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Abstract i

The attractive and the repulsive intermolecular forces play very different roles in forming
the equilibrium structure of a dense liquid. The harsh repulsive forces (which fix the shape
of the molecules) essentially determine the high-density structure. The effect of the attractive -
forces on the structure can often be ignored or treated by perturbation theory. This idea, :
which goes back to the time of van der Waals, forms the basis for a quantitative theory of
the equilibrium structural and thermodynamic properties of liquids which is reviewed in this
article. The structure due to the repulsive forces alone is related to that of the hard sphere
model fluid by using an accurate perturbation technique called the ““blip function”” method.
A very simple and accurate theory for the thermodynamic properties of simpie dense liquids ;
follows using only the first term in the high-temperature (weak interaction) expansion of the
partition function in powers of the attractive interaction.

The effect of the attractive forces on the structure (important at lower density) can be
calculated using a generalization of the Mayer ctuster theory for ionic solutions called the
optimized cluster theory (OCT). By a diagramatic summation, the bare attractive potential
is replaced by a renormalized potential. The renormalized potential becomes progressively .
weaker as the density is increased and the repulsive molecular cores are packed more closely |
together, thus screening out most of the effects of the attractive forces. A theoretical analysis
of the diagrams summed in the OCT as well as numerical results are presented. Some of the !
implications of these ideas to a number of areas of interest in the liquid state are discussed;
for example, the theory of freezing, the static structure of complex molecular liguids and
liquid crystals, and dynamical properties of liquids. The relationship between the OCT and
the well-known mean-spherical-model integral equation and the diagrams it sums is also
given.

1. INTRODUCTION

This article is a review of a theory of liquids that has been developed.
during the past few years.'™ The principal physical concepts and major.
simplifying feature in this theory originated with the work of van der Waals'
long ago. It is the idea that for a dense fluid the harsh repulsive forces (which
are nearly hard core interactions) dominate the liquid structure. This means
the shape of molecules determines the intermolecular correlations. Attractive
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forces, dipole-dipole interactions, and other slowly varying interactions
play a minor role in the structure. Their effect on the thermodynamic
properties of a fluid is essentially that of a mean-field or uniform background
potential. As a result, if a dense liquid is composed of spherical (or nearly
spherical) molecules, the intermolecular structure should be very similar
to that of a fluid made up of hard spheres.

In recent years, an important use of the historic van der Waals idea was
the theory of freezing developed by Longuet-Higgens and Widom.® At
about the same time, Reiss” concluded on the basis of the scaled particle
theory that a liquid has “its volume or density determined by the soft
[attractive] part of the intermolecular potential. Once this volume is
established one may consider the liquid as a hard sphere fluid confined within
it.” Other works that were based on the van der Waals concept and set the
foundation for the theory reviewed herein are the perturbation theory of
liquids developed by Barker and Henderson® and Verlet’s® hard sphere
model for the structure of simple liquids.

A qualitative explanation of why the repulsive intermolecular forces
dominate the structure of most dense fluids follows from a description of the
environment of a particle in a liquid. For simplicity, consider an atomic
liquid. The phase diagram is shown in Fig. 1. High density corresponds to
thermodynamic states at which p~'/* < r, where p is the average particle
density, and r, is the location of the minimum in the intermolecular pair
potential. A glance at the phase diagram shows that “high density ” character-
izes most of the liquid phase outside of the critical region. Note that p~ /3
provides an estimate of the average separation between nearest neighbors.
Thus, in a dense liquid, nearest neighbors are crushed extremely close to one
another. Any displacement of a particle will cause a large change in the
energy associated with the interparticle repulsions. The change in energy
associated with the attractions will be relatively small because these inter-
actions are not quickly varying functions of the interparticle separation.
As a result, the high-density structure is determined mainly by the repulsive
forces.

If the attractions were strong and quickly varying, they too would play an
important role in the liquid structure. However, there are few one-component
fluids for which this is the case. Liquid water is one of these few exceptions
to the van der Waals idea. The hydrogen bond interactions between water
molecules are as quickly varying as most of the repulsive forces. Thus, the
hydrogen bond plays a crucial role in determining the local tetrahedral
arrangement of the water molecules.

Fortunately, the van der Waals idea is correct for nearly all nonhydrogen-
bonding dense fluids. In order to demonstrate its quantitative validity, one
must be able to calculate the intermolecular correlations that are produced
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Fig. 1. Phase diagram and intermolecular pair potential for the Lennard—Jones fluid. For
particular choices of the length and energy parameters, o and e, the Lennard—Jones system is a
qualitatively accurate model for several liquids. (See Ref. 23). Notice that the density at the critical
point (cp) is roughly one third the density at the triple point {tp); and the critical temperature is
about twice the triple temperature. This approximate scaling holds for nearly all nonhydrogen
bonding liquids that are composed of molecules that are relatively small (having < 10 atoms).
Thus, the phase diagram shown here is a qualitative representation of the phase diagram for
many one-component fluids. The “high-density” region comprises thermodynamic states for
which the particle density, p, is greater than about twice the critical density, p..

by the repulsive interactions. This is the subject of Section IT where the blip
function theory is discussed. The blip function theory is derived by ex-
panding the properties of a general repulsive force system about those of a
hard sphere fluid. The theory provides a rigorous relationship between the
equilibrium properties of the hard sphere fluid and the properties of fluids
with realistic repulsive forces. This produces a major simplification of the
classical many-body problem since the configurational properties of the
hard sphere fluid are independent of temperature and scale according to one
length, the hard sphere diameter. Furthermore, since the properties of the
hard sphere system are known from the results of computer simulations,*?
the relationship allows one to calculate equilibrium properties of systems
with continuous repulsive forces.

The blip-function method is used in Section I11 to calculate the equilibrium
pair correlation function produced by the repulsive forces in the Lennard-—
Jones fluid (a model for atomic liquids). The repulsive force structure is then
compared with the structure produced by the full Lennard—Jones potential.
The comparison demonstrates that at high densities the pair correlations in
the Lennard-Jones fluid are indeed dominated by the repulsive forces. The
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thermodynamic ramifications of this structural phenomenon are also
discussed in Section III.

At low and moderate densities, molecules in a fluid are not very close
together, and the attractive forces do play a significant role in the inter-
molecular structure. A theory to describe the role of attractive forces is
discussed in Section IV. The principal procedure in this theory is a rearrange-
ment of the Mayer cluster expansion which allows one to replace the attrac-
tive interactions with a renormalized potential.®> This renormalized (or
screened) potential embodies the repulsive force screening which is present
in dense fluids. “Repulsive force screening” denotes the mechanism for the
reduction of the effect of attractions (and other slowly varying forces) as the
density is increased; at high density the particles are so close to one another
that the repulsive forces form a structure (essentially due to excluded volume
effects) which is not appreciably changed by the attractive interactions. At
low densities, repulsive force screening does not exist, and the renormalized
potential becomes, in the limit of zero density, the bare attractive interaction.

The principal results obtained from the renormalized cluster expansion
are called the optimized cluster theory (OCT). This theory can be used to
calculate equilibrium properties of liquids at moderate and low, as well as
high, densities. The results of some of these calculations are presented in
Section 1V.

There are two basic theoretical techniques that are discussed in Sections 11
through IV. These are the blip function method to describe the effects of
repulsive forces, and the OCT to describe the effects of attractions. Together
they provide a unified theory for understanding the equilibrium properties
of many gases and liquids. However, they are not without limitations. The
blip function method is useful only when the molecules in a liquid are fairly
spherical. The OCT is reliable only when the density times the renormalized
potential is small. The limitations are discussed more fully in Sections 11
and IV,

There are many important implications to the theory reviewed in this
article. They are outlined in Section V. Some of the topics included in the
discussion are as follows: the theory of freezing; molecular motion in liquids
(te., transport coeflicients, rotational relaxation times; and time correlation
functions); and the static structure of complex molecular liquids.

Appendix A contains a summary of some terminology concerning cluster
diagrams. This terminology is used in Section I'V. Appendix B presents the
diagramatic formulation of the mean-spherical-model integral equation.
This equation has been the focus of great interest in recent years and it is
intimately related to the theory developed in Section IV,

In closing this Introduction we note four points concerning the format of
this article. First, it is not a comprehensive review of all the modern theories
of liquids. Rather, the scope is limited to emphasizing the different roles of




110 H. C. ANDERSEN, D. CHANDLER AND J. D. WEEKS

repulsive and attractive forces in liquids. For comprehensive reviews the
reader is referred to the articles by Barker and Henderson'' and Andersen.!?2
Second, the reader will find that the theory required to describe the role of
attractive forces on the liquid structure is inherently more complicated then
the formalism needed to describe the effects of the repulsions. Furthermore,
the short-ranged harsh repulsions are usually all that one needs to study in
order to understand the equilibrium intermolecular structure. For these
reasons, the article has been constructed so that Sections IT, IT], and V can be
read independently of Section IV. Third, we consider explicitly simple classi-
cal fluids only. However, the theory we present is generalizable to more
complex systems. Some applications and extensions of the theory which
we will not refer to directly but may be of interest to the reader are the theory
of liquid mixtures by Lee and Levesque,'? studies of molecular fluids by
Steele and Sandler’* and by Sandler et al,!® the theory of quantum fluids
by Kalos et al.,'® Shiff’s work on astrophysics,!” and the theory of polar
liquids by Stell et al.'® Finally, we have tried not to simply duplicate the
material found in our earlier publications on the blip function expansion
and the OCT. Rather, we present in this article relatively different ways of
developing those theories. As a result, this review should be regarded as a
supplement to Refs. 1-5 and not as a replacement.

II. REPULSIVE FORCES AND THE HARD SPHERE MODEL

Although many workers from the time of van der Waals on realized the
the importance of repulsive forces in determining a dense liquid’s structure,
this insight did not immediately yield a quantitative theory of liquids. It
proved very difficult to obtain an accurate description of even the simplest
model for a repulsive force system, the hard sphere fluid, so verification and
further development of these ideas were not possible.

Thus it is hard to overestimate the importance of the molecular dynamics
and Monte Carlo “computer experiments” on the hard sphere fluid which
became feasible around 1960'° and the derivation?® and the exact solu-
tion 122 of the Percus-Yevick equation for hard spheres. These gave us for
the first time accurate structural and thermodynamic data for a model
fluid system over the entire fluid phase. The liquid state was less well under-
stood than the gaseous or solid state primarily because of the lack of a model
system, comparable to the ideal gas or the harmonic solid. The modern work
on the hard sphere fluid has provided a similarly useful, though necessarily
more complicated, starting point for theories of the liquid state.

Analytical formulae are now available which accurately reproduce the
results of machine computations on the hard sphere fluid both for the
thermodynamic properties and for the pair correlation functions.'®23 If
these hard sphere results are in fact to be useful for quantitative calculations
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on real fluids, we must relate the properties of the idealized hard sphere
fluid to those of realistic fluids with their smoothly varying repulsive forces.
A relationship can be established by considering functional Taylor ex-
pansions for the equilibrium properties of a general repulsive force fluid.*
Articles by Barker?* and Gubbins et al.>® provide an alternative approach
that could be used to arrive at the same final results [(2.11), (2.16) and (2.17)].

We discuss here the simplest case where the repulsive interactions in the
fluid can be represented by “soft sphere” pair potentials ug(r) which depend
only on the scalar distance r between pairs of molecules. Although the smooth
ug(r) may seem to be very different from the discontinuous hard sphere
potential u,(r), which is 0 for r > d and infinite for r < d (their difference
being infinite for r < d), the thermodynamic and structural properties of
both the hard and soft sphere systems are determined by the Mayer cluster
functions fi(r) = e #*4” — 1 and fx(r) = e =" — 1, respectively, which
are very similar to each other [see (2.2) and (2.6)]. Indeed, for a reasonable
choice of hard sphere diameter d, the f functions differ from each other only
over a small region of space if ug(r) is a harshly repulsive potential (see
Fig. 2). Here = 1/kg T where T is the temperature, kp is Boltzmann’s
constant and the subscript R denotes the soft sphere repulsive force system
and d denotes a hard sphere system with diameter d.

We can exploit this similarity by considering a “test system” where the f
function f,(r) gradually changes from that of the hard sphere system to that of

fr fg

© [T 0 r
-1 -1

Fig. 2. Schematic plots of some functions considered in the blip function method: (a) the
Mayer f function for a soft-sphere repulsive potential fg(r); (b) the hard sphere f function fy(r);
(¢) difference between (@) and (b); (d) blip function B,(r), showing the significance of the param-
eter £. According to (2.9), the hard sphere diameter d is chosen to make the net area under
r*By(r) equal to zero.
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the soft sphere system by means of a coupling parameter u:

fulr) = ) + pAf(r) 0<p<1
where

Af(r) = frr) = fulr) 2.1

The negative of the dimensionless excess Helmholtz free energy density
o/, (with respect to an ideal gas at the same volume V, temperature 7, and
number density p = N/V) of a system of N test particles is given by

—pAA
oA, = BV B =

V= 'nQ, (22
where

N

0, = V¥ [ar* ] [+ 0] 23)
i<j=1

Here AA,, is the excess Helmholtz free energy and {dr" denotes an integration

over all positions of the N particles in the volume V. Using the familiar

coupling parameter technique, we differentiate and then integrate (2.2) with

respect to p and find the exact result

2 1
A= oto="5 | au [ ey 4

Here .o/ is the quantity .« for the soft sphere system (u = 1), o7, that of the
hard sphere system (¢ = 0) and

*—N(sz_ l)fdr‘”*” [T [+ £

) 'i<j
ylria) = LEAdLIE) (2.5)
Jar T+ At
i<j

Because of the integrations in (2.5), y,(r) is a continuous function of r even
when, as in the present case, f,(r) is not. Also y,(r) is positive and is simply
related to the pair correlation function g,(r) by

(1 + [y r) = g,{r) (2.6)
g.(r) is also called the radial distribution function and is defined so that
4mpr*g,(r) dr gives the average number of molecules at a distance between
rand r + dr from a central molecule.?®
We anticipate that for a reasonable choice of hard sphere diameter d,
the fractional change in y,(r), denoted by

(r) = yalr)

i =2 7
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will be small. Hence we separate out this fractional change in (2.4):
p2 pZ 1
oA g — Ay = o fdr B,r) + 5 J du fdr B4(r)dy,(r) (2.8)
0

where B,(r) is the “blip function” given by

By(r) = ydr)Af(r) (2.9)

Note that B,(r), and not simply Af(r), appears naturally. The product
yAr)Af (r) contains the physical effect of the medium. As the density increases,
the medium makes it more likely that a pair of particles will be separated by
distances at which Af(r) is nonzero. As a result, the effects of Af(r) grow as
the density increases.

Both Af(r) and Byr) are nonzero over only a small range of r near r = d.
Let &d denote the range of By(r). Then the dimensionless parameter & can
be defined as

- é Lwle(r)l dr

1
= f | B(r)| dr (2.10)

For harshly repulsive potentials &, the “softness™ parameter, is much less
than unity (see Fig. 2). It is zero only when the continuous repulsive potential
becomes the hard sphere potential.

We want to relate the soft sphere thermodynamic properties to those of a
hard sphere system with diameter d chosen to make the correction terms on
the right-hand side of (2.8) as small as possible. A particularly appealing
choice for d is one that makes the first term, which is apparently of order £,
vanish. That is, we pick d such that

JBa(V) dr = J[e‘”’”“” — e PNy r)ydr = 0 (2.11)

This is indeed a felicitous choice for d, since we will show that the complicated
second term in (2.8) is then of order £* and thus can frequently be neglected
entirely. Furthermore dy,(r) is of order £* with this same choice of d.

To show these facts, differentiate and integrate (2.5) with respect to p.
After integration over irrelevant coordinates the result can be written in the
general form

D) = y,m[l n j:du' fds K, (r, S)Bd(S)} 2.12)
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or, using (2.7), and integrating over the angles of s,

Oy ,(r) = Jud,u’ J‘mds s*K . (r, $)By(s) (2.13)
0 0

where

4 2r
K,(r,s) = f sin 0, d, f do K (1, s) (2.14)
0 0
Here K (r, 5) is a complicated function expressible in terms of integrals over
higher-order distribution functions.* Fortunately for the present purposes
we need know only some of its general properties. In an isotropic fluid
K ,(r, s) can depend only on the magnitudes of the vectors r and s since
there is no distinguishable direction left after the angular integration in
(2.14). This integration also smooths out the jump discontinuities which can
occur in the full kernel K (r, s) and leaves K (r, s) a continuous function of s.

Recalling (2.11), we may rewrite (2.13) as

oy, ) = f#du’ Jomds S*[KAr, s) — K, (r, d)]B4s) (2.15)
0

B,(s) is nonzero only for a small range of s near s = 4. This range has width
of approximately &d. In this region the term in square brackets in (2.15) is
0(%), since K, is a continuous function of s. The term B,(s) provides another
factor of 0(£) in the integrand, by (2.10). Hence dy, is 0(¢?) for all r. Then
for u =1,

YR(r) = ydr)[1 + 0(E*)]
or

gr(r) = e P*Oyg(r) = ™M=y (1) [1 + 0(E7)] (2.16)

Similarly, the last term in (2.8) can be written as

2. f dy f dr Br)[6y,(r) — 0y(d)]

Using the same argument as before, we would expect this integral to be
0(&?) if dy,(r), like K (r, s), were of order unity. However we have already
shown that 8y,(r) is 0(£?). Thus the integral actually is 0(¢*) and we have

oAy = o4+ 0(EY) 2.17)

Equation (2.11) gives us a criterion for the choice of a temperature- and
density-dependent hard sphere diameter d associated with a system of soft

* K(r, s) can be easily derived from the explicit expressions given by Andersen et al.*
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spheres with potential u,. Then both the thermodynamics and structure of the
soft sphere system can be approximated very simply using (2.16) and (2.17)
and the known results for hard sphere systems. The thermodynamic relation-
ship (2.17) is inherently more accurate than the structural one (2.16).

The associated hard sphere diameter d calculated using (2.11) is a de-
creasing function of temperature and density, in accordance with physical
intuition. As the temperature is increased at constant density, the soft sphere
molecules have more kinetic energy and can approach each other more
closely before finally being repelled by ug(r). Hence the associated hard
sphere diameter decreases. Also when the density is increased at constant
temperature, molecules are squeezed closer together so the associated
diameter should decrease. The density dependence is much less than the
temperature dependence, however.

The correction term of 0(£%) to the thermodynamics, given explicitly in
(2.8),is also a function of temperature and density and must vanish identically
in the low-density limit since dy,(r) is O(p). The criterion (2.11) assures that
(2.17) gives the correct second virial coefficient, and the correct low-density
form for g(r) is obtained from (2.16). Thus the lowest-order theory ((2.16) and
(2.17)) is exact at low density and when & is small should remain accurate even
at high density.

Equations (2.16) and (2.17) have been compared to computer “experi-
mental” results for two soft-sphere systems* In the first, ug(r) is the inverse
twelfth-power potential, e(o/r)!? and ¢ is rather large (¢ = 0.35 at po> = 0.8
and kg T/ e= 1). In the second, ug(r) is the repulsive part of the Lennard—Jones
potential (see (3.4)) and ¢ = 0.14 at po> = 0.8 and ky T/c = 0.8, so this is a
more harshly repulsive potential. For both systems the thermodynamic
relationship (2.17) is quantitatively accurate when pd® < 0.93 (at higher
densities the hard sphere fluid is metastable; the hard sphere fluid freezes
at pd® = 0.93). ¢ is small enough in the repulsive force Lennard-Jones system
that both the structural relation (2.16) and the thermodynamic relation (2.17)
are very accurate. This system forms the basis of our discussion of the
Lennard-Jones liquid in the next section.

When ¢ is large, the structural relation (2.16) would be expected to fail
at high density. This is the case for the inverse twelfth-power potential,*2’
and the correction term given in (2.12) is important. We have written down
explicitly* the correction term to the next order in &, which arises when K (r, s)
is approximated by K(r,s) in (2.13). This term can be calculated using
presently available data on the hard sphere fluid.!! This process could in
principle be continued with further terms in the Taylor series expansion
of K,(r, s) about u = 0 but the additional correction terms require compli-
cated averages over high-order hard sphere distribution functions. What is
needed is an approximation for the entire integral over u in (2.13), that is, a
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summation to all orders of ¢ of the most important terms in the Taylor
series. It may be possible to develop such a theory using the types of tech-
niques to be discussed later in Section IV.

Fortunately, for many applications the correction terms are not needed.
Further, when studying particular systems one can determine a priori
whether the corrections are needed for accurate results. This is done by testing
the internal consistency of the simple theory given in (2.16) and (2.17). The
thermodynamic properties calculated from (2.17) can be compared with
those calculated from (2.16) using the energy or virial equations (see (3.9) and
(3.10)). The results of the two separate calculations differ to order &2. If the
results agree, then ¢ is small enough that both equations are accurate.
This has been the case in a number of applications.

The blip function expansion can be easily generalized to multicomponent
systems and molecular systems with nonspherical pair potentials, requiring
essentially only a change of notation.?® For example, if the molecular pair
potential is of the form ug(r;, r;, Q;, Q)), where Q; and Q; are Euler angles
giving the orientation of molecules i and j, then an approximation for the
pair correlation function is

gr(r;, r;, Q,, Qj) = e_ﬂuR(ri’rj'ﬂi’nj)Yd(|ri - rj|) (2.18)

where d is chosen by a generalization of (2.11) which includes an integration
over the Euler angles. However, this simple approach is accurate only when
the molecules are fairly spherical so that ¢ is small.

Thus the blip function method has wide applicability and is very simple
to use in practice. In particular it permits us to give a quantitative discussion
of the properties of simple liquids, the subject of the next section.

III. ROLE OF REPULSIVE FORCES IN LIQUIDS

Now that we can deal accurately with the repulsive forces in a fluid, we
will apply the van der Waals ideas discussed in the Introduction to calculate
the thermodynamic and structural properties of realistic fluids, which have
attractive as well as repulsive forces.”®> As an example, we consider the
Lennard-Jones fluids, where the pair potential energy is given by

o]

Here o has dimensions of length and ¢ of energy. This model fluids gives a
fairly accurate description of the properties of rare gas liquids and has been
extensively studied by computer simulations to which we can compare our
results.?®3° The main purpose of this comparison is to gain confidence in
the validity of these ideas before applying them to more complicated systems.
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A. Separation of the Pair Potential
As discussed in Section I, the structure of a liquid at high density should
be determined mainly by the repulsive forces. Thus we separate the inter-
molecular potential into a reference part uy(r) containing all the repulsive
forces and a perturbation part u(r) containing all the attractive forces:

w(r) = ug(r) + u(r) (3.2)

Note that the force determined from (3.1) is repulsive for all r < r,. Here
ro = 2'/%¢ is the distance at which the potential reaches its minimum value.
If uy(r) is to contain all these repulsive forces, no other repulsions and no
attractive forces we require

dug(r) _ dw(r)

dr dr r=To (33)
ur) =0 F>rg
Equation (3.3) and (3.2) then determine u(r) and u(r) uniquely as
uo(r) = wir) — wiro), r<rg
=0, F>rg (3.4a)
and
u(r) = wiry), r<rg
= w(r), r>r, (3.4b)
where w(ry) = —e¢ is the minimum value of the potential (3.1). This potential

separation is shown in Fig. 3.
With this separation, the physical arguments of Section I suggest that at
high densities the effects of the attractive interactions u(r) on the structure

Energy
Erergy
wir) Uo(r)

T, o

0] : > «p O T >
| |
! : ulr)
| I

e —e

Fig. 3. The unique separation of the Lennard—Jones potential, w(r), into a part u,(r) con-
taining all the repulsive interactions in w(r) (and no attractions), and a part u(r) containing all the
attractive interactions in w(r) (and no repulsions).
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of the liquid should be small. In the simplest approximation we ignore them
entirely and get

g(r) = go(r) (3.5)

Thus the structure of the liquid should be very similar to that of the hy-
pothetical reference fluid which has the same repulsive forces and no attrac-
tive forces.

B. Thermodynamic Perturbation Theory

The thermodynamic consequences of this postulated structural behavior
are easy to calculate, using coupling parameter methods similar to those in
Section II. Consider a “ A system” with pair potential

wir) = uolr) + Au(r)  0< i<l (3.6)

Differentiating and integrating the canonical partition function with respect
to 4, we find the exact result
Bo* (!
A — Ay = — B f dz fdr u(r)g,(r) (3.7)
[¢]
Here g,(r) is the pair correlation function when the pair potential is w,(r),
=/ 1s the negative of the dimensionless excess free energy density for the
Lennard-Jones system (4 = 1) and &/, that for the reference system (4 = 0).
If attractive forces have little effect on the fluid’s structure, then g,(r) = go(r)
and the 4 integration in (3.7) is trivial. We then get the high-temperature
approximation (HTA),

2
oA =y — E;L fdr u(r)go(r) (3.8)

so named because the attractions would be expected to be of little importance
at high enough temperatures. However, the arguments given in the Introduc-
tion suggest that (3.5) and hence (3.8) should also be accurate at high density
even when the temperature is not high. To test the accuracy of (3.5) and (3.8)
one must be able to evaluate go(r) and o7,. This is easily done by applying
(2.16) and (2.17), respectively, to the Lennard-Jones repulsion uy(r). The
results reported below are calculated in just this way.

Equation (3.8) is usually given as the first term in the high-temperature
(weak interaction) series®'*? which can be derived by expanding & in
powers of the perturbation potential. However, the higher-order terms are so
complicated it is difficult to tell whether the weak interaction expansion
converges at liquid temperatures or when the first-order result (3.8) will be
accurate. The closed expression (3.7) shows it is the effect of the perturbation
potential on the liquid’s structure that determines the accuracy of the first
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approximation (3.8). Thus it is very important to choose a potential separa-
tion where go(r) = g(r) if a simple first-order thermodynamic perturbation
theory is to be accurate.

C. Results

Earlier perturbation theories of liquids®-** proposed different separations
of the potential into reference and perturbation parts. These earlier reference
systems differ considerably from the repulsive force reference system, and the
perturbation parts contain some strong and rapidly varying forces. As a
result, the effect of the perturbation potential on the fluid’s structure is large
and (3.5) and (3.8) are not accurate for these separations at liquid tempera-
tures and densities.

Figure 4 gives g(r) for the Lennard-Jones liquid at a state near the triple
point. This is compared with the gor) for the repulsive force reference system
and with the references systems used in the earlier thermodynamic perturba-
tion theories of McQuarrie and Katz*3 (uy™ (r) = 4e(o/r)'?) and Barker
and Henderson® (u,®"(r) is the positive part of the Lennard-Jones potential).
As expected, (3.5) is a poor approximation in the latter theories and thus large
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Fig.4. The Lennard-Jones liquid g ,(r) at a state near the triple point (calculated using the
optimized cluster theory) compared with the repulsive force reference system go(r) (calculated
using the blip function method) and the correlation functions for the reference systems proposed
by Barker and Henderson, ght(r) (calculated using the blip function method), and McQuarrie
and Katz, g¥%(r) (results taken from Monte Carlo calculations of Hansen and Weis?”). The
calculated correlation functions are essentially identical to those that would be given by “exact”
Monte Carlo calculations of those functions.
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errors result from the use of the HTA (“first-order perturbation theory”)
for these theories at liquid temperatures and densities.?->-1° In contrast, the
repulsive force reference system g(r) is seen to be very close to the Lennard-
Jones g(r). This provides a striking confirmation of the correctness of the
physical picture introduced by van der Waals long ago. Figure 4 is typical
of the agreement we find between g(r) and g,(r) for all high-density states.
The main difference between g,(r) and g(r) is that the first peak in g(r) is

moved slightly outward from that of go(r). This is easily understood: when
attractions are present the neighboring molecules would like to sit in the
potential minimum at r, for energetic reasons, though only a very small shift
is possible because of the packing of the repulsive cores. This small difference
in g(r) — go(r) is sufficient to cause the use of g,(r) in the pressure (virial)
equation,

BP _ _Be [ dwi)

Ll IR L g

p 6 dr
to give too large results'®?? because dw(r)/dr weights the shifted region very
heavily. More accurate thermodynamic results arise when g,(r) is used in the
internal energy equation,

(r) dr (3.9)

—ﬁi]—E = % w(r)g(r) dr (3.10)
since w(r) weights the shifted region less strongly than does dw(r)/dr. Best of all,
however, is the use of the approximation g,(r) = g,(r)in (3.7) since the smooth
u(r) is practically constant over the shifted region. Thus the HTA (3.8) can
be very accurate, and quantitative results for the pressure and internal energy
of dense liquids can be obtained>!?3 by differentiating (3.8) with respect
to p or f. Table I gives some representative results.

This happy state of affairs extends over that part of the temperature-
density plane where (3.5) holds. This includes trivially all high-temperature
states (kg T/e 2 3) of any density, where fu(r) is small, and all high-density
states (po® 2 0.65) even when the temperature is low and fu(r) is large. Thus
a large part of the entire phase diagram can be understood using these
simple physical ideas, including the dense liquid region where most other
approaches have failed.

At lower density and low temperatures and particularly as we approach
the critical point the physical ideas suggesting (3.5) and (3.8) no longer hold
and we must consider explicitly the effects of the attractive forces on g(r).
(This is necessary even at high density if the virial pressures are to be accurate.)
The most straightforward approach would be to take the first-order correc-
tion to g;(r) in a power series about 4 = 0, as is done by Barker and Hender-
son.'! However, like the u expansion discussed in Section II, the first-order
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TABLE I
Pressure and Internal Energy for the Lennard-Jones
Fluid for Several Representative High-Density States
Calculated from (3.8)

BP/p — AE/Ne

pe®  kyT/e HTA* MD!  HTA® MD?

0.88 0.94 2.82 2.1 6.03 6.04
0.85 2202 422 4.20 4.71 4.76
0.85 1.128 2.78 278 5.69 5.69
0.85 0.76 0.74 0.82 6.06 6.07
0.75 1.304 1.55 1.61 4.99 5.02
0.75 1.071 0.76 0.89 S.15 5.17
0.75 0.84 0.38 0.37 6.01 6.04
0.65 1.585 1.19 1.25 4.20 4.23

“ Obtained by numerical differentiation of (3.8).

® Molecular dynamics calculations summarized in
Verlet and Weis.!® The uncertainty in these results is
+0.05.

term in A for g,(r) involves complicated averages over three- and four-
particle correlation functions, and when fu(r) is large, it is not clear why
just one more term in A will be sufficient. In the next section we discuss a
renormalization procedure which provides a general treatment of the attrac-
tive forces. The renormalization of the perturbation gives us a mathematical
basis with which we can understand, in part at least, why the repulsive forces
at high density prove so effective in screening out the effects of the attrac-
tions. However, before turning to this problem, we consider the relationship
between the basic theory described in this section—the HTA—and the
van der Waals equation, which in a sense, motivated the present theory.

D. Van der Waals Equation
The van der Waals equation for a one-component fluid is

P=P,— ap* (3.11)

where a is a positive constant and P, denotes the pressure of the hard sphere
fluid. With the appropriate choice for a and d, this equation provides a
remarkably accurate description of the equation of state for a dense fluid.*

* Van der Waals actually assumed that P, = ks Tp(1 — bp)~ ', where b is a positive constant
which describes the volume of a molecule. This particular form for P, is correct only for a one-
dimensional hard rod fluid. Results are considerably improved when more accurate results for
P, are used. See Widom for an excellent discussion.>*
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This fact can be understood within the framework of the theory developed
in this section. By employing (2.16) and (2.17) of the blip function expansion,
(3.8) can be expressed as

A Ay pa(p)
~ - 12
NkgT — NkgT kT (3.12)
where
1 [o.8)
palp) = — 3 drprig (ryu(r) dr (3.13)
d

The only important approximation involved in this result is the assumption
that the structure of the fluid is determined by the repulsive forces. It has been
demonstrated that this is an excellent approximation at high densities,
Le., 0.65 < pd* < 09.

Strictly speaking, a(p) is also a function of temperature. This arises from the
temperature dependence of the hard sphere diameter d. However, for realistic
harshly repulsive interactions, d is only a weak function of T. Thus to a good
approximation the temperature dependence of a(p) can be neglected.

Over the limited region of high density, a linear interpolation of the
density dependence of pa(p) should be fairly accurate, that is,

pa(p) = ay + pa (3.14)

where a, and a are constants chosen to give the best fit to pa(p) over the high-
density region.* Equation (3.14) may seem even more plausible when one
realizes that for short-ranged potentials (such as the Lennard-Jones potential)
the major contribution to the integral in (3.13) comes for those values of r
in the first coordination shell. Since 4mpr2g(r)dr is the number of hard
spheres in a shell between r and r + dr that surround a central hard sphere,
the density dependence of the integral in (3.13) is essentially the same as the
density dependence of the number of nearest neighbors in a hard sphere
fluid. This should vary smoothly with density in the high-density region.
Equations (3.14) and (3.12) can be combined and then differentiated with
respect to p to yield the pressure. Provided one neglects the density de-
pendence in d (an approximation that is even better than (3.14)), one obtains

Ll 3.15
p ; Bap (3.15)

which is van der Waals’ equation.

* This choice of the constants a, and a may differ considerably from yalues chosen to fit
low-density results. The familiar evaluation of the van der Waals parameters in terms of critical
point data®? is not justified since the HTA and hence the van der Waals equation is not accurate
in this low-density regime.
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Thus, the basic approximations which justify the van der Waals’ equation
for real dense fluids are as follows: (1) the structure of the fluid is determined
by the repulsive forces; and (2) the number of nearest neighbors to a particle
in a dense liquid is approximately a linear function of the density. Approxi-
mation (2) is reasonable, but not so accurate as approximation (1).

There exists a well-defined, but certainly unrealistic, class of models for
which the van der Waals equation is the exact equation of state.?> These
models are classical fluids for which the total pair potential is u,r) + ug(r),
where ug(r) i1s a Kac potential. The general form for a Kac potential is

uglr) = y"F(yr) (3.16)

where v denotes the dimensionality of the system,
de F(x)=a (3.17)

is a finite constant, and y tends to zero. Thus, ug(r) is both infinitely weak and
infinitely long ranged. It is intuitively obvious that such a weak and slowly
varying interaction will have no effect of the fluid structure, and that its
effect on the thermodynamics will be one of a simple mean field or back-
ground potential.

To study the effect of ug(r) mathematically one may start from (3.7). For
the model system defined above, we have the exact result:

2 1
AT, piug + ) = Ay — ﬁ% f i f dr g,(ruxlr)
(4]
2 2 1
=9, — B% o — ﬁ% f di fdr[gl(r) — 1uglr)  (3.18)
0

Since [g;(r) — 1] decays to zero at large r in a one-phase system, the last
integral in (3.18) vanishes as y tends to zero (this is called the Kac limit). As a
result,

(T 0: _ Bp?

AT, pyuy + ug) = of 4 — fo (3.19)
By differentiating this expression for the free energy one obtains van der
Waal’s equation with a = —a/2 in the one-phase region. In the two-phase
region, the thermodynamic properties are obtained by a Maxwell con-
struction.

The Kac potential produces no forces between molecules. As a result, it
rigorously has no effect on the fluid structure, and as we have shown, the
van der Waals equation is exact for the Kac model. However, this develop-
ment of the van der Waals equation does not justify the use of the equation
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for describing real fluids since the Kac potential is clearly unphysical. The
utility of the van der Waals equation arises from the fact that it is a fairly
accurate equation even when one considers fluids with realistic pair po-
tentials. In the preceding discussion, we have described the physical reasons
for this accuracy.

IV. EFFECT OF ATTRACTIVE FORCES
ON LIQUID STRUCTURE

We have seen above that for dense monatomic liquids the structure of
the liquid is dominated by the repulsive part of the interatomic potential.
The effect of the attractions is much smaller than we might have expected
on the basis of the magnitude of the dimensionless parameter, ¢/k T, which
characterizes their strength. This is reminiscent of (and, as we shall see below,
formally analogous to) the fact that in fluids of charged particles the range
and strength of the interparticle correlations is much smaller than we might
have expected on the basis of the range and the strength of the Coulomb
potential. This latter fact is sometimes called “screening” or “shielding”
of the Coulomb potential. Its earliest theoretical description was in the
pioneering work of Debye and Hiickel*® on the subject of dilute ionic
solutions. They found that although the interionic potential (divided by
kg T) for two ions separated by a distance r is approximately

BZ.Z;e*
er

4.1)

at large distances, the strength of their correlations (i.., the pair correlation
functions minus unity) is approximately
—BZ.Z; e?
—hZiZ;e e 4.2)
€ r
Here Z; and Z ; are the valences of the ions, e is the magnitude of the electronic
charge, ¢ is the dielectric constant of the solvent, and « is the inverse of the
“Debye screening length.” Its formula is

_ 4npe?
T«

K2

S Z3p, (43)

The exponential factor in (4.2) guarantees that the correlations are weaker
and of shorter range than the potential. Mayer®” extended the work of
Debye and Hiickel by using the formalism of cluster expansions for fluids.
In his theory the function given by (4.2) appears as a screened or renormalized
potential energy of interaction among ions. It described a many-body
effect which tends to counteract and cancel the direct interactions among the
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ions. Some of the Debye-Hiickel results were obtained and corrections were
expressed in terms of the renormalized potential rather than the original
unscreened potential in (4.1). In this section we shall discuss how the ionic
cluster theory method of Mayer can be applied to the problem of the struc-
ture of dense liquids like the Lennard-Jones fluid. We will define a re-
normalized potential which plays a role analogous to the Debye-Hiickel
screened potential. At high densities this renormalized potential is much
weaker than the actual attractive potential and seems to describe a many-
body screening effect in which the short-ranged repulsive forces tend to
counteract and cancel the effect of the attractive forces. We shall call this
repulsive force screening to distinguish it from the Coulomb screening in
ionic solutions.

We will first give a brief review of the cluster theory for the pair correlation
function of fluids. The Mayer ionic solution theory will be outlined, in-
cluding the graphical definition of the screened potential. Then the case of
dense fluids will be discussed, showing how the concepts of a renormalized
potential can be generalized to cover this situation. The consequences of
this for the theory of liquid structure and thermodynamics will then be
developed.

A. Cluster Theory of a Fluid of Attracting Hard Spheres

The model fluid of interest has an interatomic potential which is the sum of
a hard sphere part plus a perturbation. (We will discuss later the case where
there are soft sphere rather than hard sphere repulsive forces.) If w(r) is the
interatomic potential, then

w(r) = o r<d
= u(r) r>d (4.4)

where u(r) is the perturbation.
Cluster theories of fluids are often expressed in terms of the Mayer f
function for the interaction, defined by

Sy =exp[—pw(r)] — 1
= fadr) + [1 + fu(r)] i (@) (4.5)

1
n
where f,(r) is the Mayer f function for the hard sphere potential, and
¢(r) = — Pulr) (4.6)

This separation of f into various parts is of use because we expect that in some
sense the effect of ¢ on the structure is small compared with the effect of the
hard sphere repulsions represented by f,.
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The Mayer cluster theory*® provides a formula for the pair correlation
function of a fluid in terms of an infinite series of diagrams. Each diagram
represents an integral whose integration variables represent particle posi-
tions and whose integrands contain factors of the Mayer f function of the
relative positions of various particles. These diagrams can be expressed in
terms of f; and ¢, and by a process of topological reduction*®® they can be
expressed in terms of the functions h,(r) and ¢(r), where

hy(r) = g4r) — 1 (4.7)

and g,(r) is the pair correlation function for hard spheres at the density of
interest. The resulting expression for In g(r) is a convenient starting point for
our discussion. It is

In g(r) = In g4r) + sum of all connected diagrams with
two root points (labeled 1 and 2 and separated
by a distance r), any number of field points, at
most one h; bond and any number of ¢ bonds
connecting any two points, at least one ¢ bond,
no articulation points, and no reference pair of
articulation points, such that the diagram does
not become disconnected if the two roots are
removed (4.8)

Appendix A contains a brief review of some of the graph theoretic terms
used here. Figure 5 shows various examples of these diagrams. For the
present discussion it is necessary to understand only the following features
of these diagrams: (/) The points 1 and 2 are represented as open circles and
should be imagined as being a distance r apart (see Fig. 5). (2) The field points
are represented as closed circles. (3) Each bond in the diagram is represented
as a line connecting a pair of points. (4) There are two types of bonds, ¢ bonds
(represented by solid lines) and h, bonds (represented by dashed lines). (5) The
value of each diagram is a certain multidimensional integral over the
positions of the field points. (6) There is a well-defined prescription for
writing down the integral corresponding to any particular diagram.

3
Ing(n=Ingyr) +o—g +f“-b+ {\; J\,

3 4
+6 "5+<,:/ é+é\6+“,{»~‘g+ec.

Fig.5. The first few diagrams in the cluster series [see (4.8)] for the pair correlation function
of a model fluid whose intermolecular potential is the sum of a hard sphere part plus a perturba-
tion. Solid lines represent ¢ bonds [see (4.6)], and dashed lines represent A, bonds [see (4.7)].
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Suppose a diagram contains m field points, which are labeled 3,4, m + 2.
Then the value of the diagram is

% " fdrz, s drm+2|:n hd(rij):”:n ¢(’”k1):| (4.9)

where each h,; or ¢ factor in the integral corresponds to an h, or ¢ bond in
the diagram. Also, v is a numerical factor whose value depends on the
topological structure of the diagram. For example the values of the first,
third and eighth diagrams in Fig. 5 are, respectively,

Ary2), P Jdrs hy(r3)9(r23),

and
%PZ Jdrs dr hy(r 3)hg(r (v 23)ha(r24)d(rs),

where r;; = [r; — r;|. For a more detailed discussion of the meaning of the
diagrams and for the derivation of (4.8), the reader is referred to Ref. 38.

B. Cluster Theory of Ionic Solutions

Mayer used his cluster theory in a calculation of the properties of a model
ionic solution in which the effective interionic interactions are of the type
given in (4.1). (An ionic solution should actually be regarded as a two-
component fluid since at least two different species of ions must be present
to satisfy electroneutrality. This adds some extra complications to the
statement of (4.8) and to the definition of the cluster integrals. For simplicity
we will ignore these (nonessential) complications in the following discussion
of Mayer’s derivation of a renormalized potential for ionic solutions.)

The first term in (4.8) for the cluster series for In g — In g, represents the
contribution from direct Coulombic interaction between the particles. Its
value is

2
pir) = ~LEiPE (4.10)
er
and hence it represents a very long-ranged correlation. In the fluid however,
the actual correlations are of much shorter range due to a cooperative
screening effect. Hence, the sum of the subsequent diagrams in (4.8) must
cancel this first diagram for large r. One of the essential features of Mayer’s
ionic solution theory is that a small subset of these diagrams, rather than
the entire sum, can be regarded as responsible for this cancellation. In

particular, the diagrams which are simple chains of Coulomb bonds are the




128 H. C. ANDERSEN, D. CHANDLER AND J. D. WEEKS

Contr)= o+ T4 )
+<_>+ etfc.

Fig. 6. The first few diagrams in the series for the renormalized potential in the Mayer ionic
solution theory. The solid lines are ¢ bonds.

important ones. See Fig. 6, which shows the diagram represented by (4.10)
and the chains which cancel it.

The mathematical reason for the cancellation is easy to see if we consider
the Fourier transform of the diagrams. The chain diagrams are convolution
integrals. For example, the chain of two ¢ bonds is p fdrs ¢(ry3)P(ry3). The
Fourier transform of a convolution is simply a product of the Fourier
transforms of the two functions in the integral; hence, the Fourier transform
of the diagram is p[¢(k)]%, where

k) = fdr e*TH(r) (4.11)
Similarly the Fourier transform of the chain with n ¢ bonds is
PPk (4.12)
The sum of the chains of two or more ¢ bonds is a geometric series whose
sum is
. pd(k) }
k| ————~ 4.13
é )[1 e )

The long-ranged nature of the Coulomb potential is displayed in the Fourier
transform of ¢(r) as a divergence of ¢(k) for small k, that is,

- -1
$) ~ = (4.14)

for small k. It is easily seen from (4.13) that as k — O the factor in square
brackets approaches — 1, and thus the sum of chains of two or more ¢ bonds
approaches — ¢(k)ask — 0. This exactly cancels the divergence of the Fourier
transform of the first diagram in the cluster series and hence exactly cancels
the long-range nature of the diagram. Cpy(k), the sum of all the chains

including the first diagram in the series, is given by

Conlk) = d)[1 — pd(k)]™* (4.15)

which leads to the Debye—Hiickel potential in (4.2) upon Fourier inversion.
(Here the subscript DH denotes Debye-Hiickel). An extra advantage of
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adding these terms together is that it cancels the divergence in each of the
chain diagrams [see (4.12) and (4.14)]. In fact, the chains with two or more
links are represented by divergent integrals, but the sum of chains is a finite
quantity. Thus far, we have

In g(r) = In g,r) + Cpu(r) + sum of all diagrams in (4.8)
which are not chains of ¢ bonds (4.16)

At this stage, even though the cancellation of the long-range part of ¢
and the cancellation of the divergences in the chain diagrams are explicitly
contained in the results, (4.16) is unsatisfactory because there remain many
divergent integrals among the diagrams left. The next important feature
of Mayer’s theory is that these remaining divergences also cancel each other.
This can be shown by expressing the sum of all the remaining diagrams in
terms of Cpy rather than ¢. The result can be expressed as follows:

In g(r) = In g4r) + sum of all connected diagrams with
two root points (labeled 1 and 2 and separated by
a distance r), any number of field points, at most
one h, bond and any number of Cpy bonds con-
necting any two points, at least one Cpy bond, no
articulation points, no reference pair of articula-
tion points, such that the diagram does not
become disconnected if the two roots are
removed, and such that no field point has two
Cpy bonds and no h, bonds attached to it. 4.17)

The first few diagrams in this series are shown in Fig. 7. Just as the first
diagram in Fig. 7 is the sum of chains of one or more ¢ bonds, in the same way
every other diagram in Fig. 7 or (4.17) is the sum of an infinite number of
diagrams in Fig. 5 or (4.8); for example, see Fig. 8. The fact that each diagram
in (4.17) is expressed in terms of Cpy bonds rather than ¢ bonds shows that

Ing(r) = In gg(r) + oo +f“.°+ d‘\ + Q?Q\b

+JR+A+I‘“‘;+ efc.

Fig. 7. The first few diagrams in the renormalized cluster series [see (4.17)] for the pair cor-
relation function of an ionic solution. Wavy lines are Cp,, bonds and dashed lines are h, bonds.

f‘.‘ :'/\_+<"‘-.+< '\‘+< Yo+ efc
o] b b o o

Fig. 8. The second diagram in Fig. 7 is the sum of an infinite number of diagrams in Fig. 5.
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the long-ranged divergences of the diagram in (4.8) completely cancel one
another. Cpy(r) is sometimes called a “renormalized potential” since it
enters the series in (4.17) in much the same way as ¢ enters (4.8).

Equation (4.17) is a good starting point for numerical calculations of the
properties of ionic solutions, particularly for low concentrations of singly
charged 1ons. Under these conditions

gulr) = e P (4.18)

and to lowest order in the density only the Cpy(r) diagram in (4.17) needs to
be retained. The result is

g(r) = ¢ Pualr) ,Conlr) (419)

which is a nonlinear Debye-Hiickel result.

We can summarize the major ideas of the Mayer ionic cluster theory in the
following way: There is a cooperative screening effect in ionic solutions in
which those correlations between two ions which are induced by their
direct interaction is screened by the presence of other ions. A mathematical
representation of the screening shows that the cluster diagram involving
only the direct interaction of two ions is largely canceled by a set of other
diagrams which have the topological structure of chains. The sum of the
direct interaction and these chains is defined as the renormalized potential.
The fact that the renormalized potential is of shorter range and is weaker than
the direct interaction is a manifestation of this cancellation or screening.
Furthermore the renormalized potential can be used to eliminate the
original potential from the cluster series, thus showing that the cancellation
and the elimination of divergences extends to all terms in the cluster series
and is not confined just to the specific diagrams in the renormalized po-
tential. It is this feature of the renormalization method that distinguishes
it from other ad hoc truncations of cluster expansions, such as are suggested
by various integral equations for the pair correlation function. The resulting
series is an expansion in powers of the renormalized potential, rather than
the Coulomb potential, and is much more suitable for numerical evaluation.

C. Comments about the Renormalization Technique

There are several important points about Mayer’s renormalization
techniques which merit further discussion. We do not know the relationship
between the physical nature of the Coulomb screening effect and the topo-
logical structure (chains of ¢ bonds) of the diagrams chosen to be in the
renormalized potential. This is unfortunate since a proper coupling of
physical intuition with the mathematics of cluster expansions would be of
enormous help in extending the theory of different types of fluids. Since
Mayer’s choice cannot be justified on physical grounds we must be satisfied
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with the mathematical justification discussed above; with this choice all the
divergences of the diagrams due to the long-range nature of the potential are
systematically eliminated. Moreover the resulting series is useful for numerical
calculations and leads to the experimentally verified Debye-Hiickel limiting
laws for the thermodynamic properties of dilute ionic solutions. However,
Mayer’s is by no means the only choice yielding these desirable properties
and in the next section we will consider other possible choices which are
more appropriate for dense fluids.

D. Cluster Theory of Dense Fluids

In this section we will discuss a way of generalizing Mayer’s renormalized
potential to the case of dense liquids. For dense liquids of molecules inter-
acting with slowly varying long-ranged forces, for example, the Kac model
potential, one form of renormalized potential that has been suggested is a
sum of chains of not only ¢ bonds but also &, bonds, where h; is the “short-
ranged part” of h.3*=*! The simplest choice for A, is h,.*? Using it, we define

Cklr) = sum of all diagrams in (4.8) for In g(r) which are
chains of ¢ bonds and h, bonds. 4.20)

Here K stands for Kac. Each member of the series contains at least one ¢
bond, and, as a result of one of the topological restrictions in (4.8), no two
adjacent members of the chain can both be h,; bonds. See Fig. 9 for the first
few diagrams in the series. These diagrams include all those in Mayer’s
definition, plus additional ones which describe the effect of the hard sphere
forces.

These diagrams are all convolution integrals and their sum can be readily
evaluated using Fourier transform techniques. The result is

Sadk)$(k)S k)

) = 8 e 0]

4.21)

Clr)= oo + d'/\) + /“"b + Z_’fs

+/°l? . X.\d, . {} + efc.

Fig. 9. The first few diagrams in the definition [see (4.20)] of the renormalized potential for the
Kac model fluid. Solid lines are ¢ bonds and dashed lines are k, bonds.
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where
Sfky=1+p f dr (g, (r) — 1) (4.22)

S,k) is called the structure factor of the hard sphere fluid. It is real and
positive for all values of k and depends only on the magnitude of k. This
renormalized potential, like Mayer’s, has the property that even if @(k)
diverges as — 1/k? for small k, the renormalized C(k) approaches a finite
value, —S,0), as k — 0. Thus in Fig. 9, the first diagram is to some extent
cancelled by the others.

When this new renormalized potential is used for high-density fluids, the
possibility of a new type of divergence arises. Namely, if (k) is positive for
some value of k and if p is large enough, we might have

pSak)plk) = 1 (4.23)

for some particular k, which leads to a divergence in C(k). This breakdown
of the renormalized potential is sometimes misinterpreted as a breakdown
of the fluid, that is, the onset of instability or a phase transition. In fact it is
just an artifact of this particular choice of diagrams in (4.20). This divergence
must be eliminated in order for the renormalized potential to be useful.
One method of doing this is to make a better choice of hg than h, in the
chain sum (4.20).***> Another method is discussed by Andersen and
Chandler® and leads to the theory called the optimized cluster theory. Here
we will discuss a third method which involves finding those diagrams in (4.8)
that cancel the divergence and including these additional diagrams in the
definition of the renormalized potential. The results obtained are equivalent
to those developed in the original formulation of the optimized cluster
theory.

To find a set of diagrams that cancel the divergence in Cg, consider those
graphs that can be described in the following way (see Fig. 10): Imagine the
two root points and a set of one or more field points located on the circum-
ference of a circle, so that by passing from root 1 and going clockwise around

Fig. 10. Illustration for the definition of the diagrams in C,(r), the renormalized potential
appropriate for liquids. The points are on a circle, with a chain of ¢ + f;¢» = ® bonds (repre-
sented by solid lines) and h, bonds (represented by dashed lines) leading from one root to another.
There are f, bonds (represented by dotted lines) connecting some pairs of points.
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the circle one passes through all the field points and then arrives at 2. Now
imagine connecting each pair of adjacent points on this circle with either an
h, bond or a ® bond, where

O(r) = [1 + fulr)]o(r) (4.24)

except that no such bond is to connect the roots directly. This generates a
chain similar to, and in many cases identical with, the chains in C. However,
now we are using ® bonds rather than ¢ bonds. The former are “decora-
tions” of the latter. Every diagram that is expressed with n ® bonds is equal
to a sum of 2" diagrams expressed with ¢ and f, ¢ bonds. These decorations
prohibit the overlap of two particles which are directly connected by a ¢
bond since 1 + f,(#) is zero for r < d. [Outside the hard core, of course,
O(r) = ¢(r)].

Overlap of nonadjacent particles in the diagrams should also be inhibited
(if not prohibited). Thus further decorations are also required. The ones we
consider are reminiscent of the cluster diagrams contributing to the Percus—
Yevick equation for y,(r).*¢ Imagine adding some or no f; bonds between
nonadjacent points on the circle in such a way that no two f; bonds cross
cach other and so that no field point is left with only h,; bonds attached to it.
An f; bond may or may not be drawn between the roots.

Our new definition of the renormalized potential, which we call C,(r),
is that it includes the diagram with just one @ bond between the roots plus
all the diagrams that can be drawn in the way just described. Some examples
of the diagrams in C; are shown in Fig. 11. This renormalized potential is
given the subscript L because it is a very useful one for liquids. Some examples
of diagrams not in C; are shown in Fig. 12. Each diagram in C; contains at
least one @ bond and has no reference pair of articulation points. Also note

CUn = Clr) +7 A+ T A+ B+ 11+ 1
S Y O S S S W S S

Fig. 11. Diagrammatic equation for the renormalized potential for liquids. The quantity
Ck(r) is the sum of all diagrams in Cy(r) (see Fig. 9) except the ¢ bonds are replaced by @ bonds
(@ = ¢ + f;¢). The solid lines are ® bonds. The dashed lines are h, bonds. The dotted lines are
f4 bonds. The first four diagrams represent ways of decorating the fourth diagram in Fig. 9.
The next six represent ways of decorating the sixth, seventh, and eighth diagrams of Fig. 9. The
next two are included in C;(r) even though they are not decorated versions of a diagram in Cg(r).
The last three are some of the ways of decorating the ninth diagram in Cg.
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b

P :

Fig. 12. Diagrams which are not included in the definition of C;(r). The first diagram is ex-
cluded because it has crossing f, bonds. If one or both of these bonds are removed, the diagram
becomes acceptable. The next two are excluded because each has one point with only h, bonds
attached.

that for each diagram in C; with one or more field points which does not have
an f; bond between the roots, there is another diagram in C; which is
identical except for the presence of an f; bond between the roots, and vice
versa. It follows that

Cir)=0 forr<d 4.25)
since

fidr)=—1 forr <d (4.26)

and hence each such pair of diagrams is equal in magnitude but opposite in
sign for r < d.

This choice of renormalized potential includes all the diagrams in Cg(r).
Moreover, we will show that it inciudes diagrams which cancel the di-
vergence in Cg(r). (These extra diagrams, containing f; bonds, are obtained
by breaking up the corresponding diagrams in (4.8).) Hence it is a more
suitable choice of renormalized potential for dense liquids at low tempera-
tures. Not only is it suitable, it is also very useful and leads to an accurate
theory of the structure of simple liquids, as we shall see below.

We must now find a way of adding these diagrams. Let us note that some
of the diagrams in C| (i.e., all except for the first diagram ®(r) and the diagrams
with an f; between the roots) have nodal points, that is, field points which if
removed would disconnect the diagram into two parts, with one root point
in each part. For example, in the first diagram in Fig. 11, the field point on the
right is a nodal point. Let (r) be the sum of the diagrams in C,(r) with nodal
points and let ¢'(r) be the sum of all the nodeless diagrams. Then, obviously

Cilr) = ¢'(r) + ¥(r)

Moreover, from the remarks above we have the following relationship:

'r) = ) + fab(r) (4.27)

because every nodeless diagram with one or more field points has the struc-
ture of a nodal diagram with an f;, bond added between the roots. Next, note
that all the diagrams in C; may be regarded as chains, with the links in the
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chains being joined at nodal points. There are three types of links: h,,
(1 + f)¢ = ®, and f; times a member of the series for . For example, the
last diagram shown in Fig. 11 has two nodal points, 3 and 5, and may be
regarded as a chain of three links. The first link, connecting 1 and 3, is h,.
The third link, connecting 5 and 2, is ®. The second link, connecting 3 and
5, 1s a product f,(r;5) and a nodal diagram. This nodal diagram is in-
cluded in C,(r) and is shown explicitly as the third diagram on the right
side of the equation in Fig. 9. The only restriction on these chains is that
no h, links can be attached together. Then the general diagram in C(r)
is a chain whose links are h, bonds and members of the series defining
¢'(r) with the additional restriction mentioned above. Topologically,
the series for C;(r) is similar in structure to Cg(r), and we can use (4.21)
to obtain the result

SRS
b = s wn

Note that this is not a solution for C,(k) but actually an integral equation,
since ¢'(k) on the right side is defined in terms of the diagrammatic structure
of C;(r) in (4.27).

To solve this integral equation we will use a variational method. Let us
define the following functional of ¢’:

(4.28)

’ — 1 3 T &, i
F(¢) = oy f dk{pS,(k)p'(k) + In [1 — pS(k)'(k)]} (4.29)

If we take the functional derivative of F(¢') with respect to ¢'(k) we obtain

SF@)  pSd RISk .
on) — - = — .30
Cm 5§ = T = paodg] P #.30)
from (4.28). This leads to
SF($)
500 —pCyr) (4.31)

To use these results, note that from (4.27) we have

()= —pulr) r>d

and

and from (4.25) that
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If we regard ¢'(r) for r < d as the quantity to be calculated we see from (4.31)
and (4.25) that the behavior of ¢'(r) for r < d is such as to make F(¢’) sta-
tionary with respect to changes in ¢'(r) for r < d. Moreover, since

x+In(l-x)>0 forall x < 1 4.32)
we have
F(¢) >0 (4.33)

for all ¢ for which the integral exists. Hence if we imagine choosing ¢'(r)
forr > d according to (4.27) and then varying ¢'(r) for ¥ < d so as to minimize
F(¢"), at the minimum F will be stationary. Hence to sum the diagrams in
C,(r) we must find the function ¢'(r) for r < d which minimizes F(¢'). When
¢'(r) is substituted into (4.28), we can obtain C,(k) and by Fourier inversion
obtain C(r).

The process of minimizing F(¢') is a straightforward one to perform
numerically. One way this can be done is to use a trial solution of the form

= r

)=} a,,[l - <E>]" forr <d (4.34)

n=0
= —Pulr) forr > d
and minimize F(¢') with respect to the coeflicients gy, ..., a,, by a Newton-

Raphson method.*’

Now let us use this variational principle to discuss the nature of the
renormalized potential, C;(r). We will show that C(r) has no divergence of
the type which occurs in Cg(r). Moreover, we will see that at high densities,
the first term in C;, namely ®(r), is largely canceled by the sum of the re-
maining terms. This is a mathematical representation of repulsive force
screening, that is, of the fact that at high density the structure of a simple
liquid is not greatly affected by the attractive forces.

To discuss this divergence, let us consider the integral in (4.29) for F that
attains its minimum value when evaluated using the actual behavior of
¢'(r)for r < d. The integrand is positive definite and is small only if pS,(k)¢’(k)
is small. In the variational calculation, ¢’'(r) will assume the functional form
necessary to make pS,(k)¢'(k) as small as possible for all values of k. Moreover,
it will especially try to avoid the singularity associated with having pS,(k)'(k)
= | for any value of k. We might expect, therefore, that

PS4k (k) < 1 (4.35)

for all values of k, as has been checked in several numerical tests of the
minimization procedure for various model fluids. This means that the re-
normalized potential C,(r) contains no divergences, and so the singularities
in Cg{r) are canceled by the additional diagrams included in the definition of
Cyfr).




ROLES OF REPULSIVE AND ATTRACTIVE FORCES IN LIQUIDS 137

From the diagramatic definition of C; (see Fig. 11), it is seen that at low
density
Ci(¥) = = Pulr) + O0(p) r>d (4.36)

that is, at low density the renormalized potential is the same as the actual
perturbation potential.* [This result can also be easily verified using the
low-density limit of the variational procedure given in (4.34)]. At higher
densities, however, the minimization procedure tends to make pS,(k)¢'(k)
as small as possible. From (4.28) it can be seen that this makes C(k) small.
The actual @(k), therefore, tends to be small for values of k where S (k) is
large, and if necessary to achieve this, it is allowed to become large where
S,(k) is small. At low densities, S (k) is approximately unity for all k and we
obtain (4.36). At high density, S k) is very small for small k, that is, for
k < m/d. This gives ¢’ some added flexibility in its attempt to minimize
F(¢'). The net result is that the renormalized potential is smaller at high
density than at low density and hence actually decreases as p increases. This
is the repulsive force screening effect mentioned above: for example, see
Fig. 13, which shows C,(r) for various densities at the same temperature.
The potential used in the calculations is a hard sphere potential plus an
attractive perturbation of the Lennard-Jones type. It can be seen that as the
density is increased the renormalized potential decreases in magnitude.

We have defined the renormalized potential as the sum of a subset of the
diagrams in the original cluster series (4.8) for In g. An important consequence
of this particular definition of C(r) is that the entire series for In g can be
expressed in terms of C,. The details of this topological reduction are
straightforward and will be omitted. The result is

In g(r) = In gy r) + C.(r) + sum of all connected diagrams
with two root points (labeled 1 and 2 and separa-
ted by a distance r), at least one field point, at
most one i, bond and any number of C; bonds
connecting any two points, no articulation
points, no reference pair of articulation points,
no field point with only a C; bond and an h,
bond or only two C; bonds attached to it, such
that the diagram does not become disconnected
if the two roots are removed. 4.37)

* For ionic solutions at low density we find that

C(r) = Cou(r) + O(p) r>d
=0 r<d

so this method reduces to Mayer’s under these conditions.
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Fig. 13. Renormalized potential at three representative states for the system for whicl
w(ry = u r) + u(r). Here, u(r) is the Lennard-Jones attractive perturbation potential [se
eq. (3.4)]. For all three states the temperature is kgT/¢ = 1.15. The densities are pd® =0
0.5, and 0.85.

This is analogous to Mayer’s result, except that we have used a differen
form of the renormalized potential. In this renormalized potential, the direc
interaction between two molecules is canceled to some extent by the additior
of other diagrams, this cancellation being more effective at high density thas
at low density. Moreover, the fact that the entire cluster series can be ex
pressed in terms of C;(r) indicates that this cancellation occurs systematicall
throughout the cluster series. Thus, this new series is in effect an expansior
in powers of the renormalized potential and of the density, and for model
of simple liquids the expansion converges quickly if either the density or th
renormalized potential (or both) is small. The arguments given above and th
numerical results presented below indicate that the renormalized potentia
is small if either the temperature is high or the density is large. Thus th
series converges well at high density, at low density, and at high temperature
For any particular potential, however, it is necessary to perform explici
calculations to determine more precisely the conditions under which th
renormalized potential is small and the series converges quickly.

If the terms in (4.37) decrease in magnitude quickly enough, we can discar
all but the first term to get

Ing(r) = In g r) + Cp(r) (4.3¢
or
g(r) = gar)e" (4.3¢
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This is called the exponential (EXP) approximation and its accuracy for
various fluids has been tested. Some of the results will be reviewed below.

E. Comments on the New Renormalization Technique

This new renormalization technique has many of the same features and
justifications as did Mayer’s. Here again we do not know how to relate the
physical nature of the (repulsive force) screening effect to the topological
structure of the diagrams included in C,. However, the structure of the
C, diagrams, namely chains of i, and ¢ bonds “decorated” with additional
f; bonds, suggest the following interpretation. Screening of a perturbation
potential occurs even for non-Coulombic potentials and is accounted for
approximately by summing chains of interactions. In dense liquids, the
screening represents a competition between attractive and repulsive inter-
actions, and so h,; bonds, representing the repulsions, must be included as
links in the chains, as well as the ¢ bonds. For short-ranged perturbations,
the field points in the chains are constrained to be close to one another —so
close that nonadjacent members may come within a hard core distance of

-one another. This is physically impossible but is mathematically allowable
in cluster integrals. To correct for the hard core interactions between points
in the chain, we should include some diagrams in which these points are
connected by f; bonds.

As in Mayer’s theory, our choice of renormalized potential can be justified
only with mathematical and experimental reasons. We have seen that this
choice eliminates the divergences in the chain sum and that the renormalized
potential can be used to eliminate the oviginal potential from the cluster
series. We also will see below that the simplest approximation suggested by
the theory, the exponential approximation, is in very good agreement with
computer experiments on simple liquids. It is also accurate for ionic solu-
tions.*”*® The present choice of renormalized potential is certainly not
unique. It is possible to make at least one other choice (see Appendix B)
which retains desirable features of the present choice (but which does not
lead to significantly different results), and there may be other choices which
are better for a wider variety of liquids. The choice we have made, however,
is certainly adequate for a treatment of simple liquids and ionic solutions.

F. Principal Results of the Renormalized Cluster Theory

The most important results of the preceding discussion are (4.37) and (4.39)
for the pair correlation function of a fluid of attracting hard spheres. The
former is an exact formal result; the latter is a truncation of the infinite series
and represents a useful and tractable numerical approximation. The same
type of renormalization methods can be applied to an analysis of the cluster
series for the excess free energy density of such a fluid. An infinite series can be
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obtained in which all the diagrams are expressed in terms of the renormalized
potential C, . The reader is referred to Ref. 5 for the details. When the series
is truncated the result is

of = i%d + AHTA + AoRrpA -+ Bz (440)

where .«/, is the hard sphere excess free energy density,
__b oy 441
aura = — > p r g (rju(r) (4.41)

L fdk{pé(k)gd(k) +In[1 = pd(k)SAk)]}  (4.42)

Aorpa = — 2(271)3
1 1 1 =
B, = Epz Jdr hy(r) 3 [Cur)]* + 3 p* fdr g4r) Z}(n!)_ CUr ] (4.43)

Equation (4.40) is called the ORPA + B, approximation for historical
reasons.

The conditions under which (4.40) is an accurate approximation for the
entire cluster series are approximately the same as the conditions for the
validity of (4.39). These results were originally derived in a somewhat
different way and are collectively referred to as the optimized cluster theory.

G. Tests of Optimized Cluster Theory

This theory for calculating the structural and thermodynamic properties
of a fluid from its interatomic potential has been applied to a variety of
potentials, such as the Lennard-Jones potential, primitive models of electro-
lyte solutions, and the square well potential. In this section we discuss tests
of this theory for the Lennard-Jones potential described above in Section II1.

The Lennard-Jones potential has a soft repulsive core rather than a hard
sphere interaction. However, the optimized cluster theory results can easily
be modified to take the softness into account, using the methods discussed
in Section II. The details of the derivation will be omitted. The results are

glr) = e Flwo +uly, (1),[CL(r) = i) (4.44)
which is analogous to (4.39) and (2.16), and
A = oy + ayra + aorea + B, (4.45)

In (4.44) and (4.45) the renormalized potential is the one calculated for a fluid
whose potential is a hard core with diameter d plus the attractive part of the
original potential. In (4.44), the function C;(r) — ®(r) for r < d is to be
interpreted as the smooth extrapolation of its functional behavior for r > d.
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The hard sphere diameter should be chosen so that
f dr[e “Buotry _ p— ﬁua(r)]yd(r)e[CL(r) —omM] — (4.46)

However, in practice for potentials like the Lennard-Jones potential,
C.(r) — ®(r) 1s slowly varying compared to y,r) near r = d and therefore
it is adequate to use the diameter calculated from the simpler criterion in
(2.11).

There are two types of unambiguous tests to which we can subject these
results. First, we can compare the thermodynamic properties and the pair
correlation function with molecular dynamics and Monte Carlo calcula-
tions for the Lennard-Jones fluid. Secondly, we can test the theory for
internal consistency.

The first type of test is made in Table I and Figs. 14 and 15, which compares
the OCT with computer simulation results. It can be seen that throughout
the temperature-density plane the agreement is excellent and that the
discrepancy between the OCT and computer simulation results are usually
of the same magnitude as the statistical uncertainties of the latter.

The second type of test can be carried out by calculating the pressure
(or the internal energy) in two ways. The first way is to calculate the excess
free energy from (4.45) and then differentiate numerically with respect
to density to obtain the pressure (or with respect to temperature to obtain
the internal energy). The second way is to use the virial equation (or the

TABLE I
Pressure and Internal Energy for the Lennard-Jones Fluid Calculated Using the
ORPA + B, Approximation of the Optimized Cluster Theory (OCT) Compared
with the Results Computed from the High-Temperature Approximation (HTA)
and from Monte Carlo Computer Simulations (MC)

BP/p —AE/Ne

po’ kpT/e HTA*® ocCT? MC* HTA® OCT? MC¢

0.1 0.75 0.42 023 0.23 0.56 1.15 1.15
0.1 1.35 0.77 0.72 0.72 0.55 0.78 0.78
0.2 1.35 0.53 0.50 0.51 1.16 1.51 1.50
0.5 1.35 0.18 0.30 0.30 3.24 3.36 3.37
0.65 1.15 0.13 0.22 0.31 4.41 447 4.45
0.85 1.15 2.85 2.84 2.86 5.66 5.69 5.67

“ Obtained by numerical differentiation of (3.8).

® Obtained by numerical differentiation of (4.45).

¢ Machine calculation results taken from Verlet and Weis.'© The uncertainty in
these results at high densities is 0.05.
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Fig. 14. Pair correlation function for the Lennard—Jones fluid for a state near the critical
point. The open circles ar the molecular dynamics results of Verlet.® The dashed and solid curves
are the results of the high-temperature approximation and the optimized cluster theory,
respectively.
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Fig. 15. Pair correlation function for the Lennard-Jones fluid for a state near the triple point.
See Fig. 14 for additional information.
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energy equation) and the exponential approximation for the pair correlation
function to obtain the pressure (or the internal energy). Comparison of the
two results gives a measure of the internal consistency and hence of the
accuracy of the theory. There is no reason to expect that the two theoretical
results for the pressure should contain errors that are consistently equal to
cach other, and this is why agreement between them is a measure of the
accuracy of each. In fact there is good reason to expect that the errors of the
two results are very different in magnitude. The expansion parameters in the
cluster series for o/ and g are pR> and C, where R and C are the range and
average magnitude of the renormalized potential, respectively. The cluster
series corrections to the ORPA + B, approximation for ./ are of order
p(pR?)*(C)?, whereas the corrections to the EXP approximation are of order
pR3C. It follows that the compressibility factor calculated from the ORPA +
B, approximation contains errors of order (pR3)?C?, whereas the virial
compressibility factor from EXP has errors of order pR*C. Thus the dif-
ferences between them are of order pR3C. If the differences are found to be
small, then the expansion parameters are small and the OCT approxima-
tions are accurate.

The entries in Table ITI show how well the OCT satisfies the consistency
test for the Lennard-Jones fluid at several representative states. At high
densities (po” > 0.65) the differences between the compressibility factors

TABLE III
Comparison of the Compressibility
Factors of the Lennard-Jones Fluid as
Calculated by Differentiating the ORPA
+ B, Approximation (SP,;/p) and by
Applying the Virial Equation to the EXP
Approximation (8P,/p)

po? kyT/e BPio fPJp
0.154 1351 - 0.60 0.60
0.107* 1.249° 0.65 0.66
0.318° 1.303¢ 0.30 0.28
0.558? 1.249° 0.17 0.18
0.748 1.351 1.67 1.70
0.757 1.249 1.52 1.54

¢ This state is the “experimental” criti-
cal point for the Lennard-Jones fluid.*®
At that state the experimental compressi-
bility factor is 0.29.

® This state is in the critical region and
directly adjacent to the liquid-gas co-
existence curve.*® See Fig. 1.
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calculated by the two methods differ by no more than 0.03. A difference of
this magnitude is expected because of the uncertainty in our knowledge of
the hard sphere equation of state and of g,(r), both of which are used as input
for the OCT. At lower densities, however, these quantities are known more
accurately, and any differences larger than 0.01 are significant. At low and
moderate densities, differences of this size are found only for states very close
to the liquid-gas critical point. The failure of the OCT to satisfy the con-
sistency test near the critical point is one manifestation of the fact that OCT
provides a classical theory of phase transitions. A detailed study of the
predictions of the OCT in the vicinity of the liquid-gas phase transition has
been reported by Sung and Chandler.*®

H. Concluding Remarks

The optimized cluster theory has been applied to the study of various
types of liquids, namely the Lennard-Jones fluid,*” ionic solutions,*” and
mixtures of hard spheres and square well molecules.*® A generalization of the
theory has been applied to water (D. Chandler and H. C. Andersen, un-
published) and to fused salts (S. Hudson and H. C. Andersen, unpublished).
These calculations have met with varying degrees of success. For the first
group of fluids, the accuracy of the theory is remarkably good. However for
the last two types of fluids, the accuracy is very poor and the OCT is qualita-
tively incorrect as a description of these fluids.

From the derivation of the EXP and ORPA + B, approximations, one
would expect them to be accurate whenever the product of pR* and C is
small. Here C and R are the strength and range of the renormalized potential.
In all the cases tested, this was found to be a valid indicator of the accuracy
of the theory. It follows that EXP and ORPA + B, are accurate whenever
the perturbation is causing a relatively small change in the number of
nearest neighbors of a molecule and in the overall distribution of molecules
around a given molecule.* Moreover, the results of an OCT calculation
(namely the strength and range of the calculated renormalized potential as
well as the consistency check) provide a clear indication of how much to trust
the ORPA + B, and EXP approximations for any particular fluid.

V. IMPLICATIONS

Theresults discussed in Sections IIT and IV for the structure of the Lennard-
Jones liquid at high density are special cases of more general principles that
may be applicable to liquids.

* An OCT calculation requires that the potential be separated into a reference part plus a
perturbation. Only the perturbation is treated using the renormalization technique. For the
fluids mentioned above for which OCT gave poor results, it might be true that a different
separation of the potential would improve the accuracy of the results.
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We have seen that the attractive part of the Lennard-Jones potential is not
small compared with k3T at liquid temperatures, yet it has only a small
effect on the structure of the liquid compared with the overwhelming effect
of the short-ranged repulsions. We believe it is generally true that at high
density the short-ranged repulsions are dominant and the effect of attractions
is small; this principle applies to molecular as well as atomic liquids and to
some nonequilibrium properties as well as to the equilibrium structure.

This idea means that at high densities the static and dynamic structures of
a dense liquid are determined mainly by the shape of the molecules that
comprise the fluid. We have shown that when the molecular shape is spherical
(or nearly spherical) and if the hard sphere diameter is chosen properly,
the static structure due to continuous short-ranged repulsions is related very
simply to that of a hard sphere fluid at the same density. We believe that the
dynamic as well as static properties of repulsive force systems are close to
those in an appropriately chosen hard sphere system. Thus, for dense
liquids composed of fairly spherical molecules, the motion of molecules in
the fluid should be related simply to the particle motion in a model hard
sphere fluid. Similarly, we expect that the static and dynamic properties of
dense fluids of molecules that are approximately ellipsoidal in shape (or
tetrahedral, or rod-like, etc.) should be simply related to those of model
fluids of hard ellipsoids (or hard tetrahedra, or hard rods, etc).

In this section we will outline some of the available evidence for the validity
of these ideas. Further, we will discuss reasons for possible exceptions to
these principles.

A. Equilibrium Structure of Molecular Liquids

There is a growing amount of evidence to support the belief that the
intermolecular correlations in dense molecular fluids are determined by the
shape of the molecules in the fluid. Sung and Chandler?® showed that
repulsive forces dominate the center of mass radial distribution function
determined by Berne and Harp from molecular dynamics computations on a
model for liquids composed of diatomic molecules. Lowden and Chand-
ler>!-%? have studied the intermolecular equilibrium correlations in molecular
liquids for which the molecules are assumed to be composed of overlapping
hard spheres which are fused together rigidly. The fluid structure for these
nonspherical hard core models is obviously due to steric effects and nothing
else. The calculations by Lowden and Chandler show that these steric
effects produce the measured features of the intermolecular structures of the
following liquids: N, , CS,, CSe,, C¢Hg, and CCl,.

There is no evidence that dipole—dipole (or quadrupole-quadrupole, etc.)
terms in intermolecular potentials are significant in determining the
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microscopic intermolecular correlations in real one-component dense
fluids.* These terms in the multipole expansion for interactions describe the
slowly varying forces between molecules at large intermolecular separations.
From the discussion presented in the Introduction, and from the calculations
presented in Sections IIT and IV, one expects that slowly varying portions of
intermolecular potentials play only a small role in determining the liquid
structure.

B. Freezing

The concept that the harshly repulsive parts of the intermolecular forces
determine the structure of a dense fluid leads naturally to the idea that ex-
cluded volume effects (and not attractive forces) are chiefly responsible for
the liquid-solid freezing transition. This idea was used by Longuet-Higgins
and Widom® when they developed a theory for the freezing of liquid argon.
Their work, and that of others,*'>> indicates that the freezing transition in
simple fluids is intimately related to the ftuid-solid transition that occurs in a
hard sphere system.>® Although the numerical values of the thermodynamic
properties associated with the transition (e.g., heat of fusion, density dis-
continuities) do depend on attractive forces, the mechanism for freezing in
simple fluids is the same instability in the fluid phase which causes the hard
sphere to solidify at high densities.

C. Two Causes for Exceptions

When attractive forces do produce a significant structural effect in a dense
fluid, the reason for it is easy to understand. The effect of hydrogen bonds in
liquid water is one example already mentioned in the Introduction. The
structure of some liquid mixtures provides another example. In this case, it is
possible for the attractive interactions to produce structural effects which
need not compete with the role of the repulsive forces. This point is illustrated
most simply by the model system composed of hard spheres of diameter o
mixed with a square well species with the same hard core diameter and an
attractive well of range 1.5 ¢.°7 The attractions between the square wells
tend to make the square well particles cluster together. This clustering can
occur without changing the excluded volume correlations produced by the
hard cores. As a result, the attractions are able to create important structural
effects.

* However, the long-ranged nature of dipole—dipole interactions create a many-body co-
operative phenomenon which significantly effects the long-range asymptotic decay of pair
correlations. Indeed, for many-body systems containing dipoles, the asymptotic behavior of
the pair correlations depend on the shape of the container of the macroscopic system. A review
covering this subject is given by Deutch.??
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Thus, there are two possible situations in which attractive interactions can
play a significant role in determining the intermolecular correlations of dense
fluids. In one, relevant to liquid water, the attractive forces are sufficiently
large and quickly varying so that they can actually rupture the structure
formed by the repulsive forces. When this situation occurs, the optimized
cluster theory discussed in Section IV cannot describe the effects of the
attractions.* In the other situation, which is frequently important for liquid
mixtures, the attractive interactions can produce structural effects provided
they do not compete with the correlations produced by the repulsions. For
this latter case, it appears that the optimized cluster theory can successfully
describe the effects of the attractions.>%-57

D. Liquid Crystals

When molecules in a fluid are very long, the fluid can exist as a liquid
crystal as well as an isotropic liquid. A rough estimate of the dimensions of a
typical liquid crystal molecule [e.g, MBBA (p-methyloxybenzylidene-n-
butylaniline) is approximately a spherocylinder 20 A in length and 5t0 6 A in
width] shows that at liquid crystal densities (for MBBA at 1 atm pressure,
p ~ 23 x 1073 A~3), the molecules are indeed crushed extremely close to
one another. As a result it is not likely that the dipole-dipole interactions, for
example, are competitive with the harshly repulsive forces which define the
shape of the molecules. The intermolecular structure of a liquid crystal
is almost certainly determined by the long shape of the molecule. Indeed,
this view is corroborated by recent light scattering measurements®® of
the Kirkwood g-factor as a function of density and temperature for the
dense isotropic liquid phases of MBBA, MBA (p-methylbenzylidene-n-
butylaniline) and EBA (ethylbenzylidene-n-butylaniline).

The expectation that the structure of a liquid crystal is determined mainly
by the shape of the molecules in the fluid together with the current under-
standing of the liquid-solid phase transition for simple systems leads us to
expect that the mechanism for the phase transition between isotropic fluid
and liquid crystal phases should be understood in terms of the packing of
long hard particles. Onsager®® used this physical picture when developing
his theory of the isotropic-anisotropic fluid phase transition. However, his

* It is possible that one can devise a statistical mechanical theory for a repulsive force system
which exhibits the tetrahedral intermolecular structure that occurs in liquid water. If this
repulsive force system is used as the reference system for liquid water, then the hydrogen bonds
will not cause appreciable changes in the fluid structure, and the optimized cluster theory will
probably provide a useful way of describing the effects of hydrogen bonds in liquid water.
However, if the chosen reference system for water does not exhibit tetrahedral ordering, the
hydrogen bonds will cause too great an effect to be calculated from a simple application of
optimized cluster theory (H. C. Andersen and D. Chandler, unpublished work). Instead a new
renormalization of the hydrogen bond is required.>®
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theory also employed severe mathematical approximations which have been
shown to be inaccurate.®! It is our belief that the approximations, and not
the physical picture, are the source of some of the incorrect predictions of
the theory.

Our conjecture about the mechanism for the transition between liquid
crystal and isotropic liquid phases contradicts the physical picture used in
many of the theories of liquid crystals.®®® These theories attribute the
properties of liquid crystals to dipole—dipole interactions. All of the arguments
we have presented suggest that this physical picture is incorrect.

E. Molecular Motion in Liquids

The work of Kushick and Berne®* provides direct evidence that the
dynamical processes occuring in dense liquids are governed primarily by
the short-ranged repulsive forces. In that work, computer simulations were
performed for both the Lennard—Jones reference systems and the Lennard—
Jones fluid itself. By comparing the results obtained for both systems,
Kushick and Berne showed that at high density the velocity autocorrelation
function for the reference system is similar to that for the total Lennard—-Jones
liquid. The attractive forces indeed play a minor role.

If the molecules in a liquid are fairly spherical in shape, it seems reasonable
that the dynamics produced by the repulsive forces should be close to that
occurring in a hard sphere fluid. This idea was probably first used by Enskog
(see e.g., Chapman and Cowling®?). The theory of transport developed by
Enskog and the modern developments of present-day researchers provide
evidence that molecular motion in dense fluids composed of fairly spherical
molecules is related simply to particle motion in the hard sphere fluid.

Verlet and coworkers!3:® have shown that the diffusion constant of the
Lennard-Jones fluid is represented to within 109 by the diffusion constant
of the hard sphere fluid. The diameter was, in effect, chosen to be the one
associated with u(r) according to (2.11). Protopapas et al.®” have used the
hard sphere model to calculate diffusion constants for a wide variety of
liquid metals.

The diffusion constant is the zero-frequency Fourier component of the
velocity autocorrelation function. Thus the work of Verlet and of Proto-
papas et al. indicates that the zero-frequency components for a fluid with a
realistic interatomic potential and for its associated hard sphere system are,
to a good approximation, the same. Kim and Chandler®®®° have used a
similar assumption in their development of a qualitatively accurate phe-
nomenological theory of the velocity autocorrelation function for simple
liquids. Chandler’® has used the apparent connection between dynamics due
to continuous repulsive forces and the dynamics of hard sphere particles to
develop a simple theory for rotational and translational motion in molecular
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liquids. One of the principal results of this theory is a microscopic derivation
of Gordon’s J-diffusion model approximation.”! The microscopic derivation
allows one to arrive at these results without recourse to the unphysical
assumptions usually attributed to Gordon’s theory. Further, a useful
expression is found for the relaxation time introduced phenomenologically
by Gordon. Chandler’® has shown that this expression predicts results that
are in close agreement with those found from computer simulations on a
model for liquid nitrogen.”? The theory has also been used successfully to
interpret high-pressure experiments which probe rotational and trans-
lational motions in liquids.”3~7¢

F. Summary

There exists compelling evidence that at the high densities which character-
ize most of the liquid phase the dynamic and static structures of liquids are
dominated by the short-ranged repulsive forces. It is our opinion that the
phenomena that occur in most liquids are best understood by considering
first the excluded volume effects produced by these forces. The attractive
interactions and other slowly varying forces such as dipole-dipole inter-
actions produce “second-order” effects which can usually be described by
perturbation theory or ignored altogether. The application of this idea has
produced the quantitative equilibrium theory of simple liquids discussed in
this article. We believe subsequent applications will produce accurate
theories for the dynamic and static correlations in complex molecular fluids.

APPENDIX A. SOME GRAPH THEORETIC TERMINOLOGY

In this appendix, we will give brief definitions of some of the graph theoretic
terms used in the text. The graphs we are concerned with consist of points and
bonds. The points represent particles are are of two types: root points
(usually two of them are in a graph) and field points (any number of them
may appear). There are various types of bonds, such as h,, ¢, C, and f; bonds.
The bonds represent either interactions between the particles (e.g., ¢ or f;)or
correlations between the particles which are induced by the interactions
(e.g., hyor Cp).

A diagram is connected if it is possible to travel from any point to any other
point along a path consisting of bonds and points. For example, in Fig. A-1,
the first diagram is connected and the second is not.

NN

1 2 1 2

Fig. A-1. Tllustration of the definition of a connected diagram. The first diagram is connected
and the second is not connected.
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An articulation point is a root point or a field point which if removed
would leave the diagram disconnected in such a way that at least one of the
disconnected parts contains no root points. For example, the last two
diagrams in Fig. A-2 have articulation points and the first one does not.

3 4 3 4 3 4
1 2 1 2 1 2

Fig. A-2. lilustration of the definition of articulation point. In the second diagram, point 1
is an articulation point. In the third, 4 i1s an articulation point. The first has no articulation
points.

A reference pair of articulation points is a pair of points which if removed
would disconnect the diagram in such a way that at least one of the dis-
connected parts contains no root point and one or more field points and
only bonds that are related to the reference system (i.e., h; and f, bonds).
For example, the last two diagrams in Fig. A-3 have a reference pair of
articulation points.

5
7N Iq\
3 4 ,?r' \T SI/ \14
1 2 1 2 1 2

Fig. A-3. Illustration of the definition of a reference pair of articulation points. Here the
dashed and dotted lines represent /1, and f; bonds, respectively. These are reference system bonds.
In the last two diagrams, points 3 and 4 are a reference pair of articulation points.

APPENDIX B. DIAGRAMATIC FORMULATION OF THE
MEAN-SPHERICAL-MODEL INTEGRAL EQUATION

The mean-spherical-model (MSM) integral equation proposed by
Lebowitz and Percus’” has been the focus of great interest during the past
few years. The solutions of this integral equation provide an approximation
to g(r) for classical fluids in which the pair interactions are of the form

w(l, 2) = oo, ri, <d
= u(l1, 2), Fi,>d (B.1)

where u(1, 2) is finite but otherwise arbitrary. It may, for example, depend on
particle orientations as well as the separation between centers. The primary
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reason for the interest in the MSM equation is that it is exactly soluble for
several nontrivial systems.

When the perturbation interaction, u(1, 2), is exactly zero, the system is the
hard sphere fluid, and the MSM equation becomes the Percus—Yevick
equation for hard spheres. Wertheim?? and Theile?! have presented the
exact solutions for this case. Wertheim’® has also solved the MSM equation
when the perturbation is the dipole—dipole interaction. For that case the
particles in the fluid are hard spheres with permanent electric dipoles. Other
one-component fluids for which exact solutions have been derived are hard
spheres with Yukawa potentials as the perturbation,’® polarizable hard
spheres with permanent electric dipoles,® and charged hard spheres in a
uniform neutralizing background.®' The two-component fluids for which
solutions are available are the neutral mixture of charged hard spheres in
a dielectric continuum,®* hard spheres mixed with hard spheres containing
permanent point dipoles,®® and hard spheres with point dipoles mixed with
charged hard spheres.®*8® More general multipole-electrostatic inter-
actions have also been studied.®” In addition to the analytic solutions, the
MSM equation has been applied numerically to study the structure of real
liquids with differing degrees of success.®8°°

In this appendix we will discuss the cluster—diagramatic formulation of the
MSM equation. This formulation shows the close connection of the MSM
equation to the OCT. Further, it reveals the strengths and limitations of
theories which are based on this equation. As a result, one is able to judge a
priori whether a particular application of the MSM equation will be suc-
cessful.

For notational simplicity, we consider only one-component systems with
spherically symmetric perturbations. The generalizations to many compo-
nents and to u(1, 2) functions that depend on orientations are straightforward.
The MSM equation is the Ornstein-Zernike equation for g(r) — 1 = h(r)
(see Ref. 38b)

h(r) =c(r) + p fdr’c(lr — 1’ h(r’) (B.2)

plus the closure relations

h(r)y = —1, r<d (B.3)
and

c(r) = — Pulr), r>d (B.4)

Equation (B.3) is exact for particles with a hard core. Equation (B.4) is the
only approximation. The quantity c(r), which is defined by (B.2), is called the
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direct correlation function. By using Fourier transforms, (B.2) can be written as

hk) = é(k)[1 — pe(k)] ™! (B.5)

Thus, one solves the MSM equation [(B.2), (B.3) and (B.4)] by finding the
c(r) for r < d which makes h(r) = — 1 inside the hard core. Then for » > d,
h(r) is determined by inverting (B.5).

The reader may notice the similarity between (B.5) and (4.15). The similarity
implies that h(r) is ¢(r) plus the sum of all singly connected chains of two or
more ¢ functions. (This can be checked by solving (B.2) iteratively with p as
the ordering parameter.) As a result we have the exact result that8”¢

c(r) = sum of all nodeless diagrams in h(r) (B.6)

It is possible to find a subset of these nodeless diagrams which can be
summed to form cygy(r), the direct correlation function in the MSM approxi-
mation. To do this it is convenient to consider a class of diagrams which are
similar to those used in Section IV to construct C,(r) (see Fig. 10). Imagine
a polygon with three or more vertices. Make two adjacent vertices the root
points; the remaining ones are the field points. Connect each pair of adjacent
points with either a f; bond or a ® bond (but not both), except that no such
bond is to connect the roots directly. (Here, fy(r) is the hard sphere Mayer
cluster function, and ®(r) = (1 + f;)(— pu). Thus, ®(r) is — pu(r) for r > d,
and it is zero for r < d.) Next, add some or no f; bonds between nonadjacent
vertices in such a way that no two f; bonds cross. There are no other re-
strictions. Let D(r) denote the sum of all such diagrams. Then the following
equalities can be proven by straightforward topological considerations:

hwsu(r) = fulr) + ©(r) + [1 + fu(r)]D(r) (B.7)

and

emsm(r) = fulr) + @) + folr)D(r) (B.8)

To verify these results one must do three things. First, note that the right-
hand side of (B.7) satisfies (B.3). Second, note that the right-hand side of
(B.8) satisfies (B.4). Third, show that (B.7) and (B.8) satisfy (B.2). This is done
by using the definition of D(r) to establish that cygy(r) does contain all the
nodeless diagrams in hygu(r) and that all the diagrams (and no more) con-
tained in hygy(r) are generated by summing all the singly connected chains
of cygm bonds.

One may extract from hygy(r) all the diagrams containing no ® bonds. The
sum of these diagrams is the Percus—Yevick correlation function for hard
spheres,*® h¥Y)(r). By a topological reduction,>® the remaining diagrams in
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husm(r) (those involving one or more ® bonds) may be expressed in terms of
®, f,, and hTY bonds. The result is

hsulr) — h§(r) = ©(r) + [1 + f()][sum of all dia-
grams formed in the same way as
those in D(r) except now on the ex-
terior of the polygon we have hfY
instead of f; bonds, and no diagram is
permitted if any field point in the
diagram is intersected by only hfY)
bonds] (B.9)

By comparing (B.9) with the definition of C,(r) given in Section IV, we see that
hwsu(r) = h§O(r) + CEV(r) (B.10)

where CTY)(r) is Cy(r) evaluated using the Percus-Yevick approximation
for h, rather than the exact hard sphere correlation function. Equation (B.10)
has been derived before using a very different method.3

There are two important points that can be drawn from this analysis.
First, since the Percus-Yevick theory is fairly accurate for hard spheres, there
is only a small difference between C{¥(r) and C/(r). Therefore, one may use
the analytic solution of the MSM equation (if it is obtainable) to calculate

Crlr) = husm(r) — hGV(r) (B.10)

One may then use this analytic expression to calculate g(r) from the OCT
(in particular, the EXP approximation):

9(r) = g4r) exp [husm(r) — hFY(r)] (B.11)

Equation (B.11) is inherently more accurate than gye(r) = g(r).*” However,
its accuracy is limited, and this brings us to the second point. As discussed in
Section IV, the OCT is accurate only if pC;(r) is small. Thus, (B.1 1) and the
MSM equation even more so are accurate and thus useful only when the
quantity p[hysu(r) — h$¥(r)] is small. The MSM equation is not reliable
if the equation predicts that the fluid structure is significantly different from
that of the hard sphere system. Thus, whenever the structural properties of a
fluid are qualitatively different from those of the noble gas fluids the MSM
cannot be expected to give even a qualitatively correct description. For
example, the MSM will not provide a correct theory for liquid water or for
fused salts. Further, the MSM equation will not be accurate if an un-
satisfactory division is made of the pair potential (see Section ITI). The
reference potential must be harsh enough that its effects are nearly those of
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a hard core with diameter d; and the reference potential must contain
all the quickly varying repulsive interations. If these conditions are not met
pLhvsm(r) — KFY(r)] will not be small.

il
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