000  0.006 %10  5.2x10% As mentioned earlier, on &i11) at 900 °C, the relaxation of

B 5000 0.006  &10'  3.4x10% step bunches is consistent with the local mass transport limit.

C 100 0.03  Xx10° 52x10° The step interaction parametgrcan be measuréd® from

D 10 0.2 2x10° 3.5x10° the distribution of terrace widths and step positions at equi-

librium, and has an estimated value around 0.015 &V/A
Assuming attachment/detachment limited kinetics for mass
a system is diffusion limited or attachment/detachment ”m“transport, the kinetic coefficient can be measured indepen-
ited depends on the comparisondoiith other length scales, dently from the thermal fluctuations of the steps and the
e.g., the typical terrace width. Here we refer to the mathyglaxation of step bunches. Rather than usingve define
ematical limitd— as thecomplete attachment/detachment "= 2c_ a4« to compare with earlier work gives the step
limited model, and we call the limil—0 the complete dif-  mopility for the Brownian motion of an isolated st8mnd is
fusion limitedmodel. . . measured to be aroundsL0’ A¥s. This value also gives a
As suggested by Table |, the relaxation experiments cagood fit to the relaxation of step bunches, thus providing
be explained using an effective chamgef the adatoms that additional evidence supporting the local mass transport as-
reaches a finite and physically reasonable valug-asc. In - symption aside from the scaling behavior mentioned before.
contrast,q must tend to the unphysical limit whend—0. The force on adatoms due to the direct heating current can
Therefore the complete attachment/detachment limite¢he measured from the relaxation of the step bunches that
model is well defined, and we will use this limit to illustrate occurs after reversing the current to the stable direéﬁon'
the mechanism for eleCtromigration. As we show belOW, Ethe force acting on each adatom can be Convenienﬂy de-
(3) simplifies considerably in this limit. Moreover, a value of g¢ribed in terms of an effective chargewith F=qE, where
d=>3000 A is predicted by extrapolating the diffusion rate the experimental value &=7 V/cm. Table I lists four sets
from h?)lgher temperatures using a diffusion activationof parameters that give good fits to the decay of step bunches
energy”® of 1.1 eV. However, numerical solutions of E®)  with a direct current in the stabilizing direction at 900 °C. As
using any of the parameter sets in Table | are consistent withhentioned before, as becomes very large, the values @f
the step bunching experiments, including the power law foiand T reach limiting values, which we use in the complete
coarsening. attachment/detachment limited model. Other relevant param-

As in the Stoyanov modélwe assume that there is a eters include the average terrace width=1100 A, and the
force F acting on each adatom because of the electric fieldeyaporation time for one monolayeg=1250 st

The adatom flux on terraae under this driving force is

t
o= DsCeq( N F) 4) IV. NUMERICAL RESULTS AND COMPARISON
n kT ax ' WITH EXPERIMENTS
With complete attachment/detachment limited kinetibs, When the adatom drift velocity is in the step down direc-
tends to infinity relative to the attachment rate or j,. tion (F<0), one can show from a linear stability analysis

Therefore the adatom chemical potentig(x) has acon-  using the parameters in Table | that a uniform step train is
stant gradient Fon each terrace. In generad!(x) is affected  unstable towards step bunching. The evolution of the step
by the motion of the neighboring steps, but usually the stepbunches is determined by numerically integrating Eg),
move very slowly so that they can be treated as effectivelystarting from a step train with small random deviations from
stationary as far as the diffusion of adatoms is concernediniform spacing. The system continues to coarsen by form-
Under thisquasistatic approximatigff at any given time, ing larger and larger step bunches. Figure 2 shows the aver-
the total surface flux into terragefrom the two neighboring age bunch siz&l,, for a system of 2049 steps as a function
steps {1 —j,.1) equals the total amount of evaporation of time, using Eq.(5) for the complete attachment/
from this terrace, which is given hyqun/TEWn/Tea where detachment limited model. A bunch is defined by a number
7 is the average lifetime of an adatom on the terrace before #@f adjacent steps with no terraces between them larger than
evaporates. With these approximations, the step velocities iWo/2. The average bunch size is defined Bynp,/Z,p,,
Eq. (3) can be written in the simple forf?* wherep,, is the numberfor density of bunches consisting of
n steps. It can be fitted by & growth rate with3~0.50.
Kceqa2 Results using the more complicated velocity functions in Eq.
Un:W(ZMn_ﬂn+1_ﬂnfl)+k+wn+kanfll (3) obtained from solutions of a generalized BCF equation
(5) and parameter seA are almost indistinguishable on this
scale.
where This compares very well with the STM results of Yang,
) Fu, and Williams:® They show at both 945 °C and 1245 °C
o= kCeA“F n i (6) that the growth of the facet siz&sbetween two step bunches
- 2kT 27 satisfiest? where 8~0.5. It is a good approximation to re-
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FIG. 2. Evolution of the average bunch size using parameter set
A. The solid line is a fit ta? with 8=0.50. FIG. 3. Effects of growth conditions on the step bunching.

late the average number of steps in a buhgh, to Z/wy. sorption rates. AR increases, the bunching rate decreases,
They observed that at 945 °C, after about 120 min of anneain good agreement with the experimental results of Yang, Fu,
ing time, the average terrace width between step bunchesnd Williams*® This decrease in the coarsening rate with
grows to about 3500 A. In the numerical simulations, theincreasing deposition was also noted by Tersaifal3? in
average terrace width grows to about 6800 A in the sameheir study of stress-induced step bunching. As Kandel and
time. We consider this quite satisfactory agreement, giveiWeeks argued, when the step train is traveling in a certain
the uncertainties in the values of the experimental parametedirection (e.g., due to deposition or evaporatipa step at
we used. Thus, not only does the step model give the correthe front end of a step bunch can leave the bunch and join
power-law growth rate, it also gives good quantitative agreewith the step bunch in front of it, causing an exchange of
ment with experimental results at 945 °C. steps between step bunches. As the growth rate increases, the
Simulations using other sets of parameters in Table | provelocities of these crossing steps get larger and larger, so
duce slightly different results, but all agree with the experi-more debunching occurs, thus reducing the coarsening rate.
mental data within the errors in measured parameters. MoreéA detailed study of the effect of debunching requires a 2D
over, they all have approximately & coarsening rate model and is beyond the scope of this paper.
during the time simulated and experimentally observed.

Therefore we cannot determine a unique set of microscopic V. ANALYSIS: QUASI-STEADY STATE
parameters accurately from the coarsening rate alone. AND COARSENING RATE
Dobbs and Kru§f' also obtained &' coarsening rate
from simulations of a 2D solid-on-solid model using Me-  In this section we will try to understand analytically some

tropolis dynamics. However, they obtained t& behavior  of the numerical results. Although it is straightforward to use

only when there is significantateral fluctuations of step the solution of the diffusion equation to determine the veloc-

bunches as can sometimes occur in the later stages of coaitt functions in Eqg.(3) when simulating the step bunching

ening, while initially the growth law they observed went as numerically, it is more convenient and instructive to consider

Y4, Experimentally there is no such transition, and we obtairthe simple linear velocity function model of E(). Initially

this kind of coarsening from a 1D model with straight steps.we also neglect any deposition or evaporation.

Moreover, as discussed below in Sec. VI, there are other When the surface fluj is a constant everywhere, the

unphysical surface features that arise from the use of Mesurface is in a steady state. As we will show later, such a

tropolis dynamics to describe (3111 and related systems, steady state is possible whEnis in the step down direction.

and we suggest there an alternative dynamical scheme thgtgure 4 is snapshot of the profile of the surface during one

gives good qualitative agreement with experiment. particular simulation. Assuming that the step bunch between
As another application of the step model, we also simulaté\ andB is in a steady state with a surface atom fjdix we

the step bunching occurring undgrowth conditions It is have from Eqgs(1a), (1b), and(14),

well known that a Schwoebel barriérhas very different

effects on growth and evaporation. For example, if there is . KCeq

an additional barrier for an adatom to attach to a step edge (Ns=1)j* =5 5 (va—pstF Wap), )
from the upper terrace, a 1D step train will be stabilized

under growth and destabilized under evaporation. However, F

even in the absence of a Schwoebel asymmgiat is, even
when k. =«k_) as assumed here, simulations of the present
step model under growth conditions shovdecreasdn the
bunching rate with increasing deposition rate. Figure 3
shows the dependence of the average bunch size as a func-
tion of time for different growth conditions. It is useful to  FG. 4. Typical profile of step configurations when step bunches
define R= R7/ceq as the ratio between deposition and de-are induced by a force acting on adatoms in the step down direction.
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whereN; is the number of steps in the bunch amgyg is the  ing Eq.(14), or analytically in terms of hypergeometric func-
distance betweeA andB. On the flat terrace betwedhand  tions. Equation(14) was first derived by Nozies® in his

A’ the flux is given by study of surface dynamics below the roughening transition.
The maximum slope of the step bunch wjth<<0 is given
. _ KCeq by z7®=[ —j* (H/2)%kT/(2kgh?ce) 1. For a true steady
*=——(ug—ua +F Wgar). 8 X e
. 2kT(’uEs Hea sa') ® state with a periodic array of step bunchgs=j% [Eq. (9)].

We expect* to fluctuate around this value for a systemin a

For a periodic array of step bunchesu,=u,,, and the " . . )
P Y P Ha— Ha quasi-steady staté is approximately the height of the step

steady-state flux is then

bunch for large bunches. We havf®~N2"? since j%, is
w1 KCeq KCeq F Wo independent ofN;. This can be experimentally tested by
Jss:N_S Sk T Wan = — o (9 measuring the average slope of the step bunch as a function

of the average bunch size. Note that the continuum limit

Therefore the steady-state adatom current is independent pfeaks down near the edges of a step bunch where sharp
the size of the step bunches. This result is valid for a periodighanges in the local slope occur.
array of step bunches and is important in determining the Strictly speaking, the above analysis only holds for
time scaling exponent, as will be shown at the end of thissteady-state profiles with complete attachment/detachment
section. limited kinetics, but we expect it to be a good approximation

The steady-state profile of the step bunch can be calCuor the quasi-steady-state profiles that arise as the step
lated numerically. Here we go to the continuum limit, which punches slowly coarsen with time. Indeed simulations and
is a good approximation when the number of steps in thexperiment agree that the step bunches coarsen with time as
bunch is large. 1Z(x) denotes the height of the surface, thent# with B~0.5. ThistY2 power law can be justified by a

the slope isz,(x) =dz/dx. Using the continuum version of scaling argument. We assume that-asx, there is only one

the Gruber-Mullins free energy functior&f® characteristic length for the system, which scales’asVe
can thus write all the variables on the surface in terms of the
H= Lyj glz(x)|3dx, (100  scaled lengthx/t# at timet. We have noted that the steady-

state flux is independent of the size of the step bunfEgs
which is appropriate for vicinal surfaces below the terracel9)]- For a system in a quasi steady state, we thus assume that
roughening temperature, we can write the adatom chemicahe flux can be written as a function of the scaled length only

potential ass and there is no extra time dependence, i.e.,
) 2% _ ¢ 2hiz an J(x,)=J(x/tP). (15)
X)=a*h—=—6ga‘h|z,|z.. , o
m 6z g X In contrast, the surface profile should maintain a constant

Herez,, is the second derivative ai(x) with respect tox. average slope and thus must have the following scaling form:

As in the step moc_iel discussed earlier, we can drop the I.inear z(x,t)=tPZ(x/tP). (16

step energy term if no new steps are created. Note that in the

continuum description slopes of different signs correspond t&ubstituting these into the equation expressing microscopic
positive and negative steps. Here we consider step profile®ass conservation:

with positive slopes everywhere and thus canzagtz,. In

the attachment/detachment limit, the surface flux is given by EZ(X,U“ -] (x,1), (17)
) KCgq h ] ) )
j(x)= KT 2. F— 5,@(x) . (120  we haveB=1/2 by comparing the leading exponents on both
X

sides of this equation. This prediction is in good agreement

The above equation has the physical property that the addlith both the experimental and the numerical work, as
tom mobility (as the response to an external field in- ~ Shown in Fig. 2.
versely proportional to the slopg,. To calculate the step
bunch profilez(x), we can neglect the first term in EQL2) VI. EFFECTS OF STEP PERMEABILITY
if the terrace width inside a bunch is much smaller than the

distance between bunches. For an isolated step bunch with In the previous sections we focused our St,,Udy of the s_tep
SN model on vicinal Si111) surfaces around 900 °C. Our basic
j(x)=j*, using Eq.(12), we have

approach can be applied more generally, though the limits

3gh?KCeq @ . we used above are not necessarily satisfied. However as long
T&(ZXZXX)ZJ*ZW (13 as the mass transport is local, other differences from our
present model, e.g., a finite diffusion length or asymmetric
This can be reduced to step edge attachment rai&chwoebel barriejscan be stud-

ied using the extended BCF model and the velocity function
5 5 approach of Eq(3) in a more or less straightforward way.
[(z=20)"=(HI2)7], 14 We will not detail this work here, but instead turn to the
conceptually interesting case step permeabilitywhich can
wherez, and H are integration constants. The step bunchmake the extended BCF picture no longer valid. This is mo-
profile z(x) can be easily calculated numerically by integrat-tivated in part by recent work by Tanaketall’ and

R
3. )
ZX

 2kg h*Ceq
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Stoyanov** In the classic BCF picture with local mass trans-
port, the only way to achieve adatom transport from one
terrace to another is through attachment to and subsequent
detachment from the step edge separating them. However, if
there isdirect hoppingof adatoms across a step edge without .-
incorporating into the step edge first, this causes a coupling -
of diffusion fields on adjacent terraces that must be taken & e
into account. -

In a BCF-like picture, the adatom chemical potentials can .
have discontinuities at step edges either because steps are R
perfect sinks, or because there is a strong diffusion barrier e
near the step edge. In their analyses of island flattening on .-
Si(001), Tanakaet all” introduced an adatom hopping term B
between adjacent terraces over a step edge proportional to 0.0 02 0.4 0.6 0.8 1.0
the difference between the chemical potentials on the two Vn

terraces. Although this interterrace hopping could be fast G, 5. Linear instability of a uniform step train. The local

compared with attachment of adatoms to the step edge, Hopping of adatoms over step edgatep permeability coupled
could still be slow compared with diffusion on flat terraces, with the step repulsions, moves the maximum instability away from

thus allowing discontinuities in the adatom concentrationthe step pairing modeg ) to longer wavelengths. The solid line
field at step edge positions. Here we take this limit, assuming for p/ =100 and the dashed line is fpr=0. Other parameters
that the adatom diffusion rate on flat terraces is always muchre taken from sef in Table |, although we do not attempt to
faster thanboth the attachment and interterrace hoppingdescribe Sil11) realistically here.
rates.

The effect of step permeability on the relaxation of step i~k [n— w0 ]+p [pl(Xy)— uh(x)] (199
bunches due to step repulsions can be studied straightfor-
wardly. In the absence of an external driving force, the adaand
tom chemical potential on each terrace is a constant denoted o o o -
by u!, (see Fig. 1 for the labeling of terrage®Ve can write o~ [ (Xy) = mal +p [’ (X)) = pn(xy)]. (19D
the net surface flux at the right-hand side of steps

u'(x) can be determined in much the same way as before by
assuming there is a gradieft, in w(x) on each individual

Hid t t t
Jn = # (= ) P (01~ ), (183 terrace. In a uniform step train, the external force creates a
and the flux at the left-hand side of stapas local chemical potential gradient, and introduces a “leak” of
surface flux from the permeability term. We now show that
jn~K (b 1= )+ P (b —uh). (18p  the “leak” will create along wavelengtibunching instabil-

) ) o ) o ity, in contrast to the pairing instability familiar from the
Assuming again the quasistatic limit whefg=j..,, we BCE picture.

can solveu, for any given set of«, from a system of linear  |n a linear stability analysis, the step positions are written
equations. The analytic solution is given in the Appendix. ltgs
is easy to see that the=~ and p=0 limits correspond to
caseA and caseB dynamics, respectively. S~
As mentioned in Sec. II, experimefiton the relaxation Xn(t)z% € ugy(0)+nwo, (20)
rate of step bunches on ($11) near 900 °C show a size
scaling exponen& =4.3+ 0.5, consistent with thp=0 limit  where
(a=4). In comparison, if we assume=2«, we obtaina
=3.6 for the bunch sizes used in experiments and lapger 1 _
will give even smallerx. Therefore we concludp<2« and ugs(0)= Nin: e ""[xn(0) ~nwo],
can dismiss the importance of step permeability fqd 81)
at 900 °C. Howeverp can be large for other systems, or for small perturbations from uniform configurations. Figure
even perhaps for Gi11) at different temperatures. Tanaka 5 plots the amplification exponeant of a uniform step train
et all’ estimatedp=36x on S(001) at 950 °C. Here we as a function of a dimensionless wave numbgr(r corre-
discuss some interesting effects step permeability has osponds to the pairing mogleThe solid line is forp/«=100
electromigration, which could be a way to detect any signifi-and the dashed line is fgr=0. The maximum linear insta-
cant permeability if it exists. bility has shifted to much longer wavelengths. Note that very
The adatom concentration field has a constant gradient ostrong repulsive interactions could also produce such a%hift.
each terrace when there is a driving force. We need to bklowever, for systems with step permeability, there is a very
more precise in our description of the microscopic origin ofrapid (almost linear growth in the average size of step
step permeability to obtain a complete theoretical descripbunches in the initial stage, which then crosses over to the
tion. Here we consider the case where the step permeability’? behavior. In contrast, for the purely repulsive system, the
is proportional to the difference between tlieal adatom  growth rate is approximateli*’? at all times. These charac-
chemical potentials immediately to the left- and right-handteristics could be used to detect step permeability if it is very
sides of the step. Equatiof$8a and(18b) then become large.

(21)
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VIl. MONTE CARLO SIMULATIONS movements with no change in energy, but it does not usually
OF THE 2D SOLID-ON-SOLID MODEL: provide a physically realistic description of actual dynamical
MODIFIED ARRHENIUS DYNAMICS processes.

For Si(111) at 900 °C the steps are mostly straight and a Krug and D.O.bb% " have stu_d|ed n detail the (_affects of
1D model is adequate for most purposes. However, at highé}n _external driving force combined W|th_ Metrqpolls dynam_—
temperatures, there exists noticeable bending of steps. FiS in @ SOS model. They used these simulations along with
example, at around 1100 °C when evaporation is significanft continuum model to “describe theniversalfeatures” of
2D arrays ofcrossing stepform between step bunches. Kan- the electromigration problem. However, the resulting surface
del and Weeksproposed dquas) 2D step model where the Structures have several artificial features that do not resemble
velocity of each step depends only on tbeal neighboring ~ €xperiments on $111) surfaces. For example, in their simu-
terrace widths in the direction perpendicular to the averagéations, a surface instability develops regardless of the cur-
step edge direction. This model reproduced many features ¢ent direction and then there are no extended flat regions of
the crossing arrays quite accuratéfyFurther developments the surface withtVh=0. Experiments on §l11) generally
along these lines have been reported in Refs. 23 and 24. reveal flat terraces and individual steps coalescing into

A full 2D step model taking account of 2D adatom diffu- bunches when the current is in the unstable direction, and
sion on terraces with boundary conditions on the movingeversing the current direction witabilizethe uniform step
curved steps is very difficult to study. Also it is necessary totrain.
go beyond the BCF framework, which excludes the creation Of course it is possible that at much later times some
of new steps to explain the antistep bunches reported bljmiting features of both the experiments and simulations
Latyshevet al3® Here we study a generalized 2D solid-on- could be insensitive to the choice of dynamics, and hence
solid (SO model that takes explicit account ofstep edge ~ universal. For example, most driven surfaces eventually be-
barrier in the kinetics of adatom attachment/detachment agome “rough”; because of transverse step fluctuatibtisis
step edges. We believe this is probably the simplest 2D miProbably holds true in principle for the experiments at suffi-
croscopic model that can provide a physically reasonable desiently large length and time scales even when the current is
scription of both adatom diffusion and step motion in1gi) i the nominally “stable” direction. We show here that with
and related systems. However, there is almost no hope ¢ more physically motivated choice of dynamics, the SOS
simulating the long time behavior of such a microscopicmodel can provide a qualitatively accurate description of the
model using realistic parameter values. Thus, in contrast t#ngth and time scales probed by present experiments, as
the 1D step model we studied above, here we concentratéell as of any longer time “universal” features, if such ex-
only on qualitative properties. Specifically, we consider alSt.
very large external driving force along with a very small Diffusion on surfaces is usually an activated process with
average terrace width. These extreme choices will permi@n energy barrier. A different dynamical schemerhenius
significant step motion in the computer time available to usdynamicstakes this physics into account in an extreme way

The SOS model is defined on a square lattice with totaPy assuming that the energy barrier is simply the binding
energy energy of the atom, independent of the final configuration.

However, Kruget al° found that there isio morphological
change for this dynamics under an external driving force.
H:“E) 6|hi_hj|' (22 They showed in general that instabilities in a continuum
. model are associated with the dependence of the adatom mo-

where h; is the column height andij) denotes nearest- pjlity on the local slope, while instabilities in a microscopic
neighbor pairs on a square lattice. Surface diffusion is SimUmode| require a dependence of the hoppmg probabi”ty on
lated by exchange of atoms on top of a nearest-neighbor pajhe final configuration. Here we obtain such a configuration
of columns @;—h;—1 and hj—h;+1, wherei,j are dependence by modifying the original Arrhenius dynamics,
nearest-neighbor sitesA driving force is simulated by which provides a reasonable description of activated pro-
asymmetric attempt frequencies in directions along and opcesses such as surface diffusion, to includessina barrier
posite to the force direction. For example, when the force ishat arises from the presence of steps.

in the x direction, we assume the attempt frequencies in the This energy barrier is motivated by the physics of rebond-

+Xx and —x directions satisfy the following relation: ing and surface reconstruction that can occur near steps. The
surface atoms near steps on(13il) surfaces usually rear-
P+x/P-x=exp2Fa/kgT). (23 range themselves and rebond in characteristic ways to lower

the step energy’. To incorporate aradditional adatom into
the step usually involves the collective motion of many at-
oms as this rebonding is modified. This process has a higher
activation energy than the simple pairwise additive bond pic-
re in the usual SOS model would suggest. Also, in many
cases the repeatable step unit, the kink, has a complex struc-
ture, and requires the incorporation of two adatoms to bring
I';=min[ 1,exg — AE; /kT)]. (24) apout it.s mqvemept. To take account of this p'h.ysics in our
simulations in a simple way, we assign an additional barrier
This dynamics often has the virtue of fast equilibration in thefor any movement that lowers the energy, since all attach-
absence of a driving force since there are no barriers foment events are associated with a decrease in energy. So that

Our next task is to describe how the probability for an
adatom hopping from site toj depends on surface configu-
rations. Often in statistical physichMetropolis dynamicss
used, where the hopping probability depends on the ener
difference between the final and initial stat&;; through the
relation
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FIG. 7. The same parameters as in Fig. 6, except that the driving
force direction is parallel to the average step edge directmn (

FIG. 6. Snapshot of a simulation using a solid-on-solid model~ 9-3: P-y=0-7, Px=P-»=0.5). The initial steps are along the

with a diffusion bias perpendicular to the step edge direction, afte?’ert'c"jll () direction.

about 2.%x10° Monte Carlo steps. Parameters used herekdre

=0.8¢, p,=0.3,p_,=0.7, py=p_,=0.5, and the size of the sys- stable towards step bunching when the force is in the step

tem is 51X 512. The dark lines are normalp) steps and white down direction. Crossing steps form when there is significant

lines are antistep&own steps evaporation. Preliminary results show that the coarsening
rate is consistent with thé> power law, but so far the

detailed balance holds in equilibrium, the same barrier musgystem size and simulation time are too small to determine

also be added to a movement that increases the energy. Wee exponent accurately.

call this schememodified Arrhenius dynamicand thus as-  In the 2D step model studied in Refs. 5 and 24, the steps
sume are all ascendingor descendingat a giveny position. Al-
though there is significant step bending, steps cannot form
exp—2en;), AE;=0 overhangs since step positiorg(y) are defined as single-
7| bexp—2en), AE;#0, (25 valued functions ofy. In the SOS model, there is no such

restriction. Indeed, we can see from Fig. 6 that some crossing

whereb<1 andn; is the number of horizontal bonds the steps have bent so much that they have creatgittepsat
surface atom at site has. certainy positions, i.e., steps of opposite sign to the initial

This way of introducing an attachment barrier was sug-ones at particular fixeg positions. In our simulations, the
gested by Bartelet al*® in their study of step fluctuations. temperature is still well below the roughening temperature of
We view modified Arrhenius dynamics as a convenient buthe flat surface, but it is not energetically forbidden to create
not necessarily unique microscopic scheme that produces thew steps or overhangs, in contrast to the step models pre-
“right” boundary conditions (giving in particular a finite  viously studied.
value for the kinetic coefficienk) in the mesoscopic step It is interesting to compare these results with the experi-
models discussed in previous sections. Thus the dynamicahent by Latysheet al® They observedntistep bunch for-
behavior of mesoscopic and macroscopic scale features imation taking place after step bunch formation. The first
the simulations should be physically meaningful. stage of the antistep bunch formation occurs through the

We start the simulations with a uniform step train with bending of the single height crossing steps between the step
steps orientated along the vertical) (direction. The height bunches, creating a region of bunched steps of the opposite
of the surface increases along the positivdirection. Peri-  sign. Indeed, we have directly observed step bunches created
odic boundary conditions are used along thdirection. In  from this kind of step bending in our model with modified
the x direction we requirdn(x+L,,y)=h(x,y)+ Ny, where  Arrhenius dynamics when we applied the external force in a
N is the initial number of steps in the system. For a systendirectionparallel to the initial (and averagestep edge direc-
of size L,XL,, the initial average terrace widthv, tion. In Fig. 7, the initial(and averagestep edge direction is
=L,/Ngy. With a diffusion bias in the average step downin the vertical ) direction. The bias is in the downwards
direction (P, <p_x,p+y=P—y), the system is unstable to- (—y) direction. The dark regions are step bunches formed
wards step bunching. The step bunches continue to coarsdpy steps bending in the opposite direction to those individual
consistent with the results of previous sections. Figure 6 is ateps(black lineg on the terraces. As in the previous case,
snapshot of a typical configuration after some bunching ha®llowing the bias ¢ y) direction, there are regions of steps
occurred. The dark regions are step bunches, and singfging up, and regions of antistep bunches going down. We
height crossing steps are visible between them. derive elsewher® from a 2D BCF-like model a new linear

The qualitative features of the simulations are very similarinstability when the diffusion bias is parallel to the step edge
to the experiments, and also to the predictions of the stegirection that we believe underlies the patterns seen here.
model. Vicinal surfaces are stable during the time simulated These features obtained from simulations of the new SOS
when the driving force is in the step up direction, and un-model are quite different from the ripple structure reported
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by Dobbs and Krutf using Metropolis dynamics, where APPENDIX
there are no distinct steps and facets after the surface devel- Sl . . -
ops large structures. Here the steps and terraces are easiIP/By requinngln, =Jn=Jn+1 and imposing p_erlodlc bound-
discernible. Because of our more realistic treatment of thé&fY conditions in Eqs(18a and (18h), we arrive at the fol-

physics of surface diffusion and attachment at steps and t gwing slysftem of Imeardgquatlo_ns for the terrace chemical
favorable comparison with experiment, we believe thaPotentials for a system d¥l steps:

modified Arrhenius dynamicgrovides a better description e e O oo T pb] SR
for current-induced step bunching on(Bi1). o ! tl M iz
Ci C C -+ Of]| m2 Mot pg
VIIl. CONCLUSION 0 ¢ ¢c -+ O us|=x| matual,
In summary, the evolution of the structure of Hil) sur- : : : Lo

faces_du_rlng ele_ctromlgratlo_n at QOO C can be unde_rstood lc; 0 0 - col ,U«tN |t
guantitatively using a one-dimensional step model, with pa- - TS (A1)
rameter values and the mass transport mechanism deter-
mined from experiment. Specifically, the’> power-law  where

rowth rate for step bunch sizes is reproduced. We concen-
J b b Co=2(k+p) cCi=-—p, (A2)

trate on the case where mass transport is limited by the rate
of adatom attachment to a step edge, but the method can b@éd u!= u'[ (x;+X;;1)/2]. ! can be solved for analytically
easily generalized, as illustrated by our discussion of directince the matrix on the left-hand side of the equation is a
adatom hopping between different terraces. circulanf® matrix. The result can be expressed as

The 1D step model has averaged over the individual
movement of adatoms and atomic scale fluctuations of the
steps, thus permitting simulations of the long time behavior
using realistic parameter values. However, at higher tem- . o
peratures, when 2D effects such as step bending can be sedffiere in the limitN— o

ML=§ KMot mT Mot me 1), (A3)

even the quasi-2D step models considered to°dataay not 7\ m

be sufficient. Moreover an exact BCF-like treatment of full K.= K L /1_ 1-a , (A4)
2D diffusion problem seems prohibitively difficult. To exam- ™ 2(k+p) J1-a?l a

ine these issues, we carried out Monte Carlo simulations of and

2D solid-on-solid model, using physically motivated as-

sumptions about the dynamics of surface diffusion and at- p

tachment at step edges. In particular we useddified a= ¥ (AS)

Arrhenius dynamicsvith an extra barrier for attachment of
adatoms at step edges and find good qualitative agreemet, describes the correlation between the adatom chemical
with experiment. A new step bending instability is seenpotential at a given terrace with the adatom chemical poten-
when there is a force acting on adatoms along the step edgi@l m steps awayK, decays exponentially as increases. It
direction that may be related to experiments by Latyskiev is convenient to definbl; as the number of steps over which
al.® In general we believe that this approach of combiningK decreases by half, i.e.,

information from experiment, microscopic simulations, and

mesoscopic step models may prove useful in a number of K= Kof2. (AB)
different problems in surface science. Whenps «, we have
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