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The lateral growth of an isolated nucleated facet is studied using a simple two-dimensional step model. An
effective Hamiltonian that causes a planar surface to phase separate into facets and step bunches is proposed.
The motions of the steps are determined by the relaxational dynamics of the effective Hamiltonian with and
without a local conservation requirement. An even simpler mean-field-like model is used to illustrate the
mechanism of the experimentally observed constant-velocity facet tip propagation. Numerical calculations
using thermodynamic and transport coefficients previously measured give good agreement with experiments
under the local conservation requiremdi80163-182@7)02808-7

[. INTRODUCTION specific kinetic mechanisms on the growth law for the facet
width remains obscuré:*®

Thermodynamics predicts that a vicinal surface with a Mullins’s isotropic continuum model does not properly
single orientation can spontaneously facet into surfaces dlescribe the free energy of a surface below the roughening
different orientations due to an anisotropy in the surface freéemperature. A one-dimensional step model appropriate for
energy'? This often occurs when surface adsorption or re-Such a surface has been developed by several aditfrs
construction processes stabilize certain preferred orient&nd useds 04 to explain various interaction-driven
tions. Recently the equilibrium properties of faceted surface?henome”a-’_ In this paper we extend these ideas and de-
have been measured with sufficient accuracy that detaile¥loP atwo-dimensionaktep model that can take into ac-
thermodynamic analyses can be carried %ott.Moreover, ~count both the step interactions and step meanderings. By
advances in real-time direct imaging techniques now allowntreducing some appropriate effective interactions that com-
for a detailed descripton of microscopic kinetic Py with the thermodynamics of the faceting problem, we
processe&*1® Specifically, it has been observed that underc@n reproduce the steady facet growth along the step direc-
certain conditions facets nucleate randomly. They grow at 49N anq establlsh_the effects. of kinetics on the growth of the
constant rate along the step direction but grow much mordacet width. We find a relation between the facet growth
slowly normal to the steps, thus taking on an elongated Cig&“problem and the %eneral class of reaction-diffusion pattern
like shape'® In the case of $L11), while the thermodynam- formation system&> We use as a test example the propaga-
ics of this process is well understodt21617a complete
description of the kinetics has yet to be formulated.

The kinetics of the faceting problem is a subject of long
standing in the field of surface science. Mulfihproposed a
continuum model for facet growth during thermal etching. In
this pioneering work, it was shown that the specific kinetic
mechanism for mass transport is important in explaining the
time evolution of the facet. Mullins assumed that the advanc-
ing facet tip would attain a constant steady-state velocity
along the step direction. He then calculated the normal sur-
face profile and the characteristic normal growth rate using a
one-dimensional model. He found that the normal width of
the facet grows a$*? under an evaporation-condensation
mechanism and as”* under surface diffusion. While the
assumption of steady-state tip propagation has been con- FIG. 1. A schematic picture of the two-dimensional model for
firmed by several experimental measurements, the effect ahe faceting problem.

0163-1829/97/58.2)/76537)/$10.00 55 7653 © 1997 The American Physical Society



7654 LIU, WEEKS, JOHNSON, AND WILLIAMS 55

tion of (7X7) reconstructed facets on($11) where the
model’s parameters have been previously measured.

II. THERMODYNAMICS AND KINETICS
OF THE RECONSTRUCTION

The thermodynamics of vicinal @i11) surfaces near the
(7X7) reconstruction transition temperature has been exten-
sively studiec?® In this section we use a two-dimensional
step model as a mesoscopic description of the surface con-
figurations(see Fig. 12’ The system consists of a number of
steps with the same sigmll ascending or descendingrhe :
position of theith step is denoted by;(y), where they axis s
coincides with the average orientation of the steps. Yhe
argument is made continuous by coarse graining the system
a|ong the Step edge direction to a scale |arge Compared to FIG. 2. lllustration of the CoarSE'grained free eneffgﬁs a
atomic spacing but small compared to typical step patterns dfnction of the step density. The dashed line betwees ands, is
interest. We also assume initially that the step orientatioﬁhe tie-bar co_nstructlo_n and corresponds to tk_le thermod_y_namlt‘T free
remains predominately along thedirection. We postulate energy. The intersection of the two curves gives the critical width
that the effective Hamiltonian of such a coarse-grained sys®" e step model. A proper coarse-grained free energy should
tem can be written as round of_f the cusp but the nucleation growth raFe is insensitive to

the detailed form of the free energy as long as it gives the correct
critical size and energy barrier.

13 So Sp

H=f dy2, {V(wi<y>)+§

axi(y)\?

(;;y)) }Jr o, (1)  here that our coarse-graining scale in thdirection is large

enough that we can use the same functional formvfor our
two-dimensional mode¥’
where  we define  the local terrace  width  The terrace-step-kinklr SK) model predicts that the varia-
wi(y)=xi.1(y) —x;(y) for each terrace ang position. Here  tion of surface energy with step densiyakes the forrif-31
B is the “bare” line tension or step edge stiffness that con-
trols the extent of fluctuations of asolatedstep in they fru(8)=F% + B, yS+g; yh3s 2
direction, whileV(w) describes the effective step-step inter-
actions, taken here to be between adjacent steps only. In Efgr vicinal surface, wherd® is the surface free energy den-
(1) we have evaluated the interaction terms at the sgme Sity of the reference plang is the free energy cost per unit
position and linearized the line tension teffriwhen steps length of creating an isolated stefp.is the step height, and
are reasonably straight, these should be good approximgh’®s® is the free energy due to step interactions. Both en-
tions, but we will use Eq(1) even in more general cases as tropic and elastic interactions can contribute to the last term.
a model. For the present application of the model, steps reFhe step heighh is introduced in Eq(2) so that the defini-
main remarkably straight. The angles of the steps with retions of 8 andg are the same as in Refs. 11, 12, and 26. The
spect to their average orientation are generally less than 3° isubscriptsu andr indicate the values of parameters for sys-
the numerical calculations we have carried out. tems either completely unreconstructeg @r reconstructed
Next we will try to find the appropriate form for the ef- (r). Reconstruction-induced faceting can be understood by

fective interaction ternV(w) for the faceting problem. This assuming thaf?<f8 but thatB,> B, : while reconstruction
should take into account the effects of reconstruction as welbwers the free energy of the referend@at) surface there is
as direct elastic or entropic interactions between steps. Ia higher cost associated with the “broken bonds” at a step.
one-dimensional models a standard approxim&tiéhsets  Thus reconstruction is favored only on sufficiently wide ter-
V(w)=f(1lMw)w. Heref(s) is the free energy density of a races. Figure 2 is an illustration of the free energy curves
uniform surface with step density=1/M, projected on a from Eq. (2) for Si(111) below the transition temperature.
referencglow-indeX plane on which the faceting can occur. For a given step densitg only one phase is metastable,
This procedure associates the free endogyglly with each  corresponding to the lower branch of the two free energy
terrace, even in cases where neighboring terrace widths vargurves. Thermodynamics predicts that eventually the system
The pairwise potentia¥/(w) includes the effects of entropic will “phase separate,” with reconstructed flat facets coexist-
repulsions between steps that arise physically from step meéng with unreconstructed step bunches with a step density
anderings at differeny positions. The essence of this ap- s, determined by the familiar tie-bar constructitrt?
proximation is to average over the effects of these fluctua- However, to study the initial dynamics of phase separa-
tions by coarse graining the step along thdirection and to  tion, we should use the metastable free energies rather than
study a deterministic process, which in this paper is thehe limiting thermodynamic ones. Although the detailed
growth rate of a facet after it is nucleated. This approach hashape of the proper free energy functional arising from
been implicitly used by Nozies! in a one-dimensional dy- coarse graining of the microscopic model is important in the
namical model and subsequently adopted by many authotudy of the initial nucleation event and in a possible spin-
and compared with experiments recerfly’* We assume odal decomposition regim®&, here we concentrate on the
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simpler process of determining the growth rate of an isolated
facet after it has nucleated. This permits the use of a simple J
two-phase model describing the reconstruction of different
parts of each terracE.Because of the coarse graining, each
terrace is effectively divided up into segments along yhe
direction. We assume each segment will reconstruct pro-
vided its width is larger than some critical width,, here
determined by the intersection of the two metastable free
energy curves in Fig. 2. Hence we assume the effective in-
teraction between steps has the simple form
V(w)=min{f, ,(Lw)w}. More accurate expressions, incor-
porating, e.g., preferences for integer multiples of the

(7X7) reconstruction unit, could easily be used, but this . . .
form seems sufficient for this initial exploration. FIG. 3. lllustration of the dynamics of the step motion. At any

The problem of step motions for systems out of equilib_giveny position,twe define atomic chemical potential at step edges
rium is generally discussed in the framework of the classicaf'r 219 terraces., . The flux due to the exchange of atoms between
Burton-Cab Frank (BCP) dep d it steps and neighboring terraces is determined by the difference of

urton-*.a _rerzi5-3gan mode an 'S the chemical potentials.
generalizationd>% Although the BCF model is very suc-
cessful and well grounded physically for the crystal growth

problem, its application to a two-dimensional problem is,.'37 Lo S :
very difficult, requiring the solution of a diffusion equation C.”" Then using first order kinetics we can write the fIc_)w of
atoms from stem to terracen as(see Fig. 3 for illustration

with moving boundary conditions on arbitrarily shaped stepof the labeling
configurations. Also the generalized BCF model involves
some physical parameters that are very difficult to measure _

and introduces the possibility of instabilities such as the in(V)=a [ ualy) = ()], (4)
Mullins-Sekerk&® instability which do not seem to be impor-
tant in the faceting problem. In this paper we discuss tw
phenomenological approximations that incorporate what w

believe to be the essential physics in a simpler way. These o B ‘

can be used for numerical calculations and compared with —n(Y)=a [pa(y) = pn-1(Y)], 5

experiments quantitatively. h ¢ is the ad hemical ial
The step positions;(y) can change due to attachments WN€r€#n(Y) is the adatom chemical potential on terracat

and detachments of atoms at the step edges. In the coardkPosition. From microscopic mass conservation, the step

grained model, each atomic attachment/detachment eveMg!OCtY is
corresponds to a small variation of the step profile. Therefore ., o
the free energy change is proportional to the functional de- (V) t=Q[j, (Y)=]n (¥)] (6)

rivative of the effective Hamiltonian. We can define the step N ]
edge chemical potential — the change in free energy pefor small step velocities and low adatom concentrations. We

atom for adding atoms to the step at coarse-grained positioReglect here the gradient pé;(y) on the same terrace per-
y — as pendicular to the step direction by assuming slow

attachment/detachment rates and fast diffusion rates, but
ut(y) can still be different for different terraces apdosi-

terpretation of the step fluctuations on(Ji1) around 900

Oand similarly the flow of atoms from stapto terracen—1

SH
Hi(y)=—Q ——— tions. For simplicity, we assume here symmetric kinetics
%i(y) (at=a =a).
—Q[V' (W)= V' (w, 1)+'[§ale 10y21+ pe, (3) Under the quasistatic approximation in the BCF model, at
1 I— | ’

any given time the adatom concentration field satisfies the

whereQ is the area of the unit cefthe area occupied by an Stafic diffusion equation. In t_h(_a7I|m|t of no evaporation or
atom at the step edgand V' (w) is the derivative ofv(w)  dePosition, this require, (y)=jn.1(y), if we neglect the
with respect tav. Hereuc is the atom chemical potential of diffusion of adatom along the step direction. Hence we can
the solid. In the case of no exchange of atoms between th((i_‘\(tetermme the adatom chemical potential on each terrace by
vapor and solid phase, it is just a Legendre constant chosetn(Y) =[#n(Y) + #n-1(y) 1/2 through Egs(4) and(5). Thus
to fix the total number of atoms. For simplicity, we neglectthe equation of motion from Edp) is
the exchange of atoms between the solid and vapor phase, as
is the case for $111) near the transition temperature from xXy(y) aQ
(1x1) to (7X7) reconstruction850 °Q. . S [2pa(Y) = pn-a(Y) — o a(Y) ] (@

In the first approximation, we adopt the idea of the BCF
model and assume there is no direct hopping of adatomé/e call this kinetics withlocal conservation of atomsbe-
between different terraces. We also assume that the mairause in this case, the motion of each step will affect the
microscopic mechanism for step motion is the exchange ofmotion of neighboring steps not only through energetic in-
atoms at step edges with adatoms or vacancies on terracesactions, but also from the requirement of conserving at-
(attachment/detachment procegsesich is one possible in- oms on each terrace. We can also obtain some more compli-
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cated equations by solving the one-dimensional diffusion
equation under general conditions but the essential feature%(w)
are the same.

Strictly speaking, the omission of the adatom diffusion
along the step direction can be readily assumed only in the
one-dimensional model and is problematic if the diffusion
rate along the step direction is very large or the variation of
surface profile along the step direction is very large. The
local conservation requirement (y)=j,.,(y) can be fur-
ther called into question if we allow direct adatom hopping
between different terraces. These are the motivations for us
to consider a different limit. We now assume there exist
some channels for long distance mass movement without the
requirement of strict local conservation. The adatoms ex- FIG. 4. The form ofe(w) in Eqg. (9) for two distinct regimes in
change with a reservoir and act much like a two-dimensionaih® mean-field-like modela) The nucleationmetastableregime;
gas. As a result, the adatom chemical potential isstime  (b) the spinodalunstablg regime.
for all the terraces ang positions instead of being deter-
mined by the neighboring steps. It is an easy matter to write We now need to choose an appropriate form ¢gw).
down the equations of motion for thimnlocally conserved We assume &t=0 there is a nucleus of reconstructed facet

W, w

(a) (b)

case: aroundy=0 and asy goes to*+ the surface is uniform
with w=w, the average terrace width. The main features of
X (Y) ¢(w) can be deduced using the reconstruction-driven face-
o 2aQpa(y)— el (8  ting of Si(111) as an example. Figure 4 draws two postulated

forms for ¢(w) in the nucleation and unstable regime, re-

Equations(7) and(8) are analogous to the equations of mo- spectively. In the nucleation regini€ig. 4@)] the uniform
tion in Mullins’s original pape?® for the surface diffusion surface is metastable Thus we set ¢(wp)=0 and
mechanism, and the evaporation-condensation mechanisma, (W) <0. (This ensures thalv, is a stable fixed point.
respectively. It is easy to implement the two equations ofHowever, when the facet width is larger than a certain criti-
motion numerically and study the evolution of the step con-cal widthw,, the effect of reconstruction will overcome the
figurations. This work is described in Sec. IV. step repulsions and it will be energetically more favorable to
increase the facet width. Thus(w) becomes positive for
w>w,.. As w further increases, the number of unrecon-
structed bunched steps around the facet becomes larger,
slowing down the facet growth. Thug(w) should decrease.

The model discussed above involves the coupled motiofror example, in Mullins’s one-dimensional continuum
of many meandering steps and the resulting dynamics imodel, the long time behavior of the facet widtht{§ and
quite complicated. Before discussing the numerical calculat* for the evaporation-condensation mechanism, and sur-
tions and the results of this many-step model, we first studface diffusion mechanism respectively, corresponding to
a much simpler model that corresponds to a well understood~* and w23 behavior for¢(w) at largew. It was also
mathematical problem, where analytical results can be obsbserved for Sil11) that facet widths can saturate at certain
tained. We assume that reconstruction only occurs on galues due to elastic effect&!’ This can be incorporated in
single terrace and denote the facet width at diffesepbsi-  our model by requiring thap(w) have another stable fixed
tions byw(y,t). Using a mean-field picture, we assume thatpoint w, at the appropriate distance. In the case considered
the effects of the neighboring steps on the time evolution oby Mullins wq is infinite. The discussion that follows does
the facet width can be approximated by some appropriatelyiot depend on whethav, is finite or not.
choserdriving forceterm ¢(w) that is a function of the facet When we lower the quenching temperature, there is a
width w only. We particularly want to examine the motion of crossover from metastable to unstable phase separation for
the facet tip. Our model equation for facet motion takes thesi(111).1® Figure 4b) draws the postulated form fap(w)

Ill. MEAN-FIELD-LIKE MODEL AND STEADY-STATE
FRONT PROPAGATION

form for the unstablecase. Herew, is still a fixed point but is
unstable[ ¢’ (wp)>0] and there is no intermediate fixed
aw(y)  Pw(y) point w, .
a Y a2 +o(w). ©) With this approximation for the “driving force,” and ne-

glecting thermal noise, the problem of facet growth from a
The first term on the right describes the step stiffness, whiclpreexisting nucleus is reduced to the problem of solving the
favors straight steps, and the second term qualitatively dgime evolution of Eq(9) starting from some initial condition.
scribes the effect of step interactions and surface reconstrudhe nonlinear termp(w) satisfiese(wg) = ¢(wg)=0. This
tion. This is basically the deterministic part of a Langevin problem has been thoroughly investigated by Aronson and
equation for the motion of the steps immediately boundingWeinberget®° as a model for population genetics. They
the facet under the approximation that the influence of mordiave shown that the solutiom(y,t) of Eq. (9) will develop
distant steps is described by some effective driving forcea stable profile that propagates with a well defined non-
term ¢(w) which is a functiononly of the facet widthw. negative steady-state velocity for any continuous function
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nism of velocity selectiofi>** In this casev,=c* is simply
2(ye'(Wp)) Y2 Stewart and Goldenfelfl have proposed a
continuum model for the unstable regime. As an approxima-
tion, they also used this model to predict the traveling veloc-
ity of the facet iny direction. However, as pointed out by
them and other authors, (311 quenched 3 °C below the
transition temperature is not in an unstable regime. Rather
phase separation proceeds through a nucleation and growth
process. Therefore in the model we described above, we as-
sumed terraces witiv=w, are metastableand there is a
threshold effect characterized Iy, .

In general the value of selected velocity should depend
(@) () on the behavior ofp(w) through allw in the range of
Wo,Ws]. Here as an example of the relative effecingfand

FIG. 5. The potential field for the particle whose trajectory rep-\[N we use a simple form of that mimics the faceting
resents a solution of the shape preserving equation. The fixed poinbsrso’blem namely

now are shown as potential maximum and minimyga. and (b)
correspond to the same regime as in Fig. 4. 0, Wesw<w, and w>Ww;

W)= 11
¢(W) 00, WSWSWyg. (1)

o(w) defined on[wg,wg] for which ¢(wg)=¢(ws) =0,
provided that the initial profile satisfies/(y,0)0—~Wo @  The important parameters are the critical wiath for the
y— (i.e. far away from the nucleus the steps remain aformation of the reconstruction, ang,, which mimics the
their initial average positionsand that the nucleus is suffi- effect of the reconstruction on the motion of the stepxin
ciently localized. In other words, there exists one steady-statgjrection. This of course is an unrealistic form fptw) but
solution for the tip shape and velocity of the growing facetstj|| qualitatively representative. It can be shown by solving
independent of most initial conditions of the nucleus. Eq. (10) explicitly that the steady-state velocity, that is

To see this more clearly, let us consider shape preservings|ected dynamically satisfies the following equation:
solutions of the formw(y—ct), wherec is a non-negative

number that describes the propagation velocity of the profile , Y90 5
in y direction. Therw(&)=w(y—ct) satisfies vyzm{l—eXF[—vy(Ws—Wo)/Wo]}- (12)

YW+ W' + @(w)=0. (10 Forws/we>1, v,~[ y@o/(W,—Wwg)]¥2 Here we have a re-
lation between the growth rate of the facet in the two direc-
tions. The result that the facet propagates with a constant
velocity in they direction is rather insensitive to the choice
of ¢(w). In order for the facet to grow in area, the positive
part of ¢(w) should be large enough so that

We are only interested iw(¢) that satisfieav (&) #wg and
limg_, .w(&)=w,. To see that the steady state solution ex-
ists for a range ot’s we follow the argument of Dee and
Langer?® Equation(10) describes the trajectory of a particle
of massy whose “displacement’iv is a function of “time”

&. The particle moves in a force field described by (w). Wy
J dw ¢(w)>0. (13

Figure 5 illustrates this potential field for the two types of
Wo

driving “force” ¢(w). Notice that a stable fixed point for
Eg. (9) corresponds to a local potential maX|mum.and an  Although this mean-field model is too simple to predict
unstable fixed point corresponds to a local potential Miniy,a eyolution of the nucleation quantitatively, it does repro-
mum. If ¢ is positive, it serves as a damping coefficient andy,,ce some of the essential features of the TSK model. Equa-

the damping force is proportional to the “velocity” o (12) also qualitatively predicts correctly the trends when
(0wl 9¢) of the particle. The relevant solution of our problem changing the parameters involved.

is a “trajectory” that starts fromw=wg and ends at
w=w,. If c is very large, the particle is overdamped in the
sense that starting fromv=w; with an arbitrarily small ve-
locity, the particle will either never reachi=wg [Fig. 5a)]
or approachw=w, monotonically[Fig. 5b)]. On the other We now return to a study of the general coupled step
hand, ifc is very small then the particle is underdamped andequations derived in Sec. Il. Phaneifal 1° have studied the
it will go pastw=wg with a nonzero velocity. There exists a reconstruction-induced phase separation of vicinal )
uniquec* such that the relevant trajectory is neither over-using low-energy electron microscopy. They found that be-
damped ¢>c*), nor underdampedc& c*). It can also be low some transition temperature, largeX7) facets form
shown thatt* is the selected velocity if the system developsand in between these facets are unreconstructed step
a stable profile starting from a localized initial nucléfis® bunches. Depending upon how far the temperature was
If ¢'(wg)>0, then the facet with average terrace width quenched below the transition temperature, the evolution to-
Wy is unstable For a variety of nonlinear functiong(w),  ward the final state was quite different. For example, for the
the linear expansion arouna, is enough to determine the surface with 4° miscut(with average terrace width
velocity of the propagation of the profile along thedirec-  wy=49 A) quenched 3 °C below the transition temperature,
tion. This is a special case of the marginal stability mechathe facet formation occurs by the nucleation and growth of

IV. NUMERICAL CALCULATION AND COMPARISON
WITH EXPERIMENT
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isolated linear (®7) reconstructed(111) facets. For
guenches to lower temperatures, many facets appeared si-
multaneously. This change of kinetics has been associated
with a change from nucleation and growth to spinodal
decompositiorf? Recent scanning tunneling microscope
(STM) work using dc current heating reproduces most of
these result$®

The thermodynamics of vicinal @i11) surfaces has been
discussed at length in Refs. 11 and 12. The variation with
temperature in the difference of surface free energy density
for the two phased f°=f2—f? can be determined from the
phase diagram of the faceting. Using the tie-bar construction
in Fig. 2 we haves,= (Af%2g,h%)'3 wheres, is the final
step density 01;1 gge unreconstrugted step bunch. Using

— 2 11, i ~
0L etow e (ANt tomperstre for suraces ith 4 i, F1C: & A SNEDSOt of a sytem of 40 steps ater about 4 s

. . P . starting from a small nucleus using the local conservation mecha-

cut. The dlffergnce in step creation enez‘gﬁzﬁy—ﬂu Can-  ism. Some of the parameters used age=15 meV/&,
not be determlned exactly from the phas_e_ dlagr_am and Wgo_ g 929 meV/R  T=5x10 A¥s, wo=49 A, and
use the estimatdA=2 meV/A3 The critical widthw, , —gg A
corresponds to the intersection of the two free energy curves’
and is given byA 8/Af°. Using these values, is estimated that are not known accurately, especially the critical width
around 100 A, which is consistent with the STM study byw, (or equivalently AB). For example, forw, equal to
Hibino, Homma, and Ogin&® Henceforth we use 1.Av, and to 2.8v,, the corresponding is 2400 AJ/s and
w.=2w,=98 A. 350 Als, respectively. However, the nonlocally conserved

The kinetic coefficients can be obtained from the meamechanism with Eq.(8), assumingw,=100 A, gives
surements of thermal fluctuations of the steps. For surfaces,=2.0x 10* A/s, about 20 times larger than experiment.
with very small miscut angle, we can ignore the repulsive = Although it is difficult to estimate the uncertainty of,
interaction terms in the step edge chemical potential. Assumwithout a more detailed knowledge of,, these results sug-
ing the attachment/detachment mechanism and the equililgrest that the mechanism with local conservation is probably
rium chemical potential value on terraces, the equation oh more realistic scenario for @il1) at this temperature. Re-

motion of the step is simply cent experiments on the relaxation of one-dimensional
- Si(111) step bunches are also consistent with the locally con-

ax(y) ~ X _TB & served mechanisff.
o 2a) '8(;_),2 " kaT ay?’ (14) However, as remarked earlier, the local conservation con-

dition is more questionable in a two-dimensional system if

The last equation on the right is the deterministic part of theye also consider diffusion of adatoms on terraces along the
Langevin equation analyzed by Bartettal*” This allows us  step edge direction. Let, be the typical distance an adatom
to identify 2kgT2? with T, the mobility of the step wan- diffuses on the terrace along tiedirection before it attaches
dering. Experiments at 900 °C show tHat5x 10" A®s? {5 the steps. The variation in the direction of the atom
andB=30 meV/A3" Note that in the analysis of the thermal chemical potential on terraces with wavelengths much
fluctuations, the step is also coarse grained alongytdé  smaller thand, will be smoothed out by diffusion before it
rection, so there is no inherent microscopic length scale imas any effect on step motion. Whdp is much larger than
these parameters. the largest relevant length scales, for example, the distance

To simulate the experiment discussed earlier, we manusetween different facets or the size of the facet, the nonlo-
ally create a nucleus of a wide reconstructed ter(faeed in ~ cally conserved mechanism will be more realistic. In the
a system of 40 steps with average terrace witlgh=49 A,  limit that dy is small compared to the length scale on which
and then calculate the deterministic time evolution of thethe steps have features we are interested in, the diffusion
facet by numerically integrating Eq47) or (8). The nucleus problem is essentially one dimensional and the locally con-
has a width larger than the critical widity, and several steps served mechanism is more realistic, provided there is no di-
near the nucleus are moved away from their uniform positiorrect adatom hopping between different terraces. If we denote
to prevent overhangs. Far away from the nucleus, the stefi3, as the adatom diffusion rate on the terrace eggas the
are uniform. If the initial nucleus is big enough, the facet will equilibrium adatom concentration, the is of the order of
continue to grow in size. In both the conserved and noncon(DScquZWO/F)l/z, assuming isotropic diffusion. This yields
served cases we found a constant growth ratg direction  an estimate ford, of 500 A using® D¢Ceq=1.2x10°s .
and a decreasing growth rate ¥ direction after a short This length is much smaller than the lateral size of the facets
transient. Figure 6 is a snapshot of the evolution of the surand is comparable to the size of the tip. Thus it clearly rules
face profile using the locally conserved mechanj&m. (7)].  out the nonlocally conserved mechanism for facet widening.
In this case, the growth rate in the direction, vy, is  This can be viewed as an independent argument for choosing
830 A/s, remarkably close to the experimental valuethe locally conserved mechanism aside from the fact that the
1000+ 200A/s® The good agreement is somewhat fortu-v, it gives is much closer to the experimental value. A quan-
itous, since the result is rather sensitive to several parametetigative description of the crossover regime near the tip where
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d, has an intermediate value necessarily involves twoSi(111) reconstruction phase diagram, we obtain a satisfac-

dimensional diffusion of adatoms and is beyond the scope dry agreement of the model with experimental data using

this paper. the mechanism requiring local conservation of adatoms on
each terrace. More accurate experimental measurements of

V. CONCLUSION the relevant parameters will allow a more detailed under-

) ) standing of the microscopic mechanisms.
In this paper we have proposed two self-consistent nu-

merical models for the motion of steps on a vicinal surface
under a reconstructive phase transition. We found a steady
facet front propagation in the direction parallel to the step
edges as has been observed experimentally. The underlying We would like to thank N. C. Bartelt, R. J. Phaneuf, and
mechanism for the velocity selection is believed to be theH.-C. Jeong for stimulating discussion. This work has been
balance of the stabilizing effect of the line tension and thesupported in part by the ONBM.J., E.D.W) and in part by
driving force arising from phase separation due to the surfacthe NSF-MRG with continuing support from the NSF-
reconstruction. Using thermodynamic parameters obtaineMRSEC under Contract No. DMR-96-32521D.J.L.,
mostly from equilibrium fluctuation measurements and thel.D.W., and E.D.W.
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