The Contragredient

Joint with D. Vogan

Spherical Unitary Dual for Complex Classical Groups

Joint with D. Barbasch

The Contragredient

Problem: Compute the involution $\phi \to \phi^*$ of the space of L-homomorphisms corresponding to $\pi \to \pi^*$ (the contragredient)

i.e.
$$\phi: W_{\mathbb{F}}' \to {}^L G$$
, $\pi \in \Pi_{\phi} \Rightarrow \pi^* \in \Pi_{\phi^*}$ what ϕ^* ?

(Assume
$$\phi \to \Pi_{\phi}$$
 known...)

(Well defined, same for all $\pi \in \Pi_{\phi}$?)

Nowhere to be found ("much needed gap in the literature"), even for $\mathbb{F} = \mathbb{R}$

Character: $\theta_{\pi^*}(g) = \theta_{\pi}(g^{-1})$

Lemma: There is an automorphism C^{\vee} of LG satisfying: $C^{\vee}(g)$ is G^{\vee} -conjugate to g^{-1} for g semisimple

(The Chevalley automorphism, extended to ${}^{L}G$)

Lemma: there is an automorphism τ of $W_{\mathbb{R}}$ satisfying: $\tau(g)$ is $W_{\mathbb{R}}$ conjugate to g^{-1}

$$(\tau(z) = z^{-1}, \, \tau(j) = j)$$

Theorem $(\mathbb{F} = \mathbb{R})$:

$$(1) \phi^* = C^{\vee} \circ \phi$$

(2)
$$\phi^* = \phi \circ \tau$$

Proof: Not entirely elementary; characterize π^* by

$$\theta_{\pi^*}(g) = \theta_{\pi}(g^{-1})$$

Need a formula relating ϕ and θ_{π} ...

True for tori...

Key lemma: action of C on the normalizer of a torus

Conjecture/Desiderata: (1) is true for all other local fields

$$(\phi^* = C^\vee \circ \phi)$$

Buzzard: true for unramified principal series (?)

Note: Probably nothing like τ exists in general??

Spherical Unitary Dual for Complex Classical Groups

Joint with D. Barbasch

Hat-tip: P. Trapa, M. McGovern, E. Sommers

Barbasch 1989 (full unitary dual)

Spherical unitary dual for split real and p-adic groups:

Barbasch ~ 2005

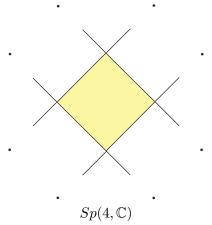
Nice picture in terms of nilpotent orbits for G^\vee

Plan: Revisit complex case from this point of view

Application: Compute behavior of unitarity under the dual pair correspondence

Application: Organize and understand the upcoming Atlas computation of the unitary dual

Problem: How to organize the answer?



- (1) complex groups are quasisplit but not split
- (2) Orbits are induced in many ways; complementary series overlap in complicated ways
- (3) Organize the answer via nilpotent orbits in G and/or G^{\vee} ?
- (4) There is no nonlinear cover of $Sp(2n, \mathbb{C})$; the oscillator representation lives on the linear group

 $G=GL(n,\mathbb{C}), SO(n,\mathbb{C}), Sp(2n,\mathbb{C})$ (some statements hold for exceptional groups)

 $\pi(\lambda)$ = irreducible, spherical representation with infinitesimal character $\lambda \in \mathfrak{h}^*$

real: $\lambda \in X^*(H) \otimes \mathbb{R}$ ($\lambda \in \mathbb{R}^n$ in the usual coordinates)

 $\widehat{\Pi}_{sph} = \{\text{irreducible, real, spherical representations}\}$

Definition: $\mathcal{O} = \text{nilpotent adjoint } G\text{-orbit}$

$$\mathcal{C}(\mathcal{O}) = \{ \text{ real, irreducible, unitary, spherical } \pi \, | \, AV(\pi) = \overline{\mathcal{O}} \}$$

 $AV(\pi)$ is the associated variety of π

$$[AV(\pi) = WF(\pi) = AV(Ann(\pi))]$$
 via various identifications

$$\widehat{\Pi}_{sph} = \bigcup_{\mathcal{O}} \mathcal{C}(\mathcal{O}) \quad \text{(disjoint union)}$$

Nilpotent Orbits in Classical Groups

GL(n): partitions of n

Sp(2n): partitions of n, odd parts have even multiplicity

O(n): partitions of n, even parts have even multiplicity

Induction of Orbits

$$M \subset G = \text{Levi factor}$$

$$\mathcal{O} = \operatorname{Ind}_M^G(\mathcal{O}_M)$$

induction GL(n): combine orbits
$$Ind_{GL(a)\times GL(b)}^{GL(n)}(p\otimes q)=p\oplus q$$

$$(a_1, a_2, \ldots,) \oplus (b_1, b_2, \ldots) = (a_1 + b_1, a_2 + b_2, \ldots)$$

Type X=B,C,D: double the GL(m) partitions, combine, and X-collapse

Example:

$$Ind_{GL(1)\times SL(2)}^{Sp(4)}(trivial) = (2) \oplus (11) = (31) \rightarrow (22)$$

$$Ind_{GL(2)}^{Sp(4)}(trivial) := (22) \text{ (double (11) for } GL(2) \text{ to get (22))}$$

Problem: orbits can be induced in more than one way (leading to overlapping series of representations)

Definition: $\mathcal{O} = \operatorname{Ind}_M^G(\mathcal{O}_M)$ is proper if no collapsing is required

 \mathcal{O} is P-rigid if it is not properly induced

Lemma: (type BCD) \mathcal{O} is P-rigid if and only if all parts $1, 2, \ldots, k$ occur with nonzero multiplicity.

(Rigid is slightly stronger: certain rows of multiplicity 2 are not allowed)

Lemma: \mathcal{O} is uniquely properly induced from a P-rigid orbit

i.e. (M, O_M) unique up to G-conjugacy

Conjecture: Proper induction is equivalent to: the corresponding moment map is birational.

Program:

- (1) \mathcal{O} P-rigid $\rightarrow \lambda = \lambda(\mathcal{O}) \rightarrow \pi(\lambda)$ unipotent
- (2) \mathcal{O} arbitrary \to (M, \mathcal{O}_M) $(\mathcal{O}_M$ rigid, \mathcal{O} properly induced from $\mathcal{O}_M)$

$$M = GL(c_1) \times \cdots \times GL(c_k) \times M_0$$

 \mathcal{O}_M P-rigid $\to \tau$ unipotent for M_0

$$\operatorname{Ind}_{GL(c_1)\times\cdots\times GL(c_k)\times M_0}^G(1\otimes\cdots\otimes 1\otimes\tau)$$

is irreducible and unitary

Program (continued):

Study:

$$\operatorname{Ind}_{GL(c_1)\times\cdots\times GL(c_k)\times M_0}^G(|det|^{x_1}\otimes\cdots\otimes|det|^{x_k}\otimes\tau)$$

Since induction is irreducible when all $x_i = 0$, some deformations are allowed...

Example: if all x_i are small, deform them to 0

Example: G = Sp(6), $\lambda = (.4, .5, .8)$. Deform to (.4, .4, .8), which is induced from the unitary representation:

$$Stein(.4) \otimes \pi(.8)$$
 on $GL(2) \times SL(2)$

Basic idea (Barbasch, 1989): these operations suffice to find all the irreducible unitary ones

Program (continued):

Punch line:

Recall $\mathcal{O} \to M, \tau$,

(*)
$$\operatorname{Ind}_{GL(c_1)\times\cdots\times GL(c_k)\times M_0}^G(|det|^{x_1}\otimes\cdots\otimes|det|^{x_k}\otimes\tau)$$

Main Theorem: (rough version):

- (0) The 0-complementary series $C(0_p)$ can be explicitly described $(M = GL(1)^n)$
- (1) The representations (*) which are irreducible, and can be irreducibly deformed to a unitarily induced representation can be described in terms of $\mathcal{C}(0_p)$ for a smaller group
- (2) This gives all the irreducible unitary representations (*)
- (3) The complementary series $\mathcal{C}(\mathcal{O})$ consists of precisely these representations.

Recall
$$\widehat{\Pi}_{sph} = \bigcup_{\mathcal{O}} \mathcal{C}(\mathcal{O})$$

Data on the Dual Group:

From now on take G = Sp(2n)

$$A(\mathcal{O}) = \operatorname{Cent}_G(X)/\operatorname{Cent}_G(X)^0$$

$$\overline{A}(\mathcal{O}) = \text{Lusztig's quotient}$$

Lemma: \mathcal{O}^{\vee} =nilpotent orbit for SO(2n+1)

$$\mathcal{O}^{\vee} = b_0, a_1, b_1, \dots a_r, b_r \quad b_0 \le a_1 \le b_1 \le \dots$$

$$\mathcal{O}^{\vee} = (b_0)(a_1, b_1) \dots (a_r, b_r)$$

$$\overline{A}(\mathcal{O}^{\vee}) = (\mathbb{Z}/2\mathbb{Z})^k$$
 where k is the number of $a_i < b_i$ with b_i odd

d: duality of nilpotent orbits:

$$d: \mathcal{O} \to d(\mathcal{O}) =$$
special nilpotent G^{\vee} -orbit

Proposition (Barbasch/Vogan, Sommers) If \mathcal{O}^{\vee} is even, there is a canonical bijection

$$\overline{A}(\mathcal{O}^{\vee}) \leftrightarrow \{\mathcal{O} \,|\, d(\mathcal{O}) = \mathcal{O}^{\vee}\}$$

$$(\mathcal{O}^{\vee},s) \to \mathcal{O}$$

Lemma: If \mathcal{O} is P-rigid then $d(\mathcal{O})$ is even

Definition

A P-rigid symbol for G^{\vee} is:

$$\Sigma = (b_0)(a_1, b_1)_{\epsilon_1} \dots (a_r, b_r)_{\epsilon_r}$$

with a_i, b_i odd, $a_i < b_i, \epsilon_i = \pm 1$

Assume:

$$(1) \epsilon_i = 1 \to b_i - a_i > 2$$

$$(2) \epsilon_i = \epsilon_{i+1} = -1 \Rightarrow b_i < a_{i+1}$$

These are certain pairs (\mathcal{O}^{\vee}, s)

Lemma The P-rigid symbols parametrize P-rigid orbits

Definition:
$$\Sigma = (b_0)(a_1, b_1)_{\epsilon_1} \dots (a_r, b_r)_{\epsilon_r}$$

$$(a,b)_1 \to \frac{1}{2}(b-1,b-3,\ldots,-a+1)$$
 $(a+b)/2$ terms

$$(a,b)_{-1} \to \frac{1}{2}(b-1,b-3,\ldots,-a+1) + \frac{1}{2}(1,\ldots,1) \quad (a+b)/2 \text{ terms}$$

$$(b_0) \to \frac{1}{2}(b-1, b-3, \dots, 1)$$
 $(b-1)/2$ terms

Do this for each i, concatenate $\rightarrow \lambda = \lambda(\Sigma) = \lambda(\mathcal{O})$

Example: $\Sigma = (5)(5,7)_{-}(7,11)_{+}, \mathcal{O} = 5555433211,RRR$

$$(\overbrace{2,1}^{(5)},\overbrace{\frac{7}{2},\frac{5}{2},\frac{3}{2},\frac{1}{2},-\frac{1}{2},-\frac{3}{2}}^{(5,1)_{-}},\overbrace{5,4,3,2,1,0,-1,-2,-3}^{(7,11)_{+}}).$$

Conjecture: $\lambda(\mathcal{O}) = \lambda_{BV}(\mathcal{O})$

(certainly true for rigid orbits)

Theorem (Barbasch 1989): \mathcal{O} P-rigid $\Rightarrow \lambda = \lambda(\mathcal{O}) \to \pi(\lambda)$ is unitary

This completes the first part of the program

Symbol:

$$\Sigma = \{c_1, c_1\} \dots \{c_k, c_k\} : (b_0)(a_1, b_1)_{\epsilon_1} \dots (a_r, b_r)_{\epsilon_r}$$

Assume:

- (0) $(b_0)(a_1,b_1)_{\epsilon_1}\dots$ is a P-rigid symbol;
- (1) if $a_i < c_j < b_i$, $\epsilon_i = 1$ then c_j is even;
- (2) if $a_i < c_j < b_i$, $\epsilon_i = -1$ then c_j is odd;
- (3) if $c_i < b_0$ then c_i is even

$$M(\Sigma) = GL(c_1) \times \cdots \times GL(c_k) \times Sp(2m)$$

Lemma: Symbols parametrize pairs (M, \mathcal{O}_M) where \mathcal{O}_M is P-rigid and $\operatorname{Ind}_M^G(\mathcal{O}_M)$ is proper

(Conditions 1-3 give the proper induction)

In other words there are canonical bijections:

- (1) Orbits \mathcal{O}
- (2) Pairs (M, \mathcal{O}_M) $(\mathcal{O}_M$ P-rigid, the induction is proper)
- (3) P-rigid symbols Σ

Sp(10)

$\begin{array}{l} \Sigma\\ (11)\\ (1)(1,9)_+\\ (1)(1,9)\\ (1)(3,7)_+\\ (1)(3,7)\\ \{2,2\}:(7)\\ \{1,1\}:(1)(1,7)_+\\ \{1,1\}:(1)(1,7)\\ \{5,5\}:(1)\\ (3)(3,5)\\ \{1,1\}:(1)(3,5)\\ \{2,2\}:(1)(1,5)_+\\ \{1,1\}^2:(1)(1,5)_+\\ \{1,1\}^2:(1)(1,5)\\ \{4,4\}:(3)\\ \{1,1\}\{4,4\}:(1)\\ \{3,3\}:(1)(1,3)\\ \{2,2\}\{3,3\}:(1)\\ \{1,1\}^2\{3,3\}:(1)\\ \{1,1\}^2\{3,3\}:(1)\\ \{1,1\}^2\{3,3\}:(1)\\ \{1,1\}^2\{3,3\}:(1)\\ \{1,1\}^3\{2,2\}^2:(1)\\ \{1,1\}^3\{2,2\}^2:(1)\\ \{1,1\}^3\{2,2\}:(1)\\ \end{array}$	$ \begin{array}{l} (L,\mathcal{O}_L) \\ (Sp(10), {\rm triv}) \\ (Sp(10), {\rm triv}) \\ (Sp(10), {\rm 2}^{2}1^{6}) \\ (Sp(10), {\rm 2}^{2}1^{6}) \\ (Sp(10), {\rm 2}^{4}1^{2}) \\ (Sp(10), {\rm 2}^{3}1^{4}) \\ (GL(2) \times Sp(6), {\rm triv}) \\ (GL(1) \times Sp(8), {\rm triv} \times {\rm 2}^{2}1^{4}) \\ (GL(1) \times Sp(8), {\rm triv} \times {\rm 2}^{16}) \\ (GL(5), {\rm triv}) \\ (Sp(10), 33211) \\ (GL(2) \times Sp(6), {\rm triv} \times {\rm 2}^{3}1^{2}) \\ (GL(2) \times Sp(6), {\rm triv} \times {\rm 2}211) \\ (GL(2) \times Sp(6), {\rm triv} \times {\rm 2}211) \\ (GL(1)^{2} \times Sp(6), {\rm triv} \times {\rm 2}211) \\ (GL(4) \times Sp(2), {\rm triv}) \\ (GL(3) \times Sp(4), {\rm triv} \times {\rm 2}11) \\ (GL(3) \times Sp(4), {\rm triv} \times {\rm 2}11) \\ (GL(2) \times GL(3), {\rm triv}) \\ (GL(2)^{2} \times Sp(4), {\rm triv}) \\ (GL(1)^{3} \times Sp(4), {\rm triv} \times {\rm 2}11 \\ (GL(1) \times GL(2)^{2}, {\rm triv}) \\ (GL(1) \times GL(2)^{2}, {\rm triv}) \\ (GL(1)^{3} \times Sp(4), {\rm triv} \times {\rm 2}11 \\ (GL(1) \times GL(2)^{2}, {\rm triv}) \\ (GL(1)^{3} \times Sp(4), {\rm triv} \times {\rm 2}11 \\ (GL(1)^{3} \times GL(2), {\rm triv}) \\ (GL(1)^{3} \times GL(2), {\rm triv}) \\ \end{array} $	$\begin{array}{c} \mathcal{O} \\ 1^{10} \\ 2^{2}1^{6} \\ 21^{8} \\ 2^{4}1^{2} \\ 2^{3}1^{4} \\ 3^{2}1^{4} \\ 421^{4} \\ 41^{6} \\ 2^{5} \\ 33211 \\ 42211 \\ 4411 \\ 61^{4} \\ 33222 \\ 42^{3} \\ 442 \\ 622 \\ 55 \\ 811 \\ 64 \\ 82 \\ \end{array}$	$\begin{array}{c} \lambda \\ (5,4,3,2,1) \\ (4,3,2,1,0) \\ (\frac{9}{2},\frac{7}{2},\frac{5}{2},\frac{3}{2},\frac{1}{2}) \\ (3,2,1,0,-1) \\ (\frac{9}{2},\frac{7}{2},\frac{5}{2},\frac{3}{2},\frac{1}{2}) \\ (3,2,1,0,0) \\ (\frac{1}{2},\frac{7}{2},\frac{5}{2},\frac{3}{2},\frac{1}{2}) \\ (3,2,1,0,0) \\ (\frac{7}{2},\frac{5}{2},\frac{3}{2},\frac{1}{2},0) \\ (\frac{7}{2},\frac{5}{2},\frac{3}{2},\frac{1}{2},0) \\ (\frac{5}{2},\frac{3}{2},\frac{1}{2},-\frac{1}{2},1) \\ (\frac{5}{2},\frac{3}{2},\frac{1}{2},-\frac{1}{2},0) \\ (2,1,0,0,0) \\ (\frac{5}{2},\frac{3}{2},\frac{1}{2},-\frac{1}{2},0) \\ (\frac{2}{2},\frac{1}{2},-\frac{1}{2},-\frac{3}{2},1) \\ (\frac{3}{2},\frac{1}{2},-\frac{1}{2},-\frac{3}{2},1) \\ (\frac{3}{2},\frac{1}{2},-\frac{1}{2},-\frac{3}{2},1) \\ (\frac{3}{2},\frac{1}{2},-\frac{1}{2},-\frac{3}{2},1) \\ (\frac{3}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},0) \\ (\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},0) \\ (\frac{3}{2},\frac{1}{2},0,0,0) \\ (\frac{3}{2},\frac{1}{2},0,0,0) \\ (\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2},0) \\ \end{array}$
$\{1,1\}^4 \{2,2\} : (1)$	$(GL(1)^4 \times GL(2), triv)$	10	$(\frac{1}{2}, -\frac{1}{2}, 0, 0, 0)$
$\{1,1\}^4 : (1)$	$(GL(1)^4, triv)$		(0, 0, 0, 0, 0)

$$\Sigma = \{c_1, c_1\} \dots \{c_k, c_k\} : (b_0)(a_1, b_1)_{\epsilon_1} \dots (a_r, b_r)_{\epsilon_r}$$
$$M = M(\sigma), (M, \mathcal{O}_M) \to \tau \text{ on } Sp(2m)$$

$$\mathcal{O} = \operatorname{Ind}_{M}^{G}(\mathcal{O}_{M})$$

$$\lambda(\Sigma)$$
 as before, using:
 $\{c_i, c_i\} \to (c_i, c_i)_1 \to \frac{1}{2}(c_i - 1, \dots, -c_i + 1)$

$$\lambda(\Sigma) = \lambda(\mathcal{O})$$

$$\lambda(\mathcal{O})$$

$$I(\Sigma) = \operatorname{Ind}_{GL(c_1) \times \cdots \times GL(c_k) \times Sp(2m)}^{Sp(2n)} (1 \otimes \cdots \otimes 1 \otimes \tau)$$

Proposition: $I(\Sigma)$ is irreducible and unitary (unitarity is obvious)

Inducing Data:

$$(\Sigma, \nu) = \{c_1, c_1\}_{x_1} \dots \{c_k, c_k\}_{x_k} : (b_0)(a_1, b_1)_{\epsilon_1} \dots (a_r, b_r)_{\epsilon_r}$$

$$I(\Sigma,\nu) = \operatorname{Ind}_{GL(c_1)\times\cdots\times GL(c_k)\times Sp(2m)}^{Sp(2n)}(|det|^{x_1}\otimes\cdots\otimes|det|^{x_k}\otimes\tau)$$

For each $1 \le j \le k$ define:

$$X_{j} = \begin{cases} B & a_{i} \leq c_{j} \leq b_{i} \text{ for some } 1 \leq i \leq r; \\ B & c_{j} \leq b_{0}; \\ C & \text{otherwise.} \end{cases}$$

Relabel thing by grouping $c_i s$ which are equal:

$$\overbrace{\{c_1,c_1\}_{x_1^1}\dots\{c_1,c_1\}_{x_{d_1}^1}}^{d_1}\dots\overbrace{\{c_\ell,c_\ell\}_{x_1^\ell}\dots\{c_\ell,c_\ell\}_{x_{d_\ell}^\ell}}^{d_\ell}$$

with $0 < c_1 < c_2 < \cdots < c_{\ell}$.

$$x_1^j \le x_2^j \le \dots \le x_{d_j}^j \quad (1 \le j \le \ell). \tag{1}$$

Theorem:

- (1) $I(\Sigma, \nu)$ is irreducible and unitary if $(x_1^j, \dots, x_{d_j}^j)$ is in the 0-complementary of type X_j for all j
- and if $c_{j+1} = c_j + 1$ then $x_s^j + x_t^{j+1} < \frac{3}{2}$ for all s and t.

Call these (Σ, ν) or ν admissible

$$\lambda = \lambda(\mathcal{O}) = \lambda(\Sigma, \nu), \pi(\Sigma, \nu) = I(\Sigma, \nu) = \pi(\lambda)$$

(2)
$$I(\Sigma, \nu)$$
 (admissible) satisfies $AV(I(\sigma, \nu)) = \overline{\mathcal{O}}$

(3)
$$C(\mathcal{O}) = \{I(\Sigma, \nu) \mid \nu \text{ is admissible}\}$$

Recall
$$\widehat{\Pi}_{sph} = \bigcup_{\mathcal{O}} \mathcal{C}(\mathcal{O})$$

0-Complementary Series:

type B:
$$\lambda = (x_1, \dots, x_n)$$
: $|x_i| < \frac{1}{2}$ for all i

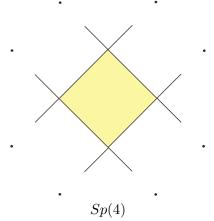
type C:
$$\lambda = (x_1, x_1, \dots, x_r, y_1, \dots, y_s)$$

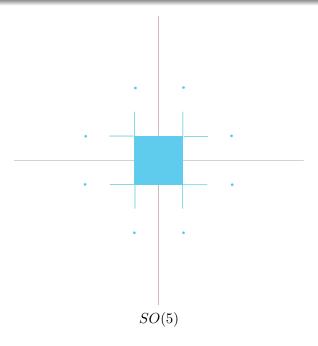
$$0 \le x_1 \le \dots \le x_r \le \frac{1}{2} < y_1 < y_2 < \dots < y_s < 1.$$

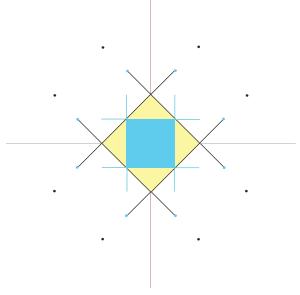
- (1) $x_i + x_j, x_i + y_j \neq 1$ for all i, j;
- (2) If $s \ge 1$, $|\{1 \le i \le r \mid 1 x_i < y_1\}|$ is even
- (3) For all $1 \le j \le s 1$, $|\{i \mid y_j < 1 x_i < y_{j+1}\}|$ is odd

(In short: all irreducible deformations, removing Stein complementary series)

Appendix: Dual Pair Correspondence for Sp(4)/SO(5)







Sp(4)/SO(5) Dual Pair Correspondence