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The Contragredient

Problem: Compute the involution ¢ — ¢* of the space of
L-homomorphisms corresponding to m — 7* (the
contragredient)

e ¢: Wi — LG, mell, = 7 € Iy what ¢*?
(Assume ¢ — II; known. . .)
(Well defined, same for all = € I14?)

Nowhere to be found (“much needed gap in the literature”),
even for F =R



Character: 0.+(g) = 0,(g7")

Lemma: There is an automorphism CV of “G satisfying: CV(g)
is GV-conjugate to g~! for g semisimple

(The Chevalley automorphism, extended to “G)

Lemma: there is an automorphism 7 of Wg satisfying: 7(g) is
Wg conjugate to g~

(m(2) = 271 7(4) = )



Theorem (F = R):
(1) ¢* =C"o ¢
(2) 9" = o7

Proof: Not entirely elementary; characterize m* by

Or(g) = 97r(9_1)

Need a formula relating ¢ and 0. ..
True for tori. ..

Key lemma: action of C' on the normalizer of a torus



Conjecture/Desiderata: (1) is true for all other local fields
(¢* =CVoog)
Buzzard: true for unramified principal series (?7)

Note: Probably nothing like 7 exists in general 77



Spherical Unitary Dual for Complex Classical Groups
Joint with D. Barbasch
Hat-tip: P. Trapa, M. McGovern, E. Sommers
Barbasch 1989 (full unitary dual)

Spherical unitary dual for split real and p-adic groups:
Barbasch ~ 2005

Nice picture in terms of nilpotent orbits for G
Plan: Revisit complex case from this point of view

Application: Compute behavior of unitarity under the dual pair
correspondence

Application: Organize and understand the upcoming Atlas
computation of the unitary dual



Problem: How to organize the answer?

Sp(4,C)



(1) complex groups are quasisplit but not split

(2) Orbits are induced in many ways; complementary series
overlap in complicated ways

(3) Organize the answer via nilpotent orbits in G and/or GV?

(4) There is no nonlinear cover of Sp(2n,C); the oscillator
representation lives on the linear group



G = GL(n,C),SO(n,C), Sp(2n,C) (some statements hold for
exceptional groups)

m(\) = irreducible, spherical representation with infinitesimal
character A € h*

real: A € X*(H)® R (A € R" in the usual coordinates)

ﬁsph = {irreducible, real, spherical representations}



Definition: O = nilpotent adjoint G-orbit

C(O) = { real, irreducible, unitary, spherical = | AV (7) = O}

AV (m) is the associated variety of 7

[AV (1) = WF (7)) = AV (Ann(7)] via various identifications

ﬁsph = UC(O) (disjoint union)
@



Nilpotent Orbits in Classical Groups
GL(n): partitions of n
Sp(2n): partitions of n, odd parts have even multiplicity

O(n): partitions of n, even parts have even multiplicity



Induction of Orbits
M C G = Levi factor
O = Ind§;(On)

induction GL(n): combine orbits IndGLEa))XeL(b) (p®q)=pdq

(al,ag,...,)GB(bl,bQ,...):(a1+bl,a2+bg,...)

Type X=B,C,D: double the GL(m) partitions, combine, and
X-collapse

Example:

S’ ..
In daﬁ(f)xsm) (trivial) = (2) @ (11) = (31)(22)

IndGL(@)) (trivial) := (22) (double (11) for GL(2) to get (22))



Problem: orbits can be induced in more than one way (leading
to overlapping series of representations)

Definition: O = Ind]\CZ(OM) is proper if no collapsing is required
O is P-rigid if it is not properly induced

Lemma: (type BCD) O is P-rigid if and only if all parts
1,2,...,k occur with nonzero multiplicity.

(Rigid is slightly stronger: certain rows of multiplicity 2 are not
allowed)

’Lemma: O is uniquely properly induced from a P-rigid orbit

i.e. (M,O)s) unique up to G-conjugacy

Conjecture: Proper induction is equivalent to: the
corresponding moment map is birational.



Program:
(1) O P-rigid — A = A(O) — 7(\) unipotent

(2) O arbitrary — (M, Opr) (Opy rigid, O properly induced
from Oy)

M = GL(Cl) X - X GL(Ck) X MO
O P-rigid — 7 unipotent for M

e
Indép ey )% xGL(ey) i (1 © - @ 1@ T)

is irreducible and unitary



Program (continued):

Study:
IndgL(Cl)X‘“XGL(Ck)XMO(’det‘xl ® T ® ’det‘wk ® 7_)

Since induction is irreducible when all z; = 0, some
deformations are allowed. ..

Example: if all z; are small, deform them to 0

Example: G = Sp(6), A = (.4,.5,.8). Deform to (.4, .4,.8),
which is induced from the unitary representation:

Stein(.4) @ m(.8) on GL(2) x SL(2)

Basic idea (Barbasch, 1989): these operations suffice to find all
the irreducible unitary ones



Program (continued):
Punch line:

Recall O — M, T,
() IAGL () w@Ler) xa, (€t © -+ @ |det]| ™ @ 7)

Main Theorem: (rough version):

(0) The 0-complementary series C(0,) can be explicitly
described (M = GL(1)")

(1) The representations (*) which are irreducible, and can be
irreducibly deformed to a unitarily induced representation can
be described in terms of C(0,,) for a smaller group

(2) This gives all the irreducible unitary representations (*)

(3) The complementary series C(QO) consists of precisely these
representations.

Recall ﬁsph =UnC(O)



Data on the Dual Group:
From now on take G = Sp(2n)

A(O) = Centg(X)/Centg(X)°

A(O) = Lusztig’s quotient
Lemma: OV=nilpotent orbit for SO(2n + 1)

OY =bg,a1,b1,...ar,b, by <a; <by < ...
Ov = (bo)(al, bl) e (CLT, br)
A(OV) = (Z/2Z)% where k is the number of a; < b; with b; odd



d: duality of nilpotent orbits:
d: O — d(O) = special nilpotent G"-orbit

Proposition (Barbasch/Vogan, Sommers) If OV is even, there is
a canonical bijection

A(0Y) = {0]d(0) = 0"}

(0V,5) - O



Lemma: If O is P-rigid then d(O) is even
Definition
A P-rigid symbol for GV is:
¥ = (bo)(a1,b1)ey - - (ar,by)e,
with a;, b; odd, a; < b;, ¢, = %1
Assume:
(1)eg=1—b;—a; >2
(2) ¢, =€i11=—-1=b; < a1

These are certain pairs (0V, s)
Lemma The P-rigid symbols parametrize P-rigid orbits



Definition: ¥ = (bo)(a1,b1)e, - .- (ar, br)e,
(a,b)1 — 3(b—1,6—3,...,—a+1) (
(a,b)-1 — 3(b—1,b-3,...,—a+1)+5(1,...,1) (a+b)/2 terms
(bo) = 5(b—1,b—3,...,1) (b—1)/2 terms

Do this for each i, concatenate — A = A\(X) = A(O)

Example: ¥ = (5)(5,7)_(7,11)4, O = 5555433211, RRR

a+b)/2 terms

(5.7)-
R TE3 1T 3 il
S L2 L S eI 0. 1.2 93).
(7 72’2’2727 2’ 277””’ b 9 )



Conjecture: A(O) = Apy(O)
(certainly true for rigid orbits)

Theorem (Barbasch 1989): O P-rigid = A = A(O) — ©()) is
unitary

This completes the first part of the program



Symbol:

Y ={ecr,e1}b Ak er} i (bo)(ar,b1)ey - - (ar, by)e,
Assume:
(0) (bo)(@1,b1)e, - - is a P-rigid symbol;
(1) if a; < ¢; < bj, ¢; = 1 then ¢; is even;
(2) if a; < ¢; < bj, €, = —1 then ¢; is odd;
(3) if ¢; < by then ¢; is even
M(X) = GL(c1) X -+ x GL(ck) x Sp(2m)
Lemma: Symbols parametrize pairs (M, Oys) where Oy is
P-rigid and Ind§;(Oy) is proper
(Conditions 1-3 give the proper induction)

In other words there are canonical bijections:

(1) Orbits O

(2) Pairs (M, Opr) (Opr P-rigid, the induction is proper)
(3) P-rigid symbols %



=
(11)

(1)(1,9)+
(1)(1,9)—

(DB, )+
(1)(3,7)—

{2,2}: (7)

{1,1} - (), )4
{1,1} : (1)(1,7)_
{5,5}: (1)
(3)(3,5)—

{1,1} : (1)(3,5)—
{2,2} : (1)(1,5)+
{1,132 : (1)(1,5) 4
{1,1}2: (1)(1,5)_
{4,4}: (3)
{1,1}{4,4} : (1)
{3,3}: (1)(1,3)_
{2,2}{3,3} : (1)
{1,132{3,3} : (1)
{2,2}%: (3)
{1,133 : (1)(1,3)_
{1,1}{2,2}2: (1)
{1,133{2,2} : (1)
{1,13%: (1)

(L,0r)
(Sp(10), triv)
(Sp(10),2%15)
(Sp(10),21%)
(Sp(10),2%12)
(Sp(10),2%1%)

Sp(10)

(GL(2) x Sp(6), triv)

(GL(1) x Sp(8), triv x 221%)

(GL(1) x Sp(8), triv x 219)

(GL(5), triv)
(Sp(10), 33211)

(GL(1) x Sp(8), triv x 2312)
(GL(2) x Sp(6), triv x 2211)
(GL(1)2 x Sp(6), triv x 2211
(GL(1)2 x Sp(6), triv x 21%)

(GL(4) x Sp(2), triv)
(GL(1) x GL(4), triv)
(GL(3) x Sp(4), triv x 211
(GL(2) x GL(3), triv)
(GL(1)? x GL(3), triv)
(GL(2)2 x Sp(4), triv)
(GL(1)% x Sp(4), triv x 211
(GL(1) x GL(2)?, triv)
(GL(1)® x GL(2), triv)

(GL(1)%, triv)

O

l10
2216
218
2412
2314
3214
421%
416
25
33211
42211
4411
6211
614
3322
428
433
442
622

811
64
82
10

A
(5,4,3,2,1)
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Y=Ac,a}.. {ck,cr}: (bo)(ar,b1)e - - (ar,br)e,
M = M(o), (M,Op) — 7 on Sp(2m)

O = Ind§; (On)

A(X) as before, using:

{ci,ci} — (ci,ci)l — %(Cz — 1, ceey,—Ci + 1)
AE) = AO)
Sp(2n)

I(%) = Indg e xxGLien) < Spm) (1 € - @ 1®7)

Proposition: I(X) is irreducible and unitary
(unitarity is obvious)



Inducing Data:
(X,v) ={c1,c1ta - Ak, crtay, - (bo)(a1,b1)e .- (ar, by)e,

Sp(2n T T
I(2,v) =In dcfi((cﬂx XGL(en)x Sp(am (et © - @ |det|™ & 7)

For each 1 < j < k define:

B a; <c¢; <b;for some 1 <i<r;
Xj=49B ¢j <bo;

C  otherwise.



Relabel thing by grouping c¢;s which are equal:

dy dy

A

{cl, Cl}x% . {Cl, Cl}:c}i . {Cg, Cg}x{ ‘e {6[7 Cg}xe
1 dg

with 0 <cp <co <+ <y

<oy <<y (1<j<). (1)



Theorem: ‘ ‘
(1) I(%,v) is irreducible and unitary if (z7,. .. ,acfij) is in the
O-complementary of type X; for all j
if ¢j41 = ¢j + 1 then :Ufg + :L‘gJrl < % for all s and ¢.
Call these (X, v) or v admissible
A=X0) =AE,v),n(E,v)=1(3,v)=7n(}\)
(2) I(3,v) (admissible) satisfies AV (I(o,v)) = O
(3) C(0O) ={I(X,v)|v is admissible}
Recall T, = Jp, C(O)



0-Complementary Series:
type B: A = (z1,...,2,): |z;| < 3 for all 4

type C: A= (z1, 21, ..., Zr, Y1, -+, Ys)

0<a < <2, <3<y <pp< - <y, <L

(1) &y + x5, 2; +y; # 1 for all 4, j;

(2)Ifs>1, {1 <i<r|l—xz; <y} is even
B)Forall1<j<s—1,|{i|ly; <1—x; <yjq1}|is odd

(In short: all irreducible deformations, removing Stein
complementary series)



Appendix: Dual Pair Correspondence for Sp(4)/SO(5)

Sp(4)



SO(5)




Sp(4)/SO(5) Dual Pair Correspondence



