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THE ROUGHENING TRANSITION

John D. Weeks

Bell Laboratories
Murray Hill, N.J. 07974

I. INTRODUCTIOXN

The idea that there could be a "roughening” of the interface
of a crystal in equilibrium with its vapor at a particular tempera~
ture T was first suggested by Burton and Cabrera (1949) and
further developed in a now classic article by Burton, Cabrera and
Frank (BCF) (1951). Represeanting the crystal surface by a two-
dimensional (2D) Ising model they suggested that there would be
large fluctations in the surface structure at the Ising model's
critical temperature T;(2D) and a disappearance of the nucleation
barrier to crystal growth. Jackson (1958, 1967) further developed
and extended these ideas to the case of melt growth and showed that
the morphology and growth mechanism of a wide class of crystals
could be understood by assuming they were. grown above or below the
appropriate surface roughening temperature.

Although these ideas were well known to most material
scientists and workers in the field of crystal growth, it is only
fairly recently that their importance and relevance has been
appreciated by condensed matter physicists. The roughening tran-
sition is of interest today not only because of its implicationms
for surface physics but also because of its relationship to
phase transitions in a number of different systems, several of
which are discussed at this Imstitute.

In these lectures, we will give a brief introduction to the
crystal growth models and ideas that lead BCF to suggest the
possibility of surface roughening, followed by a review of the
modern work relating the roughening transition to phase transitions
in a number of 2D systems, including the planar (XY) model, the F
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model and the coulomb gas. We describe the application of the
Kosterlitz (1974) renormalization group theory to describe the
statics and dynamics of the roughening transition and the results
of Monte Carlo calculations which seem in good accord with the
theory. More complete discussions and a guide to the literature
of various aspects of these lectures can be found in review arti-
cles by Weeks and Gilmer (1979), Gilmer and Jackson (1977),
Muller-Krumbhaar (1977), and Leamy et al. (1975).

II. THE SOLID-ON-SOLID MODEL

Consider for simplicity the case of a (001) face of an
impurity-free simple cubic crystal in equilibrium with its wvapor.
We model this situation using a restricted version of the usual
lattice gas (Ising model) in which every site is either vacant or
occupied by a single atom whose interaction with another atom in
a nearest neighbor site is ¢. If we further require that every
occupied site be directly above another occupied site (thus
excluding "overhangs'") we obtain a "solid-on-solid" (S0S) model.
A SOS model can thus be thought of as an array of interacting
columns of varying integer heights. The surface configuration is
represented by the 2D array of integers specifying the number of
atoms in each column perpendicular to the (001) face, or equi-
valently by the height of the column relative to the flat T = 0
reference surface. Growth or evaporation of the crystal involves
the "surface atoms" at the tops of their columns. As shown in
Fig. 1, complex surfaces with steps and other kinds of disorder
can be represented using the column model.

Fig.l Atoms on a (001) face of a simple cubic crystal. Surface
atoms may have up to four lateral neighbors. An atom in a
kink site, indicated by a k in the figure, has two lateral
neighbors.
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For the restricted lattice gas, the energy between neighboring
columns of heights hy and h., o is determined by counting the number
of "broken bonds" and hence”is' proportional to ¢|h- - hj+8|. The
equilibrium properties of this particular model (denoted ASOS
herein) can be determined from the partition function

x
- i -
Zysos = L e"p[ ner L Iny hj+6|:l )
{hj}=-°° 3.8

where J = ¢/2 and the summation is over all integer heights for
each column. Note that the number of vertical broken bonds is
conserved in the excitations permitted in the ASOS model. Hence
we can arrive at (1) formally by considering the interface in an
anisotropic lattice gas with a vertical bond strength ¢¢'which

" tends to infinity (Weeks et al., 1973).

The ASOS model is an accurate approximation to the interface
in the unrestricted lattice gas at low T, since the overhanging
configurations suppressed are of higher energy. Further we can
consider a wider variety of S0S models in which the interaction
energy between columns is some increasing function of the height
difference V(hj - hj+6). At low T, the higher energy multiple
height jumps between neighboring columns will be infrequent and
the properties of all such models will be very similar. (As will
become apparent later, an essential feature of all these models
is that the heights can range over all integers - ® < h < ®,)

Dynamics is introduced into the model by creating or annihi-
lating atoms at random positions on the surface. This process
simulates the molecular exchange between the solid and vapor
phases. Thus is it reasonable to assume that the rate of creation
(deposition) of atoms per site at the surface, denoted k¥, is
independent of the neighboring surface configuations. However,
the annihilation (evaporation) of a surface atom is an activated
process requiring the breaking of nearest neighbor bonds. We
assume the evaporation rate of an atom with m lateral neighbors
(0 £m <4 in a cubic lattice ) is

k; =V exp [-md/KkT]

where Vv is the evaporation rate of an isolated adatom at the
surface. It is easy to see that this choice of transition proba-
bilities obeys detailed balance (Gilmer arnd Bennema, 1972). The
equilibrium state, described by Eq (1), is reached when the
creation rate, kg , equals the evaporation rate of a kink site,

v exp [~2¢/kT]. This must be true since a layer can, in principle,
grow (or be removed) by successive creations (or annihilations) of
atoms only at kink sites.
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We emphasize that the above is a stochastic model for the
statics and dynamics of the crystal growth process. Important
limitations of the model include the neglect of strain fields, and
the need to assume in advance a particular lattice structure.
However, the model does give a consistent and physically reasonable
description of the cooperative interactions among clusters of atoms
that are critical to the crystal growth process. Properly inter-
preted it thus provides a useful compromise between mathematical
simplicity and physical reality.

III. THE BCF ARGUMENT

To gain a qualitative feel for the statics of the roughening
transition we make use of the analogy between a lattice gas and a
ferromagnetic Ising model, where an occupied site is represented
by an "up"” spin and a vacant site by a "down" spin. The configura-
tion at T = 0 is described by successive 2D layers of up spins
representing occupied sites in the crystal followed by layers of
down spins representing the vapor. The final (surface) layer of
up spins is effectively isolated since the layers above and below
are magnetized in opposite directions. Thus following BCF, we
might expect the surface layer to behave like a 2D Ising model
with large spin fluctuations (i.e., large regions of surface
vacancies and adatoms) and thermodynamic singularities near the
2D critical. temperature kT/¢'§ 0.57. Note that the cancellation
argument holds equally well for the anisotropic lattice gas with
¢, >> ¢. This shows that the roughening transition is not related
to the bulk (3D) critical temperature which scales with ¢, (and
indeed is infinite for the ASOS model), but rather is a transition
unique to the interface.

The BCF picture implies that each crystal face has a distinct
roughening temperature, the more loosely packed faces having the
lower TR. Indeed some faces, e.g., the (Qll) face of a simple
cubic c¢crystal, have no connected 2D net of nearest neighbor bonds
and their roughening temperature is zero, the result for a 1D
Ising model. For most crystal growth applications, the most impor-
tant faces are the slow-growing close-packed faces.

As one might expect, the critical-like fluctuations occurring
at the interface near TR have an important effect on the crystal
growth rate. Crystal growth on a relatively flat surface well
below TR is a difficult process, requiring the formation of a
critical nucleus cluster. If a surface is at its roughening tem~
perature, then BCF reasoned that the critical fluctuations produce
clusters of arbitrarily large size and hence the nucleation barrier
to crystal growth disappears. Another implication is that the
crystal grown with T < Ty is faceted with very anisotropic growth
rates for the different faces, the close-packed faces growing in a
layer-by-layer fashion. Above TR, essentially isotropic growth
should occur (Jackson, 1967).
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It is easy to find fault with this crude argument. There can
be an exact cancellation of the interactions from the layers above
and below the surface layer only at T = 0. Indeed, van Beijeren
(1975) used this observation tc prove rigorously that TC(ZD) is a

lower bound to TR. Further the restriction of the excitationms to

only one layer is unrealistic and must be removed for a more exact
description. Still, the argument is physically very suggestive and
it stimulated experimental work, some of which is described in the
next section, which seems in good accord with their physical picture.

IV. EXPERIMENTAL RESULTS

There were initially few attempts to experimentally verify the
BCF ideas on roughening because they estimated that a crystal in
equilibrium with its vapor would melt before the closest-packed
face roughened. However, recent experiments by Jackson and Miller
(1977) suggest that for simple van der Waals crystals, the roughening
point is well below the melting point. They studied the plastic
crystals CyClg and NH,Cl and found dramatic changes in the morphology
(faceted to essentially isotropic) of crystals grown for temperatures
differing by less than five degrees. These experiments are the
only ones we know of in which a crystal in equilibrium with its
vapor is taken from below to above its roughening temperature.

Earlier experimental corroboration of the roughening picture
involved. comparison of a given crystal's structure to predictions
arising from estimates of the roughening temperature. Most of this
work was for melt growth, and the temperature range over which the
crystal growth can be observed experimentally is very small. How-
ever, as shown by Jackson (1958, 1967), it is possible to understand
both the growth mechanisms (nucleated or continuocus) and crystal
structure (faceted or isotropic) of a very wide variety of materials
by determining whether the crystal as grown was below or above its
surface roughening temperature.

These experimental results, and all others we know of, have
indirectly observed the roughening transition by its effect on
crystal growth. An experimental study of the egquilibrium properties
of the crystal-vapor interface seems called for. Then one can test
a number of the detailed predictions that arise from the new devel-
opments in the theory of the roughening transition. These results
are discussed in the next part of these lectures.

V. MONTE CARLO CALCULATIONS: QUALITATIVE FEATURES

The BCF one layer model is obviously inadequate in several
important respects. To gain a better physical feeling for the
roughening transition it is useful to consider the results of
Monte Carlo simulations on the ASOS model., Fig. 2 give typical
equilibrium surface configurations generated by the MC method at
various values of kT/é. At the lower temperature dis<inct adatom
and vacancy clusters are visible but at the highest temperature
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Fig. 2. Computer drawings of typical surfaces generated by the MC
method at the indicated values of kT/¢.
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the clusters have grown and merged together to such an extent that
arbitrarily large clusters are present and indeed the original
reference level of the surface is not apparent (Leamy et al., 1975).

Thus the BCF picture of a rapid increase in surface roughness
near the 2D Ising model's critical temperature kTC(ZD)/¢ Y .57
appears confirmed. However an important additional feature becomes
clear: the excitations extend over many layers - evidentally
arbitrarily many in the limit of an infinite system. It is clear
that once a large cluster has formed it is just as easy to form
another cluster on top of the given cluster as it is to form it in
the original 1layer.

This buildup of large clusters on top of other clusters can be
thought of as a long-wavelength distortion of the local position of
the solid~vapor interface. Note that there are relatively few
double jumps between nearest neighbor columns even at the highest
temperature shown. Thus it is the long-wavelength distortions
involving a single jump from one large cluster to another that
dominate the physics of roughening. The essential idea of BCF is
correct: there is a class of low energy excitations possible at the
crystal-vapor interface. However these same excitations cause the
local position of the interface to wander arbitrarily far from the
original reference level.

These considerations suggest there are several equivalent ways
of characterizing the roughening transition. Clusters of arbitrarily
large size can be found at and above TR. The formation of these
arbitrarily large ridges also implies that the edge free energy and
edge energy (per unit length) required to form a step on the crystal
surface should vanish at TR (Leamy and Gilmer, 1974). Since large
clusters of adatoms and vacancies are equally probtable at Ty, the
average density of the surface laver should be 1/2 at and above the
roughening temperature. The formation of arbitrarily large clusters
in one layer implies a high probability of finding similar large
clusters in adjacent layers and the loss of the original reference
level. Thus the interface width should diverge at Tg in an infinite
system (Weeks et al., 1973). The disappearance of the nucleation
barrier implies that the susceptibility (the partial derivative of
the average height with respect to an infinitesimal driving force)
should diverge at and above TgR. The motion of the interface at and
above TR can be thought of as similar to that of a drumhead, whose
normal modes of vibration correspond to the formation of large
clusters of adatoms or vacancies on the surface.

VI. STATIC CRITICAL BEHAVIOR

We now make a more formal analysis of the properties of the
roughening transition. A literal interpretation of the BCF one
layer model suggests that the roughening transition lies in the
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same universality class as the 2D Ising model. 1In fact, because
excitations are not restricted to a single layer, it lies in a very
different universality class. This was first demonstrated in the
work of Chui and Weeks (1976)}.

Chui and Weeks introduced. the discrete Gaussian (DG) model in
which the interactions between nearest neighbor columns is quadratic
in the height difference:

B = %j);s (b - hype)? =5 Py b6 (35 h, (2)
-3 ) Ihq)? 7t (@) 3)
where
czl(q) = 4 - 2(cos q, + cos ‘qy) (%)
and
hy = ;ﬁl_ § hjeiqj (5)

is the Fourier transform of the height variable hj. The Fourier
transform of the matrix GI*(jj') is explicitly given in Eq. (4).

As argued before, at low T multiple jumps are unimportant and we
expect Eq. (2) to give the same critical behavior as the AS0S model
in Eq. (1). More generally, the roughening transition involves
long wavelength fluctations in the position of different parts of
the interface. Changes in the interaction energy between columns
that affect only short wavelength properties should be irrelevant
at the roughening point. Furthermore the Gaussian interaction is
in a sense the most fundamental. WNote that in Eq. (3) the inter-
action energy for small q goes as q2|h ]2_ This is characteristic
of a surface tension (Buff et al., 196§). We expect that at high
temperatures the long wavelength properties of the interface arising
from virtually any reasonable microscopic interaction can be de-
scribed using a surface tension. Thus a wide class of microscopic
column hamiltonians should transform under renormalization group
equations to the basic Gaussian interaction as in Eq. (3).

The DG partition function can be written

YA = J 14 L
DG dlhj} ? W(hj) exp [} T HDG]

N L. s
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where
w(hj) = ] E_m G(hj - nj) (7)
= . z-“ exp [ikjhj] (8)

The weighting function W(hj) in Eq. (7) restricts the integra-
tion in Eq. (6) so that only 1nteger values of hj contribute. In
Eq. (8) we, have reexpressed W(hs) in a more convenient way using a
well-known identity (see, e.g., Lighthill, 1959) which is essen-
tially the Poisson summation formula. Here kj = 2mn for integer n.
Substituting Eq. (8) into Eq. (6) we have

Z

ZDG T
—_ = z < exp (i z k.h.) > 9

Here Zy is the unweighted Gaussian model's partition function
[Eq. (6) with W(hj) = 1], which can be evalvated exactiy. The
angular brackets indicate an ensemble average in the unweighted
Gaussian ensemble.

In Eq. (9) we note the characteristic function for the Gaussian
distribution. Hence the {ks;} also have a Gaussian distribution
given by the inverse matrix to Gil (see, e.g. Cramer, 1946) aund
Eq. (9) becomes

expl: L § Ky 6y (3" Ky, ] (10)

where, from Eqs. (2)-(4), the inverse matrix Gl(jj') is

iq(J -i")
(1.4 = g5 IS5 (11)
q6 1 (@)

Eq. (10) is in fact the partition function for a neutral 2D
lattice Coulomb gas (see Chui and Weeks, 1976 for further details)
in which the k; represants the charges. Note the q"2 dependerice at
small q in Eq. (11) which characterizes the Coulomb interaction.




302 J. D. WEEKS

The reduced temperature kT/J has been inverted in going from the DG
model in Eq. (6) to the Coulomb gas in Eq. (10). The fact that the
Coulomb gas appears is really no mystery: the matrix Gil(jj') in
Eq. (2) is the lattice analogue of the Laplacian operator and hence
its matrix inverse, G1(jji') in Eq. (11), is the 2D lattice Green's
function, i.e., the 2D Coulomb potential.

Since 2g is analytic, the singularities in the DG partition
function Zp are identical with those in Zg. These had already been
discussed by Kosterlitz and Thouless (1973) and Kosterlitz (1974)
in connection with their analysis of the planar (XY) model and a
dislocation model for 2D melting. They established that the Coulomb
gas has a phase transition from a low temperature dielectric phase
with opposite charges tightly bound together in "diatomic molecules"
to a high temperature metallic phase. The free charges in the
metallic phase come from the now disassociated "molecules™ and give
the usual Debye screening. The properties of this transition can
thus be directly related to those of the roughening transition and
differ greatly from those of the 2D Ising model.

The most dramatic differences show up in the behavior of the
correlation length £. Define the height-difference correlation
function for two columns separated by a distance r:

G(r) = < (ho - hr)2 > (12)

where the angular brackets indicate an ensemble average in the S0OS
system. G(r) gives a measure of the average fluctuations in height
between different regions of the interface separated by a distance
r; and the square of the interface width is the r + o« limit of
G(r). The correlation length £ is proportional to the distance r°
at which G(r') is approximately equal to its asympotatic value.
The results of Kosterlitz (1974) then imply that below Tgr the
interface width is finite with a finite correlation length §. At
all temperatures above TR, however, G(r) is proportional to 1ln r.
Thus the interface width diverges logarithmically and the correla-
tion length £ is infinite. It is as if there were a line of
"eritical points" for all T 2 TR where £ is infinite.

The renormalization group (RG) method of Kosterlitz (1974)
further showed that the correlatioun length diverges very rapidly
as T + TR from below:

£ = exp [c/(TR—T)%] (13)

and of course £ remains infinite for T > Tg. This behavior is very
different from that of the 2D Ising model where § diverges by a
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power law only at Tg. Further, the singular part of the free energy
has a similar form near TR:

F < exp [-C'/(IT-TRI%)] (14)

Note the square root dependence on T-TR in Eqs. (13) and (14). The
free energy is non-analytic at TR but the singularity is a very
weak one with all temperature derivatives of the singular part
vanishing at TR. In particular there is no specific heat anomaly
at TR, ‘in contrast to the Ising model. We will discuss the
Kosterlitz RG theory and the derivation of some of these results

in the next section.

This kind of behavior should apply to a wide class of inter-
facial models with different interaction energies between columns.
Furthermore the periodic delta function weighting in Eq. (7) can
be replaced by other periodic weighting which favor integer posi-
tions. A particularly interesting case was analyzed by Ohta and
Kawasaki (1978), who took

W(hi) =1+ 2 ¥o cos 2rmhy . (15)

A Coulomb gas partition function like Eq. (10) again results but
the charges kj now have only the values 0 and * 27. Using the
Kosterlitz RG method, they found critical behavior identical to
that described above for the DG model and give further implications
for the roughening transition. We discuss in the next section the
dynamics of a very similar model.

Another model which has similar critical behavior is the
planar model, which Kosterlitz (1974) analyzed by relating it to a
2D coulomb gas. Jose et al., (1977) and Knops (1977) have made
the connection between the planar and SOS models quite explicit
mathematically by showing they are related by an exact "duality"
transformation which we now discuss. Consider a general. SOS
partition function

z= ) exp |- ) V(h; - h; (16)
o) [ 2 (s J+<S)]

where V(hs - h:ys) is an arbitrary increasing function of the
height difference between neighboring columns. If the 2N '"bond"
variable

n<ij> = hi - hj an
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(where column i is a nearest neighbor to column j having the smaller
%X or y coordinate) were all independent then Egq. (16) could be
represented as a product of single variable partition functions.

Of course there are actually N constraints which the ncijg> variables
must obey: around each square of four columns we must have (see
Fig. 3)

(hl - h2) + (h2 - h3) + (h3 - h4) + (h4 - hl) =0 (18)

or

Re12> + Bea3> 7 Bes3s T Peis> T 0 19)
4q 3 5
H +
J J
1 2 - ‘

Fig. 3. Squares of four columms 1, 2, 3, 4 and 2, 6, 5, 3 and the

dual lattice points j and j' around which the angles ¢
and ¢' are measurad.

We can still introduce the Deig> variables in Eq. (16) and treat
them as independent if we take care of the constraints (19) using
the Kronicker § function:

(20)
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The angle ¢j can be associated with the center of the jth square
of columns, and in general with a point on the dual lattice. We
can also index the bond variables using the dual lattice points.

:Zzozzzmple in Fig. 3, we rename Nepgs 38 n<jj'>' Eq. (16) then
2w
Z = ) J af{¢.} exp |- ) 1V(n .
3 <3 <j3i’>
{n<ij>} 0 <jir> )
(21)
+ingges (857059
or
2
z=j dtobexn - T V(670 (22)
J <jj|> J J
0
where
n T
-V(¢.) = 1In Z exp [—V(n) + ing ] (23)
] a iy

Eq. (22) is the partition function for a generalized planar
model with a 27 periodic angular interaction between neighboring
"spins" given by Eq. (23). Just as for the DG to Coulomb gas
transformation discussed earlier, the weak and strong coupling
limits are interchanged in the transform in Eq. (23). In particular,
the DG model transforms exactly into the planar model of Villain

(1975) and the usual planar model with V(G) = i% cos 6 transforms
to a new SOS model with

V(n) = -1n In(i%) (24)

Near TR, the energy for multiple height jumps given in Eq. (24) is
bracketed by that given by the ASOS and DG models while at low
(planar model) temperatures {(i.e., high SOS temperatures), Eq. (24)
reduces to the Gaussian model. If these general SOS models are in
the same universality class as we have argued, then the corre-
sponding planar models are also.

Another model which almost certainly is in the same univer-
sality class is the F model, for which an exact solution is known
(Lieb, 1967). We will discuss this model later, after a study of
the dynamics of the roughening transition using the Kosterlitz RG
method.
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VII. ROUGHENING DYNAMICS AND THE KOSTERLITZ RENORMALIZATION
GROUP METHOD

In this section we review a theory of crystal growth dynamics
near the roughening point introduced by Chui and Weeks (1978). We
are thus dealing with the interesting transition between sub-linear
(nucleated) growth below TR and continuous growth above. We assume
some familiarity with recent developments in the theory of dynamic
critical phenomena. (See, e.g., Hohenberg and Halperin, 1977.)

The fundamental idea in developing a tractable theory for
dynamics at the roughening point is that of dynamic universality
(Kohenberg and Halperin, 1977). It 1is postulated that in addition
to all the properties that affect the static roughening behavior,
one need consider in addition only the (hydrodynamic) conservation
laws and coupling between the conserved variables. Details of the
dynamics which do not affect conservation laws are irrelevant for
a description of the long-wavelength low-frequency behavior of the
system at the roughening point. For example, systems with and
without surface diffusion should exhibit similar behavior at their
respective roughening transitions.

Our model for crystal growth is particularly simple since
there are no conserved quantities such as the energy or momentum

density to consider. We have postulated from the first a stochastic

and purely relaxational model of crystal growth. Assuming dynamic
universality we can thus study, for example;, a simple relaxational
Langevin model kinetic equation ("Model A") and obtain information
about all members of this universality class.

We consider the following generalized SOS model Hamiltonian
for the crystal-vapor systéem

2
- 2 2 _
pA (hj hj+5) + Jg § h ) bu b,

(25)

- Zyo J z cos (ZWhj)
h

The first term gives the inftesraction energy between a column at
site j (and height hj) and its nearest neighbors at sites j + &,
while the second gives the interaction with a dimensionless
“stabilizing field" g2 which tends to localize the interface near
<h >=0, Usually we consider the limit g2 - O*. The third term
gives the interaction with "applied fields" Apj which for gener-
ality can be different for different lattice sites. We will later
associate Auj with the chemical potential driving force for crystal
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growth. The last term, parameterized by the dimensionless quantity
Yo is a weighting function which energetically favors integer
values of the hi;. For small y, it reduces to the Qhta and Kawasaki
(1976) function, Eq. (15). Models similar to Eq. (25) have also
been studied by Muller-Krumbhaar (1977), Saito (1978), and Zittartz
(1978).

We introduce dynamics through the Langevin equation (See,
e.g., Ma, 1976)

y __rem,
3t T Sh, © 3
3
_ -1 -1 2
= - TK % (hj - hj+5) - I gy ¥ F(Auj/T)
- ZnK-lry sin 2Th, + n, (26)
0 h| h|

Here K™l = 2J/T. (We set Boltzmann's constant equal to unity in
this section.,) The nj are Gaussian fluctuating white noises which
satisfy

|
(]

< nj(t) > =

< nj(t)nj.(t') > 2T5jj.5(t-t') 27)

where the angular brackets indicate an ensemble average. The para-
meter I' can be identified with the equilibrium (kink-site) evapora-
tion rate (Weeks and Gilmer, 1979). We assume that the svstem
starts from equilibrium at t = -< and allow the applied fields Auj
to be time dependent.

If yg = 0, the Eq. (26) is a linear equation and can be solved
exactly by Fourier transform methods in terms of a lattice Green's

function which in the long wavelength limit has the form (de Gennes,
1971)

G(q,w) = [K-l(q2 + gz) - i(wlr)]—l (28)

In the limit gz > 0+, which we consider hereafter, G is the Green's
function for 2d diffusion. This, of course, is not surprising
since when yg = 0, Eq. (26) is a finite difference analog of the
diffusion equation. G(q,w = 0) is proportional to the static
Green's function in Eq. (11).

i = nan et ——
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For non-zero Yo» Eq. (25) can be rewritten after taking Fourier
transforms as

h(g,w) = G(q,0) [Au(q,w) + n(q,w)/T - 21K Ty, F{sin 27h(s,t)}] (29)

Here s is a dimensionless 24 lattice vector (the unit of length
being the lattice spacing) locating the center of a column, and
F{ } indicates a Fourier transform in space and time. '

We will analyze Eq. (29) using linear response theory, assuming
that the driving force Ay is infinitesimally small. Hence we will
try to predict the limiting slope of the growth rate curve as the
driving force tends to zero. In additiomn, the linear response
analysis gives valuable information about spatial and temporal
correlations of the interface at equilibrium when Ay = 0O
(Hohenberg and Halperin, 1977).

Expanding the solution of Eq. (27) in powers of Au/T

- 2
h(q,@) = ho(q,u) + b (a,0)bu(q,w)/T + o(éTﬂ) (30)

the linear response function X(q,w) is given by the ensemble average
over the noise

x{q,w) = < hl(q,w) > (31)

and using Eqs. (29)-(31), the unperturbed (yg = 0) response function
explicitly is

-1
Xg(9sw) = G(q,w) = [K'l (qz + gz)- i(w/T)] (32)

The effect of a non-zero ygy is conveniently expressed in terms
of a self-energy I(q,w), defined as

XHa,w) = x5 (a0 + I(gw) (33)

Substituting Eq. (30) into Eq. (29) we find after some simple
manipulation a formally exact expression for I given by

4n2yOK’1F ;< cos [2mh, (st) Jh(st,s't") >{

Z(q,w) = (34)

< hl(q,w) >
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Note that the term transformed is a function only of the differences
s-s' and t-t' since the noise ensemble is stationary.

The behavior of I in the limit of very low temperatures is
easy to analyze. The equilibrium fluctuations of hy are very small
at low temperatures and the weighting function localizes the inter-
face very near hg = 0. Linearizing the sine term in Eq. (6.2) then
gives a constant value for I of

Z(quw) ¥ dnly k" (35)

Thus from Eq. (33) there is a finite response even in the q,w + 0
limits at low temperature,

At high temperatures (T > TR) the situation is very different.
Here the weighting function has little effect on the system.
Thermal fluctuations are large enough that the interface wanders
arbitrarily far from its T = 0 location (this delocalization
characterizes the roughened phase). When yg = O, the weighting
function vanishes altogether and the response function can be
calculated exactly. This divergent response function [Eq. (32)]
presumably gives the limiting high temperature behavior of a system
with a finite Yo*

These qualitative arguments can be put on a much firmer basis
by using the renormaiization group method of Kosterlitz (1974) and
José et al. (1977). We consider an expansion of the inverse linear
response function x'l(q,w) in powers of yg. Similar expansions
have proved very useful in the static limit. The zeroth order term
[xal(q,w)] gives the limiting (T + ®) behavior and the higher order
terms give corrections arising from a non-zero weighting function.
We will use this expansion to derive differential recursion

relations which relate the response in the original system with

parameters K, I' and y, to that in a system with renormalized para-
meters K', T'' and yé. Integration of the recursion relations will,
in fact, provide a connection for all T 2 TR between the original
system and the exactly solvable system with yg = 0.

Expanding hg, hj and I in powers of ypy, we find, using
Eqs. (29)~(34), after some straightforward but tedious algebra
[much of which can be found in an article by de Gennes (1971))
that Eq. (33) can be written to lowest order in q and w as
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[--]
X-l(q’w) - [K-l . 'n'3l(-2y2 f ds Ss-zw]qz
1
4 2
-1 -1 % 3-27K
- 4
iwll ~ + T R-1) f]- ds s + 0(y%) (36)

where y = yg exp [-Kc] and ¢ is a constant approximately equal to
w4, We can obtain remormalization group equations from (36) by
eliminating the short wavelength parts of the integrals. Divide
the range of integration of each integral in Eq. (36) into two
parts: 1l to b and b to =, with 0 < In b << 1 (i.e., b is very
close to unity). The small s (short wavelength) parts of the
integration can be combined with the original constant term (either
K~L or I'1l) to yield a new parameter value and the large s part of
the integration rescaled so that the integrals again run from 1 to
©, The scale factor is absorbed in a redefined y variable. Eq.
(36) can thus be rewritten in exactly the same functional form with
K, v, and T replaced by K(1), y(1) and I'(1), with 1 = 1n b. This
equivalence implies the differential recursion relations

(L) _ _ 3.2

i - Ty (D 37)
ay (1) 2
L=t = - [MR(D-21y7 (1) (38)
4 2
din 1) 1wy Q)
dl T T aR(1D)-1 (39

subject to the boundary conditions K(1 = 0) = K, etc.

The first two equations are essentially identical with the
static recursion relations found by Jose et al. (1977) and Nelson
and Kosterlitz (1977) in their analysis of the planar model and
the 2D coulomb gas. We will study them further before discussing
the dynamical implications contained in Eq. (39). Defining the
variable x(1) = m™K(1)-2, Eq. (37) can be rewritten

L 92 |

- - rhany? (40)

and comparing with Eq. (38), we see there is a conserved quantity
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x2(1) - 1y2(1) = const = x2(0) - 7y2(0) (41)

As long as x{1l) > 0, Eq. (38) drives y(l) to zero as 1 - «,
This provides a justification for the original expansion in powers
of y in this temperature regime. The roughening point can be
thought of as the low temperature end point of this line of
“eritical” points w%th y(©) = 0 and at this end point we must have
X(®) = 0 or K(») = %. This value is universal [i.e. independent
of the initial value of y and a number of other modifications in
the initial hamiltonian that could be envisioned (Nelson and
Kosterlitz, 1978)] and should hold for all roughening models. When
applied to other systems, this prediction implies a universal jump
in the superfluid density of 4He films as Tc is approached from
below and the universal value n = % for the critical exponent
describing the decay of correlations at T; in the planar model
(Nelson and Kosterlitz, 1978).

Another universal feature comes from Eq. (41) when we evaluate
it at 1 = = for temperatures greater than Tg. Then y(®) = 0 and

K2 (@) = [xz(O) - 7r4y2(0)] T2 T (42)
Very near TR, We can expand the right hand side in a power series
about T-TR, noting that the constant term vanishes since at Ty,
X(w) = 0. We get to lowest order

x(x) = [A(T - TR)];i T - TR[ << 1 (43)

where A is a nonuniversal constant, but the square root cusp is
again universal. It has already shown up in Eqs. (13) and (14).
Finally a (nonuniversal) estimate of TR can be found from Eq. (42)
when we set x(«) = 0. Recalling that y = Yo exp [-5m2K] [see Eq.
(36)] we have the equation

2

K = 2+ 1y, exp [-5m3K] (T = Tp) (44)

Setting yp = 1 to approximate the DG model, we solve Eq. (44) by
iteration and find kTg/J ¥ 1.45. As we will see this value is in
excellent agreement with Monte Carleo estimates.

Further analysis of the static equations is possible but we
now examine the behavior of the dynamical parameter [ in Eq. (39).
Eliminating yz(l) between Eqs. (37) and (39) and intsgrating we have
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(=)  1K(=) -1
'~ @Kk -1 (45)

Hence T effectively scales with K, whose behavior we have discussed
above. Eq. (45) shows that the renormalized T' is reduced from its
bare value, but does not vanish along the entire fixed line of
critical points which characterizes the roughened phase including
the end point at TR. Using the language of Hohenberg and Halperin,
(1977), the dynamics is thus conventional. However, the mutual
scaling of K and T represents an interesting and somewhat unconven-
tional feature of the model, The calculations given above show
that K(<) has a square root cusp as T = TR; thus it should be
possible to observe a similar anomaly in ['(=®).

These results have several immediate consequences for the static
and dynamic behavior of the crystal-vapor interface. For example,
the average growth rate R of a crystal is related to the response
to a spatially and temporally uniform driving force when the stabi-
lizing field g2 = 0. To first order in Al it is given by

R = 1lim - iwx(q=0,w)é¥i (46)
w0
= [(x) fu (T 2 Tg) (47)
T = *R

Thus the theory predicts linear growth at and above Ty in agreement
with conventional theories of crystal growth.

Below TR the situation is very different. Approaching the
roughening temperature from below, the response function has the
limiting form

x(@.o = [c*(a? + €72 - i(m/r')]-l / (48)

with a finite correlation length £ and renormalized coefficients
K' and I''. Eq. (46) then predicts a zero growth rate for T < Ty
to first order in Au/T. This result is consistent with the fact
that growth at low temperatures occurs by a nucleation mechanism.
Nucleation theory gives the result R « exp (-c/Ap), so in fact
below TR all terms in a power series about Ap = 0 should vanish.

This change in growth mechanisms is directly related to the
change in the equilibrium spatial and temporal correlations between
different parts of the interface. The height-height correlation

-
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function can be immediately calculated from the fluctuation-
dissipation theorem (see, e.g., Ma, 1976)

< [ngta,w)|? > = £ tmix(q,m) (49)

where Im [ ] denotes the imaginary part. In particular, for
T 2 Tp and large s or large t,

< [ho(s,t) = h0<0’0)]2 > r;, K(=) 1n {max [SZ’ 4F(°°)t]§

2n K(x) (50)

where we have used some results of de Gennes (1971). Thus there

are logarithmically diverging correlations in space and time above
Tr. Note that the coefficient of the logarithm involves only the
renormalized coupling constant K(®). As discussed before, the RG
theory predicts that K(«) takes on the universal value 2 and from
Eq. (43) that there is a square root cusp near Tg. Thus an accurate
determination of the equal time correlation function G(r) in Eg.
(12) [i.e., Eq. (50) with t = 0] provides a direct test of these
universal predictionms.

The large distance limiting value of the equal time correlation
function gives a measure of the interface width. Eq. (50) shows
that the interface width diverges logarithmically for T 2 Tg.
Similar remarks apply to the temporal correlations. Eq. (50) also
implies that the correlation length £ is infinite for all T 2 TR‘

Below Ty, Eq. (48) holds and the correlation functions reach
finite asymptotic values exponentially fast. In particular, the
interface width is finite below Ty and there is a finite correlation
length. There are many other interesting features of the roughening
point which follow from a more careful analvsis of the renormali-
zation group equations. (See, e.g., Ohta and Kawasaki, 1978).

We will instead discuss an exactly solvable model where the RG
predictions can be checked as well as the results of computer
simulations, both of which are in accord with the Kosterlitz RG
theory.

VIII. THE FSOS MODEL AND MC CALCULATIONS

Van Beijeren (1977) showed that there is a particular
roughening model which is isomorphic to the exactly solvable F
model. (The F model is a special case of the symmetric six-vertex
model in which the two vertices with no net polarization are given
the lowest energy, and hence it describes an antiferroelectric
system).
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Consider a SOS model for the (001) face of a face-centered-
cubic crystal with nearest-neighbor interactions between the atoms.
At T = 0 nearest neighbor columns in the x and y directions differ
by one atom since half the columns terminate in the layer directly
below the outermost surface layer. Now constrain the system such
that at all temperatures these nearest neighbor columns can differ
by at most + 1 atom. Thus we are completely suppressing the higher
energy multiple height jumps between neighboring columns. As
argued before, this should have no effect on the critical behavior
and we expect that this model, which we call the FSOS model, is in
the same universality class as the other SOS models (ASOS, DG,

XY, ...) we have been discussing.

Van Beijeren (1977) showed by a simple argument (which we will
not reproduce here since it is very clearly presented in the origi-
nal work) that the allowed column configurations in the FSOS model
can be placed in exact correspondence with the vertex configurations
of the F model, and hence the two systems are isomorphic.

(Van Beijeren actually considered a bcc crystal with next nearest
neighbor forces but his argument applies equally well to the nearest
neighbor fcc model, which seems more physiczlly realistic.) Thus
one can make use of the results for the exact solution of the F
model (Lieb, 1967, and Lieb and Wu, 1972) to test the predictions

of the RG theory given in the last section,

Van Beijeren showed that there is indeed a roughening transition
in the FSOS model and that at TR the free energy to form a step
vanishes. There is no divergence in the specific heat at TR but
the free energy has an essential singularity of exactly the form
[Eg. (14)] predicted by the RG theory.

Furthermore we can make use of the very recent results of
Youngblood, Axe and McKoy (1979 as discussed in this Institute)
to analyze the exact behavior of the height-height correlation
function G(r) [see Eq. (12)] in the FSOS model. They find for all
T 2 TR, the exact result for large separation r:

A(T)

G(r) ~ -

ln r (51)

where at Tg, A(TR) = %’and there is a square root cusp as A(T)
approaches its value 7 at Tg. These exact results are in precise
agreement with the universality predictions of the RG theory as
discussed after Eq. (50) and provide a dramatic confirmation of the
Kosterlitz RG approach. Unlike most other applications of RG
methods, where approximate results are obtained for the system of
interest from, say, an € expansion, the Kosterlitz RGC method
appears exact for the 2D systems it was designed to treat.
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The success of the theory for the FSOS model suggests that one
can use the theory to help predict the transition temperature in
other S0S models. Shugard, Weeks and Gilmer (1978) performed MC
calculations for G{r) in the FS0S model where the G(r) is known
exactly and showed that the MC method using a 60 %X 60 system gave
a very accurate representation of G(r) until about ¥ = 12 where
finite size effects became significant. Their data at Tg could be
very accurately fit as in Eq. (51) with A(TR) = 2, Thus accurate
MC calculations of G(r) are possible despite the"problems of finite
system sizes and finite run times.

Shugard et al. then calculated G(r) for the ASOS and DG models
and determinined Ty by finding the temperature where the best fit
to the curve using Eq. (51) gave an A(T) = 2/m. They found
kTR/J = 1.24 for the ASOS model, in good agreement with the series
expansion estimates of Weeks et al. (1973). For the DG model,
they estimate kTp/J = 1.46, considerably above the unrenormalized
value 4/m = 1.28 predicted by the theory of Zittartz (1978), but
in excellent agreement with the KT estimate given after Eq. (44).
We believe these values are much more accurate than previous
estimates by Swendsen (1977), which were based on an assumed
divergence in the specific heat. As discussed before, the KT
theory predicts no divergence in the specific heat.

Shugard et al., also studied the planar model by simulating
the dual SOS model given in Eq. (24). They find kTo/J = 0.90
which agrees fairly well with the series expansion estimates of
0.95 given by Lambreth and Stanley (1975). The data definitely
rules out the value 1.1 ~ 1.2 given by Miyashita et al., (1978),
on the basis of direct MC simulations of the planar model and shows
the advantage of a simulation using the dual SOS model with its
discrete excitations.

Finally we mention that simulations of time-dependent
correlation functions give results in excellent agreement with the
theory of Chui and Weeks (1978), Eq. (50). 1In particular, the
diffusion-like s?-t scaling holds for all T 2 Tg.

IX. FINAL REMARKS

Since the time of Burton, Cabrera and Frank (1951) there has
been considerable progress in our understanding of the nature of
the roughening transition. It is in the same universality class
as the phase transition in the planar model and the theory of
Kosterlitz and Thouless (1973, 1974) provides precise predictioms
for a number of experimentally accessible properties. A quantita-
tive experimental study of the roughening transition could provide
a crucial test of these important theoretical ideas.
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There remain some interesting problems for the theorist.
Little work has been done on the roughening tramsition for multi-
component systems. Under certain conditions this may be in a
different universality class (Knops, 1979, private communication).
Also the analysis of the crystal growth rate has only been done
using linear response theory. This is inadequate to uncover the
details of the disappearance of the nucleation barrier as T + Ty
from below. A treatment accurate to all orders in the driving
force Ay could give additional insight into nucleation theory.
Finally the study of roughening in models more general than the
S0S model would be instructive, For example, we believe very
strongly that the roughening transition for the interface in the
unrestricted 3D lattice gas lies in the same universality class as
the restricted SOS models, but there is no rigorous proof. A
related question which the existence of a roughening transition
brings up is the degree to which interfacial properties such as the
interface width can be thought of as intrinsic (independent of
system size and external field strength). Some preliminary
thoughts on this subject have been given by Widom (1972), and Weeks
(1977), but no rigorous analysis has been done.
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