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The lateral growth of an isolated nucleated facet is studied using a simple two-dimensional step model. An
effective Hamiltonian that causes a planar surface to phase separate into facets and step bunches is proposed.
The motions of the steps are determined by the relaxational dynamics of the effective Hamiltonian with and
without a local conservation requirement. An even simpler mean-field-like model is used to illustrate the
mechanism of the experimentally observed constant-velocity facet tip propagation. Numerical calculations
using thermodynamic and transport coefficients previously measured give good agreement with experiments
under the local conservation requirement.@S0163-1829~97!02808-7#
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I. INTRODUCTION

Thermodynamics predicts that a vicinal surface with
single orientation can spontaneously facet into surface
different orientations due to an anisotropy in the surface f
energy.1,2 This often occurs when surface adsorption or
construction processes stabilize certain preferred orie
tions. Recently the equilibrium properties of faceted surfa
have been measured with sufficient accuracy that deta
thermodynamic analyses can be carried out.3–13 Moreover,
advances in real-time direct imaging techniques now al
for a detailed description of microscopic kinet
processes.14,15 Specifically, it has been observed that und
certain conditions facets nucleate randomly. They grow a
constant rate along the step direction but grow much m
slowly normal to the steps, thus taking on an elongated cig
like shape.16 In the case of Si~111!, while the thermodynam-
ics of this process is well understood,11,12,16,17a complete
description of the kinetics has yet to be formulated.

The kinetics of the faceting problem is a subject of lo
standing in the field of surface science. Mullins18 proposed a
continuum model for facet growth during thermal etching.
this pioneering work, it was shown that the specific kine
mechanism for mass transport is important in explaining
time evolution of the facet. Mullins assumed that the adva
ing facet tip would attain a constant steady-state velo
along the step direction. He then calculated the normal
face profile and the characteristic normal growth rate usin
one-dimensional model. He found that the normal width
the facet grows ast1/2 under an evaporation-condensati
mechanism and ast1/4 under surface diffusion. While the
assumption of steady-state tip propagation has been
firmed by several experimental measurements, the effec
550163-1829/97/55~12!/7653~7!/$10.00
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specific kinetic mechanisms on the growth law for the fa
width remains obscure.16,19

Mullins’s isotropic continuum model does not proper
describe the free energy of a surface below the roughen
temperature. A one-dimensional step model appropriate
such a surface has been developed by several authors20–22

and used to explain various interaction-drive
phenomena.23,24 In this paper we extend these ideas and
velop a two-dimensionalstep model that can take into ac
count both the step interactions and step meanderings
introducing some appropriate effective interactions that co
ply with the thermodynamics of the faceting problem, w
can reproduce the steady facet growth along the step d
tion, and establish the effects of kinetics on the growth of
facet width. We find a relation between the facet grow
problem and the general class of reaction-diffusion patt
formation systems.25 We use as a test example the propag

FIG. 1. A schematic picture of the two-dimensional model f
the faceting problem.
7653 © 1997 The American Physical Society
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7654 55LIU, WEEKS, JOHNSON, AND WILLIAMS
tion of (737) reconstructed facets on Si~111! where the
model’s parameters have been previously measured.

II. THERMODYNAMICS AND KINETICS
OF THE RECONSTRUCTION

The thermodynamics of vicinal Si~111! surfaces near the
(737) reconstruction transition temperature has been ex
sively studied.26 In this section we use a two-dimension
step model as a mesoscopic description of the surface
figurations~see Fig. 1!.27 The system consists of a number
steps with the same sign~all ascending or descending!. The
position of thei th step is denoted byxi(y), where they axis
coincides with the average orientation of the steps. Thy
argument is made continuous by coarse graining the sys
along the step edge direction to a scale large compare
atomic spacing but small compared to typical step pattern
interest. We also assume initially that the step orientat
remains predominately along they direction. We postulate
that the effective Hamiltonian of such a coarse-grained s
tem can be written as

H5E dy(
i

FV„wi~y!…1
b̃

2 S ]xi~y!

]y D 2G1H0 , ~1!

where we define the local terrace wid
wi(y)[xi11(y)2xi(y) for each terrace andy position. Here
b̃ is the ‘‘bare’’ line tension or step edge stiffness that co
trols the extent of fluctuations of anisolatedstep in they
direction, whileV(w) describes the effective step-step inte
actions, taken here to be between adjacent steps only. In
~1! we have evaluated the interaction terms at the samy
position and linearized the line tension term.28 When steps
are reasonably straight, these should be good approx
tions, but we will use Eq.~1! even in more general cases
a model. For the present application of the model, steps
main remarkably straight. The angles of the steps with
spect to their average orientation are generally less than 3
the numerical calculations we have carried out.

Next we will try to find the appropriate form for the e
fective interaction termV(w) for the faceting problem. This
should take into account the effects of reconstruction as w
as direct elastic or entropic interactions between steps
one-dimensional models a standard approximation21,22 sets
V(w)5 f (1/w)w. Here f (s) is the free energy density of
uniform surface with step densitys51/w, projected on a
reference~low-index! plane on which the faceting can occu
This procedure associates the free energylocally with each
terrace, even in cases where neighboring terrace widths v
The pairwise potentialV(w) includes the effects of entropi
repulsions between steps that arise physically from step
anderings at differenty positions. The essence of this a
proximation is to average over the effects of these fluct
tions by coarse graining the step along they direction and to
study a deterministic process, which in this paper is
growth rate of a facet after it is nucleated. This approach
been implicitly used by Nozie`res21 in a one-dimensional dy
namical model and subsequently adopted by many aut
and compared with experiments recently.22–24 We assume
n-
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here that our coarse-graining scale in they direction is large
enough that we can use the same functional form forV in our
two-dimensional model.29

The terrace-step-kink~TSK! model predicts that the varia
tion of surface energy with step densitys takes the form30,31

f r ,u~s!5 f r ,u
0 1b r ,us1gr ,uh

3s3 ~2!

for vicinal surface, wheref 0 is the surface free energy den
sity of the reference plane,b is the free energy cost per un
length of creating an isolated step,h is the step height, and
gh3s3 is the free energy due to step interactions. Both
tropic and elastic interactions can contribute to the last te
The step heighth is introduced in Eq.~2! so that the defini-
tions ofb andg are the same as in Refs. 11, 12, and 26. T
subscriptsu andr indicate the values of parameters for sy
tems either completely unreconstructed (u) or reconstructed
(r ). Reconstruction-induced faceting can be understood
assuming thatf r

0, f u
0 but thatb r.bu : while reconstruction

lowers the free energy of the reference~flat! surface there is
a higher cost associated with the ‘‘broken bonds’’ at a st
Thus reconstruction is favored only on sufficiently wide te
races. Figure 2 is an illustration of the free energy curv
from Eq. ~2! for Si~111! below the transition temperature
For a given step densitys only one phase is metastabl
corresponding to the lower branch of the two free ene
curves. Thermodynamics predicts that eventually the sys
will ‘‘phase separate,’’ with reconstructed flat facets coexi
ing with unreconstructed step bunches with a step den
sb determined by the familiar tie-bar construction.11,12

However, to study the initial dynamics of phase sepa
tion, we should use the metastable free energies rather
the limiting thermodynamic ones. Although the detail
shape of the proper free energy functional arising fro
coarse graining of the microscopic model is important in
study of the initial nucleation event and in a possible sp
odal decomposition regime,32 here we concentrate on th

FIG. 2. Illustration of the coarse-grained free energyf as a
function of the step densitys. The dashed line betweensa andsb is
the tie-bar construction and corresponds to the thermodynamic
energy. The intersection of the two curves gives the critical wi
for the step model. A proper coarse-grained free energy sho
round off the cusp but the nucleation growth rate is insensitive
the detailed form of the free energy as long as it gives the cor
critical size and energy barrier.
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55 7655TWO-DIMENSIONAL FACET NUCLEATION AND GROWTH . . .
simpler process of determining the growth rate of an isola
facet after it has nucleated. This permits the use of a sim
two-phase model describing the reconstruction of differ
parts of each terrace.33 Because of the coarse graining, ea
terrace is effectively divided up into segments along they
direction. We assume each segment will reconstruct p
vided its width is larger than some critical widthwc , here
determined by the intersection of the two metastable f
energy curves in Fig. 2. Hence we assume the effective
teraction between steps has the simple fo
V(w)5min$ f r ,u(1/w)w%. More accurate expressions, inco
porating, e.g., preferences for integer multiples of
(737) reconstruction unit, could easily be used, but t
form seems sufficient for this initial exploration.

The problem of step motions for systems out of equil
rium is generally discussed in the framework of the class
Burton-Cabrera-Frank ~BCF! model34 and its
generalizations.35,36 Although the BCF model is very suc
cessful and well grounded physically for the crystal grow
problem, its application to a two-dimensional problem
very difficult, requiring the solution of a diffusion equatio
with moving boundary conditions on arbitrarily shaped s
configurations. Also the generalized BCF model involv
some physical parameters that are very difficult to meas
and introduces the possibility of instabilities such as
Mullins-Sekerka36 instability which do not seem to be impo
tant in the faceting problem. In this paper we discuss t
phenomenological approximations that incorporate what
believe to be the essential physics in a simpler way. Th
can be used for numerical calculations and compared w
experiments quantitatively.

The step positionsxi(y) can change due to attachmen
and detachments of atoms at the step edges. In the co
grained model, each atomic attachment/detachment e
corresponds to a small variation of the step profile. Theref
the free energy change is proportional to the functional
rivative of the effective Hamiltonian. We can define the st
edge chemical potential — the change in free energy
atom for adding atoms to the step at coarse-grained pos
y — as

m i~y!52V
dH

dxi~y!

5V@V8~wi !2V8~wi21!1b̃]2xi /]y
2#1mC , ~3!

whereV is the area of the unit cell~the area occupied by a
atom at the step edge! andV8(w) is the derivative ofV(w)
with respect tow. HeremC is the atom chemical potential o
the solid. In the case of no exchange of atoms between
vapor and solid phase, it is just a Legendre constant cho
to fix the total number of atoms. For simplicity, we negle
the exchange of atoms between the solid and vapor phas
is the case for Si~111! near the transition temperature fro
(131) to (737) reconstruction~850 °C!.

In the first approximation, we adopt the idea of the BC
model and assume there is no direct hopping of adat
between different terraces. We also assume that the m
microscopic mechanism for step motion is the exchange
atoms at step edges with adatoms or vacancies on terr
~attachment/detachment processes!, which is one possible in-
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terpretation of the step fluctuations on Si~111! around 900
°C.37 Then using first order kinetics we can write the flow
atoms from stepn to terracen as ~see Fig. 3 for illustration
of the labeling!

j n
1~y!5a1@mn~y!2mn

t ~y!#, ~4!

and similarly the flow of atoms from stepn to terracen21
as

2 j n
2~y!5a2@mn~y!2mn21

t ~y!#, ~5!

wheremn
t (y) is the adatom chemical potential on terracen at

y position. From microscopic mass conservation, the s
velocity is

]xn~y!/]t5V@ j n
1~y!2 j n

2~y!# ~6!

for small step velocities and low adatom concentrations.
neglect here the gradient ofmn

t (y) on the same terrace pe
pendicular to the step direction by assuming slo
attachment/detachment rates and fast diffusion rates,
mn
t (y) can still be different for different terraces andy posi-

tions. For simplicity, we assume here symmetric kinet
(a15a25a).

Under the quasistatic approximation in the BCF model
any given time the adatom concentration field satisfies
static diffusion equation. In the limit of no evaporation
deposition, this requiresj n

1(y)5 j n11
2 (y), if we neglect the

diffusion of adatom along the step direction. Hence we c
determine the adatom chemical potential on each terrac
mn
t (y)5@mn(y)1mn11(y)#/2 through Eqs.~4! and~5!. Thus

the equation of motion from Eq.~6! is

]xn~y!

]t
5

aV

2
@2mn~y!2mn21~y!2mn11~y!#. ~7!

We call this kinetics withlocal conservation of atoms, be-
cause in this case, the motion of each step will affect
motion of neighboring steps not only through energetic
teractions, but also from the requirement of conserving
oms on each terrace. We can also obtain some more com

FIG. 3. Illustration of the dynamics of the step motion. At an
giveny position, we define atomic chemical potential at step ed
mn and terracesmn

t . The flux due to the exchange of atoms betwe
steps and neighboring terraces is determined by the differenc
the chemical potentials.
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7656 55LIU, WEEKS, JOHNSON, AND WILLIAMS
cated equations by solving the one-dimensional diffus
equation under general conditions but the essential feat
are the same.

Strictly speaking, the omission of the adatom diffusi
along the step direction can be readily assumed only in
one-dimensional model and is problematic if the diffusi
rate along the step direction is very large or the variation
surface profile along the step direction is very large. T
local conservation requirementj n

1(y)5 j n11
2 (y) can be fur-

ther called into question if we allow direct adatom hoppi
between different terraces. These are the motivations fo
to consider a different limit. We now assume there ex
some channels for long distance mass movement withou
requirement of strict local conservation. The adatoms
change with a reservoir and act much like a two-dimensio
gas. As a result, the adatom chemical potential is thesame
for all the terraces andy positions instead of being dete
mined by the neighboring steps. It is an easy matter to w
down the equations of motion for thisnonlocally conserved
case:

]xn~y!

]t
52aV@mn~y!2mC#. ~8!

Equations~7! and ~8! are analogous to the equations of m
tion in Mullins’s original paper18 for the surface diffusion
mechanism, and the evaporation-condensation mechan
respectively. It is easy to implement the two equations
motion numerically and study the evolution of the step co
figurations. This work is described in Sec. IV.

III. MEAN-FIELD-LIKE MODEL AND STEADY-STATE
FRONT PROPAGATION

The model discussed above involves the coupled mo
of many meandering steps and the resulting dynamic
quite complicated. Before discussing the numerical calcu
tions and the results of this many-step model, we first st
a much simpler model that corresponds to a well underst
mathematical problem, where analytical results can be
tained. We assume that reconstruction only occurs o
single terrace and denote the facet width at differenty posi-
tions byw(y,t). Using a mean-field picture, we assume th
the effects of the neighboring steps on the time evolution
the facet width can be approximated by some appropria
chosendriving forcetermw(w) that is a function of the face
widthw only. We particularly want to examine the motion
the facet tip. Our model equation for facet motion takes
form

]w~y!

]t
5g

]2w~y!

]y2
1w~w!. ~9!

The first term on the right describes the step stiffness, wh
favors straight steps, and the second term qualitatively
scribes the effect of step interactions and surface recons
tion. This is basically the deterministic part of a Langev
equation for the motion of the steps immediately bound
the facet under the approximation that the influence of m
distant steps is described by some effective driving fo
termw(w) which is a functiononly of the facet widthw.
n
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We now need to choose an appropriate form forw(w).
We assume att50 there is a nucleus of reconstructed fac
aroundy50 and asy goes to6` the surface is uniform
with w5w0, the average terrace width. The main features
w(w) can be deduced using the reconstruction-driven fac
ting of Si~111! as an example. Figure 4 draws two postulate
forms for w(w) in the nucleation and unstable regime, re
spectively. In the nucleation regime@Fig. 4~a!# the uniform
surface is metastable. Thus we set w(w0)50 and
w8(w0),0. ~This ensures thatw0 is a stable fixed point.!
However, when the facet width is larger than a certain cri
cal widthwc , the effect of reconstruction will overcome the
step repulsions and it will be energetically more favorable
increase the facet width. Thusw(w) becomes positive for
w.wc . As w further increases, the number of unrecon
structed bunched steps around the facet becomes lar
slowing down the facet growth. Thusw(w) should decrease.
For example, in Mullins’s one-dimensional continuum
model, the long time behavior of the facet width ist1/2 and
t1/4 for the evaporation-condensation mechanism, and s
face diffusion mechanism respectively, corresponding
w21 and w23 behavior forw(w) at largew. It was also
observed for Si~111! that facet widths can saturate at certa
values due to elastic effects.16,17This can be incorporated in
our model by requiring thatw(w) have another stable fixed
point ws at the appropriate distance. In the case conside
by Mullins ws is infinite. The discussion that follows doe
not depend on whetherws is finite or not.

When we lower the quenching temperature, there is
crossover from metastable to unstable phase separation
Si~111!.16 Figure 4~b! draws the postulated form forw(w)
for the unstablecase. Herew0 is still a fixed point but is
unstable@w8(w0).0# and there is no intermediate fixed
point wc .

With this approximation for the ‘‘driving force,’’ and ne-
glecting thermal noise, the problem of facet growth from
preexisting nucleus is reduced to the problem of solving t
time evolution of Eq.~9! starting from some initial condition.
The nonlinear termw(w) satisfiesw(w0)5w(ws)50. This
problem has been thoroughly investigated by Aronson a
Weinberger38,39 as a model for population genetics. The
have shown that the solutionw(y,t) of Eq. ~9! will develop
a stable profile that propagates with a well defined no
negative steady-state velocityvy for anycontinuous function

FIG. 4. The form ofw(w) in Eq. ~9! for two distinct regimes in
the mean-field-like model.~a! The nucleation~metastable! regime;
~b! the spinodal~unstable! regime.
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55 7657TWO-DIMENSIONAL FACET NUCLEATION AND GROWTH . . .
w(w) defined on @w0 ,ws# for which w(w0)5w(ws)50,
provided that the initial profile satisfiesw(y,0)→w0 as
y→` ~i.e., far away from the nucleus the steps remain
their initial average positions!, and that the nucleus is suffi
ciently localized. In other words, there exists one steady-s
solution for the tip shape and velocity of the growing fac
independent of most initial conditions of the nucleus.

To see this more clearly, let us consider shape preser
solutions of the formw(y2ct), wherec is a non-negative
number that describes the propagation velocity of the pro
in y direction. Thenw(j)5w(y2ct) satisfies

gw91cw81w~w!50. ~10!

We are only interested inw(j) that satisfiesw(j)Þw0 and
limj→1`w(j)5w0. To see that the steady state solution e
ists for a range ofc’s we follow the argument of Dee an
Langer.40 Equation~10! describes the trajectory of a partic
of massg whose ‘‘displacement’’w is a function of ‘‘time’’
j. The particle moves in a force field described by2w(w).
Figure 5 illustrates this potential field for the two types
driving ‘‘force’’ w(w). Notice that a stable fixed point fo
Eq. ~9! corresponds to a local potential maximum and
unstable fixed point corresponds to a local potential m
mum. If c is positive, it serves as a damping coefficient a
the damping force is proportional to the ‘‘velocity
(]w/]j) of the particle. The relevant solution of our proble
is a ‘‘trajectory’’ that starts fromw5ws and ends at
w5w0. If c is very large, the particle is overdamped in t
sense that starting fromw5ws with an arbitrarily small ve-
locity, the particle will either never reachw5w0 @Fig. 5~a!#
or approachw5w0 monotonically@Fig. 5~b!#. On the other
hand, ifc is very small then the particle is underdamped a
it will go pastw5w0 with a nonzero velocity. There exists
uniquec* such that the relevant trajectory is neither ov
damped (c.c* ), nor underdamped (c,c* ). It can also be
shown thatc* is the selected velocity if the system develo
a stable profile starting from a localized initial nucleus.38,39

If w8(w0).0, then the facet with average terrace wid
w0 is unstable. For a variety of nonlinear functionsw(w),
the linear expansion aroundw0 is enough to determine th
velocity of the propagation of the profile along they direc-
tion. This is a special case of the marginal stability mec

FIG. 5. The potential field for the particle whose trajectory re
resents a solution of the shape preserving equation. The fixed p
now are shown as potential maximum and minimum.~a! and ~b!
correspond to the same regime as in Fig. 4.
t

te
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ng

le
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nism of velocity selection.40,41 In this casevy5c* is simply
2(gw8(w0))

1/2. Stewart and Goldenfeld42 have proposed a
continuum model for the unstable regime. As an approxim
tion, they also used this model to predict the traveling vel
ity of the facet iny direction. However, as pointed out b
them and other authors, Si~111! quenched 3 °C below the
transition temperature is not in an unstable regime. Ra
phase separation proceeds through a nucleation and gr
process. Therefore in the model we described above, we
sumed terraces withw5w0 aremetastableand there is a
threshold effect characterized bywc .

In general the value of selected velocityvy should depend
on the behavior ofw(w) through all w in the range of
@w0 ,ws#. Here as an example of the relative effect ofwc and
ws , we use a simple form ofw that mimics the faceting
problem, namely,

w~w!5H 0, w0<w,wc and w.ws

w0 , wc<w<ws .
~11!

The important parameters are the critical widthwc for the
formation of the reconstruction, andw0, which mimics the
effect of the reconstruction on the motion of the step inx
direction. This of course is an unrealistic form forw(w) but
still qualitatively representative. It can be shown by solvi
Eq. ~10! explicitly that the steady-state velocityvy that is
selected dynamically satisfies the following equation:

vy
25

gw0

wc2w0
$12exp@2vy

2~ws2w0!/gw0#%. ~12!

Forws /wc@1, vy'@gw0 /(wc2w0)#
1/2. Here we have a re-

lation between the growth rate of the facet in the two dire
tions. The result that the facet propagates with a cons
velocity in they direction is rather insensitive to the choic
of w(w). In order for the facet to grow in area, the positiv
part ofw(w) should be large enough so that

E
w0

ws
dw w~w!.0. ~13!

Although this mean-field model is too simple to pred
the evolution of the nucleation quantitatively, it does rep
duce some of the essential features of the TSK model. Eq
tion ~12! also qualitatively predicts correctly the trends wh
changing the parameters involved.

IV. NUMERICAL CALCULATION AND COMPARISON
WITH EXPERIMENT

We now return to a study of the general coupled s
equations derived in Sec. II. Phaneufet al.16 have studied the
reconstruction-induced phase separation of vicinal Si~111!
using low-energy electron microscopy. They found that b
low some transition temperature, large (737) facets form
and in between these facets are unreconstructed
bunches. Depending upon how far the temperature
quenched below the transition temperature, the evolution
ward the final state was quite different. For example, for
surface with 4° miscut ~with average terrace width
w0549 Å) quenched 3 °C below the transition temperatu
the facet formation occurs by the nucleation and growth

-
nts
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7658 55LIU, WEEKS, JOHNSON, AND WILLIAMS
isolated linear (737) reconstructed~111! facets. For
quenches to lower temperatures, many facets appeare
multaneously. This change of kinetics has been associ
with a change from nucleation and growth to spinod
decomposition.32 Recent scanning tunneling microsco
~STM! work using dc current heating reproduces most
these results.19

The thermodynamics of vicinal Si~111! surfaces has bee
discussed at length in Refs. 11 and 12. The variation w
temperature in the difference of surface free energy den
for the two phasesD f 05 f u

02 f r
0 can be determined from th

phase diagram of the faceting. Using the tie-bar construc
in Fig. 2 we havesb5(D f 0/2guh

3)1/3, wheresb is the final
step density of the unreconstructed step bunch. Us
gu515 meV/Å2,11,12 we estimateD f 0'0.02 meV/Å2 at 3
°C below the transition temperature for surfaces with 4° m
cut. The difference in step creation energyDb5b r2bu can-
not be determined exactly from the phase diagram and
use the estimateDb52 meV/Å.32 The critical width wc
corresponds to the intersection of the two free energy cu
and is given byDb/D f 0. Using these valueswc is estimated
around 100 Å, which is consistent with the STM study
Hibino, Homma, and Ogino.19 Henceforth we use
wc52w0598 Å.

The kinetic coefficients can be obtained from the m
surements of thermal fluctuations of the steps. For surfa
with very small miscut angle, we can ignore the repuls
interaction terms in the step edge chemical potential. Ass
ing the attachment/detachment mechanism and the equ
rium chemical potential value on terraces, the equation
motion of the step is simply

]x~y!

]t
52aV2b̃

]2x

]y2
5

Gb̃

kBT

]2x

]y2
. ~14!

The last equation on the right is the deterministic part of
Langevin equation analyzed by Barteltet al.37 This allows us
to identify 2kBTaV2 with G, the mobility of the step wan-
dering. Experiments at 900 °C show thatG553107 Å3 s-1

andb̃530 meV/Å.37 Note that in the analysis of the therm
fluctuations, the step is also coarse grained along they di-
rection, so there is no inherent microscopic length scale
these parameters.

To simulate the experiment discussed earlier, we ma
ally create a nucleus of a wide reconstructed terrace~facet! in
a system of 40 steps with average terrace widthw0549 Å,
and then calculate the deterministic time evolution of
facet by numerically integrating Eq.~7! or ~8!. The nucleus
has a width larger than the critical widthwc and several step
near the nucleus are moved away from their uniform posit
to prevent overhangs. Far away from the nucleus, the s
are uniform. If the initial nucleus is big enough, the facet w
continue to grow in size. In both the conserved and nonc
served cases we found a constant growth rate iny direction
and a decreasing growth rate inx direction after a short
transient. Figure 6 is a snapshot of the evolution of the s
face profile using the locally conserved mechanism@Eq. ~7!#.
In this case, the growth rate in they direction, vy , is
830 Å/s, remarkably close to the experimental va
10006200Å/s.16 The good agreement is somewhat fort
itous, since the result is rather sensitive to several parame
si-
ed
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that are not known accurately, especially the critical wid
wc ~or equivalentlyDb). For example, forwc equal to
1.7w0 and to 2.3w0, the correspondingvy is 2400 Å/s and
350 Å/s, respectively. However, the nonlocally conserv
mechanism with Eq.~8!, assuming wc5100 Å, gives
vy52.03104 Å/s, about 20 times larger than experiment

Although it is difficult to estimate the uncertainty ofvy
without a more detailed knowledge ofwc , these results sug
gest that the mechanism with local conservation is proba
a more realistic scenario for Si~111! at this temperature. Re
cent experiments on the relaxation of one-dimensio
Si~111! step bunches are also consistent with the locally c
served mechanism.24

However, as remarked earlier, the local conservation c
dition is more questionable in a two-dimensional system
we also consider diffusion of adatoms on terraces along
step edge direction. Letdy be the typical distance an adato
diffuses on the terrace along they direction before it attaches
to the steps. The variation in they direction of the atom
chemical potential on terraces with wavelengths mu
smaller thandy will be smoothed out by diffusion before i
has any effect on step motion. Whendy is much larger than
the largest relevant length scales, for example, the dista
between different facets or the size of the facet, the non
cally conserved mechanism will be more realistic. In t
limit that dy is small compared to the length scale on whi
the steps have features we are interested in, the diffu
problem is essentially one dimensional and the locally c
served mechanism is more realistic, provided there is no
rect adatom hopping between different terraces. If we den
Ds as the adatom diffusion rate on the terrace andceq as the
equilibrium adatom concentration, thendy is of the order of
(DsceqV

2w0 /G)
1/2, assuming isotropic diffusion. This yield

an estimate fordy of 500 Å using43 Dsceq51.23109s21.
This length is much smaller than the lateral size of the fac
and is comparable to the size of the tip. Thus it clearly ru
out the nonlocally conserved mechanism for facet wideni
This can be viewed as an independent argument for choo
the locally conserved mechanism aside from the fact that
vy it gives is much closer to the experimental value. A qua
titative description of the crossover regime near the tip wh

FIG. 6. A snapshot of a system of 40 steps after about
starting from a small nucleus using the local conservation mec
nism. Some of the parameters used areg515 meV/Å2,
D f 050.020 meV/Å2, G553107 Å3/s, w0549 Å, and
wc598 Å.
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dy has an intermediate value necessarily involves tw
dimensional diffusion of adatoms and is beyond the scop
this paper.

V. CONCLUSION

In this paper we have proposed two self-consistent
merical models for the motion of steps on a vicinal surfa
under a reconstructive phase transition. We found a ste
facet front propagation in the direction parallel to the s
edges as has been observed experimentally. The under
mechanism for the velocity selection is believed to be
balance of the stabilizing effect of the line tension and
driving force arising from phase separation due to the surf
reconstruction. Using thermodynamic parameters obtai
mostly from equilibrium fluctuation measurements and
h

e

T.

L.

L.

D.

s
S
,

-
of

-
e
dy
p
ing
e
e
ce
d
e

Si~111! reconstruction phase diagram, we obtain a satisf
tory agreement of the model with experimental data us
the mechanism requiring local conservation of adatoms
each terrace. More accurate experimental measuremen
the relevant parameters will allow a more detailed und
standing of the microscopic mechanisms.
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