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1 Notation for Sp(4,R)
Basic references are Vogan’s notes on Sp(4,R): [?] (branching) and [?] (Her-
mitian forms). In fact these notes are largely a rewriting of [?] in more
explicit atlas terms.

G = Sp(4,R) with all the usual notation, including atlas stuff.
Write (x, y) for the usual coordinates, in which ρ = (2, 1). The software

coordinates (assuming we define G as sc) are fundamental weight coordi-
nates. Write [a, b] for these coordinates. The changes of coordinates are

(1.1)
(x, y)→ [x− y, y]

(a+ b, b)← [a, b]

For example ρ = (2, 1) = [1, 1].

2 Standard Modules

We always write H for the once-and-for-all fixed Cartan of G, and X∗ =
X∗(H), X∗ = X∗(H). We may also have use for H∨, X∨,∗ = X∗(H∨) and
X∨∗ = X∗(H

∨). We also fixed once and for all a set of positive roots.
In atlas language a parameter is a triple (x, λ, ν) where:

(1) x is a kgb element, set θ = θx;

(2) λ ∈ (X∗ + ρ)/(1− θ)X∗;

(3) ν ∈ (X∗ ⊗Z Q)−θ = a(Q)∗.
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This defines a standard module I(x, λ, ν). The infinitesimal character is

(2.1) γ =
1

2
(1 + θ)λ+

1

2
(1− θ)ν ∈ X∗ ⊗Q.

For example λ = ν gives γ = λ (note that γ is integral).
Recall θ defines positive imaginary and real roots, and ρr, ρi and ρcx.
Some conditions are:

(a) The parameter is standard if 〈λ, α∨〉 ≥ 0 for all positive imaginary roots.
(b) The parameter is final if for all positive real roots, 〈ν, α∨〉 = 0 implies
〈λ + ρr, α

∨〉 is even. Equivalently: 〈λ, α∨〉 is odd for all real-simple roots
(simple roots in the subsystem of real roots).
(c) We say (x, λ, ν) ≡ (x,w(λ+ ρr)− ρr, wν) for w ∈ Wr. Using this we can
assume 〈ν, α〉 ≥ 0 for all positive real roots.
(d) If α is simple and θx-complex we say (x, λ, ν) ≡ (sα × x, sαλ, sαν). This
allows us to move x to any fiber on the same Cartan.
(e) For a standard parameter, I(x, λ, ν) is zero if and only if 〈λ, α∨〉 = 0 for
some imaginary-simple root which is compact.

A nonzero final standard module I(x, λ, ν) has a unique irreducible quo-
tient J(x, λ, ν).

We generally write the subscript K to indicate restriction to K; so here
we have IK(x, λ, ν) and JK(x, λ, ν).

Recall each fiber has a distinguished basepoint, and each conjugacy class
of fibers has a canonical fiber. In the output of KGB, the canonical fiber is
labelled #, and the basepoints have entry (0,...,0) preceding the #.

Using (c) we can write every final standard parameter in the form (x, λ, ν)
where x is in a canonical fiber.

2.1 Standard Modules for Sp(4,R)

There are 11 kgb elements numbered 0− 10. I’ll call them x0, . . . , x10. Here
is the output of KGB.

0: 0 [n,n] 1 2 4 5 (0,0)#0 e

1: 0 [n,n] 0 3 4 6 (1,0)#0 e

2: 0 [c,n] 2 0 * 5 (0,1)#0 e

3: 0 [c,n] 3 1 * 6 (1,1)#0 e

4: 1 [r,C] 4 9 * * (0,0) 1 1

5: 1 [C,r] 7 5 * * (0,0) 2 2
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6: 1 [C,r] 8 6 * * (1,0) 2 2

7: 2 [C,n] 5 8 * 10 (0,0)#2 1,2,1

8: 2 [C,n] 6 7 * 10 (0,1)#2 1,2,1

9: 2 [n,C] 9 4 10 * (0,0)#1 2,1,2

10: 3 [r,r] 10 10 * * (0,0)#3 2,1,2,1

The basepoints in the canonical fibers are x0, x7, x9, x10.

Cartan 0 This is the compact Cartan subgroup, so ν = 0, and λ ∈ X∗ ' Z2.
The standard modules are (a, b ∈ Z, a ≥ b ≥ 0):

I(x0, (a, b)) (large DS)

I(x1, (a, b)) (large DS)

I(x2, (a, b)) (holomorphic DS)

I(x3, (a, b)) (antiholomorphic DS)

These are always final. The standard modules are always nonzero in the first
two cases, and if and only if a > b in the last two.

Cartan 1 This is the C∗ Cartan subgroup. The canonical fiber has θ =
w = 2, 1, 2, so θ(x, y) = (−y,−x). Then (1 − θ)X∗ = {(c, c) | c ∈ Z} so
λ = (a, b) mod (c, c) with a, b, c ∈ Z. (This is isomorphic to Z by the map
(a, b)→ a− b). On the other hand (X∗ ⊗Q)−θ = {(x, x) | x ∈ Q}.

The root (1,−1) is imaginary, and (1, 1) is real. The standard limit
modules are

(2.1.2)(a) I(x9, (a, b) mod(c, c), (x, x)) (a ≥ b, x ≥ 0)

with infinitesimal character

γ = (x+
a− b

2
, x− a− b

2
)

These standard modules are always nonzero.
In this case M ' GL(2,R). The standard module given by a, b, x is the

one associated to the representation on M with restriction to SL(2,R)± the
discrete series with infinitesimal character a− b = 0, 1, 2, . . . , and such that
diag(et, et) acts by the scalar e2tx. (These may be not quite the inducing data
since we are working with the “Λ-parameters”; see [?] or [?].)

The final condition is

x = 0⇒ a− b ∈ 2Z + 1.
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Suppose r ≥ s ≥ 0. Provided r, s ∈ Z there are two standard modules with
infinitesimal character (r, s):

I(x9, (r − s, 0), 1
2
(r + s, r + s))→ γ = (r, s)(2.1.2)(b)

I(x9, (r + s, 0), 1
2
(r − s, r − s))→ γ = (r,−s)(2.1.2)(c)

In these coordinates, the final condition is:

If x = 0 then I(x9, (c, 0), (0, 0)) is final ⇔ c ∈ 2Z + 1.

In (b) γ is dominant, whereas in (c) it is not if s > 0. Using the cross
action of the complex root (0, 2) (note that θx4(x, y) = (y, x)):

(2.1.3) I(x9, (r + s, 0), 1
2
(r − s, r − s)) = I(x4, (r + s, 0), 1

2
(r − s,−s+ r))

It is convenient to change variables, and renormalize by 1
2

as follows.
Define

(2.1.4)(a) I(x9, c, x) = I(x9, (c, 0), 1
2
(x, x)) (c ∈ Z≥0, x ∈ R≥0).

This has infinitesimal character

(2.1.4)(b) γ = 1
2
(x+ c, x− c).

Cartan 2 This is the R∗×S1 Cartan subgroup. The canonical involution is
1, 2, 1, i.e. θ(a, b) = (−a, b). Therefore (1− θ)X∗ = (2Z, 0), and λ = (a, b) ∈
Z/2Z× Z. On the other hand ν = (x, 0) with x ∈ Q. The root (2, 0) is real,
and (0, 2) is imaginary. So the standard modules are

I(x7, (a, b), (x, 0))

I(x8, (a, b), (x, 0))

with b ∈ Z≥0, x ∈ Q≥0 and a ∈ Z/2Z. The infinitesimal character is

γ = (x, b)

The final condition is
x = 0⇒ a = 1.

These standard modules are always nonzero.
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The standard modules are those given by the holomorphic discrete series
of SL(2,R) with infinitesimal character b = 0, 1, 2, . . . , and the character of
R∗ t → |t|xsgn(x)a. The standard modules I(x8, (a, b), (x, 0)) are the same,
with antiholomorphic in place of holomorphic.

If x ≥ b then γ is dominant. If x < b it makes sense to apply (d) of
Section ??. Using the fact that for x5, x6, θ(x, y) = (x,−y), with the obvious
notation we have

I(x7, (a, b), (x, 0)) = I(x5, (b, a), (0, x))

I(x8, (a, b), (x, 0)) = I(x6, (b, a), (0, x))

Cartan 3 This is the split Cartan subgroup, with x = x10, θ = −1, (1 −
θ)X∗ = 2Z× 2Z, λ = (a, b) ∈ Z/2Z× Z/2Z, ν = (x, y) ∈ Q2. The standard
modules are

I(x10, (a, b), (x, y)) (x ≥ y ≥ 0)

with infinitesimal character (x, y). The final condition is

y = 0⇒ b = 1

x− y = 0⇒ a− b = 1

These standard modules are always nonzero.

3 nblock

The nblock command is essential to these computations. The translation
between nblock coordinates and human ones is tricky. The main point of
this section is to explain the nblock command, and give a translation for
Sp(4,R) between nblock and human coordinates.

Here is an overview of the nblock command, which (among other things)
allows the user to input a general standard module. Recall a standard module
is determined by a parameter (x, λ, ν). See Section ??.

The user first inputs a Cartan, from the atlas list 0..n. The software
then gives a list of kgb elements x in the distinguished fiber for this Cartan.
In particular this specifies a specific Cartan involution θ of H.

The user chooses one of the elements x.
Next the user defines λ. The user inputs (λ−ρ)in ∈ X∗ in the “software”

coordinates. Suppose G is semisimple. If it is entered as sc these are fun-
damental weight coordinates, while ad gives simple root coordinates. The
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software computes
λ = (λ− ρ)in + ρ.

Only the image of λ in ρ+X∗/(1− θ)X∗ matters.
Next the user defines ν ∈ (X∗ ⊗Z Q)−θ = a(Q)∗. The user inputs an

arbitrary element νin ∈ X∗ ⊗Z Q (in software coordinates), and the software
defines

ν =
1

2
(1− θ)νin ∈ a(Q)∗

Let

λ0 =
1

2
(1 + θ)λ.

Then (cf. (??)) the infinitesimal character is computed as

γ = λ0 + ν =
1

2
(1 + θ)λ+

1

2
(1− θ)νin.

NB: Only ν = (1 − θ)νin matters, and for the infinitesimal character only
λ0 = (1 + θ)λ matters. However, λ has extra (torsion) information not
contained in λ0. For example, if the Cartan is split λ0 = 0 but λ is an
element of ρ+X∗/2X∗.

If γ is dominant the triple (x, λ, ν) defines a standard module. If the in-
finitesimal character is singular it may be reducible or 0. If γ is not dominant
on the integral roots, the software uses complex cross actions to replace this
triple with (x′, λ′, ν ′) such that γ′ = λ′0 + ν ′ is dominant, and conjugate to γ.

4 Standard Modules for Sp(4,R) using nblock

We show how to construct the standard modules of Section ?? using nblock.
This is primarily just a change of coordinates.

In each case the user will enter a Cartan, kgb element, (λ− ρ)in = [ã, b̃],
and νin = [x̃, ỹ].
(a) Cartan #0

This case is clear. If 0 ≤ k ≤ 3:

I(xk, (a, b)) = I(xk, [ã, b̃], [x̃, ỹ])

provided a = ã+ b̃+ 2, b = b̃+ 1 (x̃, ỹ are irrelevant).

(b) Cartan #1
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This is the C∗ Cartan, with M ' GL(2,R).
As in Section ??, there is only one kgb element x9 in the distinguished

fiber, θ = 2, 1, 2, θ(x, y) = (−y,−x). In fundamental weight coordinates
θ[x, y] = [x,−x− y].

The coroot [1, 0] = (1,−1) is imaginary, so the software requires ã ≥ −1.

Since (1− θ)X∗ = [0,Z], b̃ has no effect (the Cartan is connected).
If ν = [x̃, ỹ] then 1

2
(1− θ)ν = [0, ỹ+ x̃

2
]. It is convenient to take x̃ = 0, so

1
2
(1− θ)ν = ν.

So the module

I(x9, (a, b)mod(c, c), (x, x)) (a− b ≥ 0, x ≥ 0)

of Section ?? is given in these coordinates by

I(x9, [ã, 0]mod(0,Z)), [0, x̃]) (ã ≥ −1, x̃ ≥ 0)

with ã = a− b−1 ≥ −1 and x̃ = x. In particular the infinitesimal characters
match up:

(x+
a− b

2
, x− a− b

2
) = (x̃+

ã+ 1

2
, x̃− ã+ 1

2
).

In terms of the nblock interaction, here is what happens (dropping the
tildes). Choose x9,

(λ− ρ)in = [a, b] = (a+ b, b)

ν = νin = [0, x] = (x, x)

If x ≥ a+1
2

then the software computes:

λ = [a+ 1, b+ 1] = (a+ b+ 2, b+ 1)

λ0 = [a+ 1,−a+ 1

2
] = (

a+ 1

2
,−a+ 1

2
)

γ = [a+ 1, x− a+ 1

2
] = (x+

a+ 1

2
, x− a+ 1

2
)

and γ is dominant.
If x < a+1

2
, γ is not dominant, so (provided that x− a+1

2
is an integer) the

software conjugates λ, ν by s2. The new Cartan involution is θ(x, y) = (y, x),
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and we get:

λ = [a+ 2b+ 3,−b− 1] = (a+ b+ 2,−b− 1)

λ0 = [0,
a+ 1

2
] = (

a+ 1

2
,
a+ 1

2
)

ν = [2x,−x] = (x,−x)

γ = [2x,−x+
a+ 1

2
] = (x+

a+ 1

2
,−x+

a+ 1

2
)

(c) Cartan #2
This is the Cartan S1 × R∗, with M = SL(2,R) × R∗. As in Section ??

the distinguished fiber has θ = 1, 2, 1, so θ(x, y) = (−x, y). In fundamental
weight coordinates θ[a, b] = [−a − 2b, b]. The coroot [0, 1] = (0, 1) is imagi-

nary, so we have the condition b̃ ≥ −1. Since (1 − θ)X∗ = [2Z, 0], only the
image of a ∈ Z/2Z matters, so we could take ã = 0, 1.

Since νin = [x̃, ỹ] gives ν = 1
2
(1− θ)νin = [x̃+ ỹ, 0], we may as well take

νin = [x̃, 0] = (x̃, 0)

in which case ν = νin.
The translation is, with k = 7, 8,

I(xk, (a, b), (x, 0)) (b, x ≥ 0)

is given in the new coordinates by

I(xk, [ã, b̃], [x̃, 0]) (̃b ≥ −1, x̃ ≥ 0)

provided ã+ b̃ ≡ a (mod 2), b̃+ 1 = b and x̃ = x.
In terms of the software interaction (dropping the tildes), if x ≥ b+ 1:

ν = [x, 0] = (x, 0)

λ = [a+ 1, b+ 1] = (a+ b+ 2, b+ 1)

λ0 = [−b− 1, b+ 1] = (0, b+ 1)

γ = [x− b− 1, b+ 1] = (x, b+ 1)

and γ is dominant.
If x < b + 1 γ is not dominant, so we conjugate everything by s1. The

new Cartan involution is s2 : (x, y) = (x,−y).
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λ = [−a− 1, a+ b+ 2] = (b+ 1, a+ b+ 2)

λ0 = [b+ 1, 0] = (b+ 1, 0)

ν = [−x, x] = (0, x)

γ = [b+ 1− x, x] = (b+ 1, x)

(d) Split Cartan
I(x10, (a, b), (x, y))

is the same as
I(x10, [ã, b̃], [x̃, ỹ])

provided a = ã+ b̃ (mod 2), b = b̃+ 1 (mod 2), and x̃+ ỹ = x, ỹ = y.

5 Standard K-Representations

Suppose I(x, λ, 0) is a nonzero, final standard limit representation, with ν =
0. As in Section ?? its restriction to K is IK(x, λ, 0). This is an important
object so we give it a name:

Definition 5.1 IK(x, λ) is the restriction of the nonzero, final standard limit
module I(x, λ, 0) to K.

These are a basis of the Grothendieck group of K. Here is a list of these
modules for Sp(4,R). The last column gives the highest weight of the lowest
K-types.

(5.2)

IK(x0, (a, b)) a ≥ b ≥ 0 (a+ 1,−b)
IK(x1, (a, b)) a ≥ b ≥ 0 (b,−a− 1)

IK(x2, (a, b)) a > b ≥ 0 (a+ 1, b+ 2)

IK(x3, (a, b)) a > b ≥ 0 (−b− 2,−a− 1)

IK(x9, (c, 0)) c > 0 odd ( c+1
2
,− c+1

2
)

IK(x7, (1, b)) b ≥ 0 (b+ 1, 1)

IK(x8, (1, b)) b ≥ 0 (−1,−b− 1)

IK(x10, (0, 1)) (0, 0)

We will need some Hecht-Schmid identities for some non-final parameters.
For example I(x9, (c, 0), (0, 0)) is not final if c is even. To see this using
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the software, use the Ktypeform command. In this example λ = (2, 0),
λ− ρ = (0,−1) which equals [1,−1] in fundamental weight coordinates.

real: Ktypeform

Choose KGB element: 9

2rho = [ 2, 2 ]

Give lambda-rho: 1 -1

Representation [ 4, 4 ]@(0,0)#1 is not final, as witnessed by coroot [1,2].

This is because

(5.3)(a) I(x9, c, 0) = J(x0,
1
2
(c, c)) + J(x1,

1
2
(c, c))

and so

(5.3)(b) IK(x9, (c, 0)) = IK(x0,
1
2
(c, c)) + IK(x1,

1
2
(c, c))

with lowest K-types

(5.3)(c) (
c

2
+ 1,− c

2
), (

c

2
,− c

2
− 1)

Similarly if b ≥ 0:

(5.4)(a)
IK(x7, 0, b) =IK(x0, (b, 0)) + IK(x2, (b, 0))

IK(x8, 0, b) =IK(x1, (b, 0)) + IK(x3, (b, 0))

with lowest K-types

(5.4)(b)
IK(x7, (0, b)) (b+ 1, 0), (b+ 1, 2)

IK(x8, (0, b)) (0,−b− 1), (−2,−b− 1)

without the second term if b = 0.

Question: What is the best way to see this using the software?

10



6 Reducibility: Real Roots (parity condition)

Suppose I(x, λ, ν) is a standard module. A real root α satisfies the parity
condition if

(6.1)(a) λ(mα) = −(−1)〈ν+ρr,α
∨〉

or equivalently

(6.1)(b) 〈λ+ ν + ρr, α
∨〉 ∈ 2Z + 1.

This holds if and only I(x, λ, ν) has some reducibility accounted for by
SL(2,R)α.

Note Here is a mnemonic for remembering this condition. The trivial rep-
resentation of SL(2,R) is given by the holomorphic character ρ: ρ(z) = z
(z ∈ C∗). The character ρ is given by (λ, ν) = (ρ, ρ), and note that ρ = ρr.
So (b) says 〈3ρ, α∨〉 ∈ 2Z+1 which is true; this standard module is reducible.

Note that no real root satisfies the parity condition if and only if

(6.1)(c) 〈λ+ ν, α∨〉 ∈ 2Z + 1 for all real-simple roots α.

In particular

(6.1)(d) I(x, λ, ν) irreducible ⇒ (??)(c) holds.

An important special case is ν = 0:
(6.1)(e)

I(x, λ, 0) irreducible ⇒ 〈λ, α∨〉 ∈ 2Z + 1 for all real-simple roots α.

This is the final condition of Section ??. Also see the help file for the
Ktypeform command.

Cartan 1 There is a single real root α = (1, 1), and the parity condition for
I(x9, (a, b) (mod (c, c)), (x, x)) is:

a+ b+ 2x+ 1 ∈ 2Z + 1

Cartan 2 The real root is (2, 0), and the parity condition for I(xk, (a, b), (x, 0)),
k = 7, 8, is

a+ x+ 1 ∈ 2Z + 1
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Cartan 3 All roots are real. The parity conditions on I(x10, (a, b), (x, y))
are

(6.2) 〈λ+ ν + ρr, α
∨〉 ∈ 2Z + 1.

α1 = (1,−1) : a− b+ x− y + 1 ∈ 2Z + 1

α2 = (0, 2) : b+ y + 1 ∈ 2Z + 1

(1, 1) : a+ b+ x+ y + 3 ∈ 2Z + 1

(2, 0) : a+ x+ 2 ∈ 2Z + 1

For example for I(x10, (2, 1), (2, 1)), α1, α2 satisfy the parity condition. On
the other hand for I(x10, (0, 0), (2, 1)), no root satisfies the parity condition.

We collect these conditions in a table, using the alternate parametrization
of (??) for Cartan 1.

Parity for Sp(4,R)

Cartan Module root parity condition
0 no real roots
1 I(x9, (r ± s, 0), 1

2
(r ∓ s, r ∓ s) (1, 1) 2r + 1 ∈ 2Z + 1

2 I(xk, (a, b), (x, 0)) (2, 0) a+ x+ 1 ∈ 2Z + 1

3 I(x10, (a, b), (x, y)) (1,−1) a− b+ x− y + 1 ∈ 2Z + 1

3 (0, 2) b+ y + 1 ∈ 2Z + 1
3 (2, 0) a+ x+ 2 ∈ 2Z + 1

3 (1, 1) a+ b+ x+ y + 3 ∈ 2Z + 1

On Cartan 1 recall α is integral if 2r ∈ Z.

It might be better to write the conditions on the split Cartan (the last four
entries) as follows:

(1,−1) (a+ x)− (b+ y) ∈ 2Z
(0, 2) b+ y ∈ 2Z
(2, 0) (a+ x) ∈ 2Z + 1

(1, 1) (a+ x) + (b+ y) ∈ 2Z

7 Reducibility: Complex Roots

Suppose I(x, λ, ν) is standard, with regular infinitesimal character. An in-
tegral complex root α contributes to reducibility of I(x, λ, ν) if and only if
θx(α) < 0; equivalently α ∈ τ(I)), or α is of type C-.
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For Sp(4,R) only Cartans 1, 2 have complex roots.

Cartan 1 Consider I(x9, (r ± s, 0), 1
2
(r ∓ s, r ∓ s)) with r, s ≥ 0, r ± s ∈ Z.

Assume γ = (r,∓s) is regular, i.e. r > s > 0.
Consider the positive complex root α = (2, 0). Assume this is integral,

i.e. r ∈ Z. Then θ(α) = (0,−2), and this is positive or negative depending
on the sign. Thus:

I(x9, (r − s, 0), 1
2
(r + s, r + s))→ α is type C−

I(x9, (r + s, 0), 1
2
(r − s, r − s))→ α is type C+

Cartan 2 Consider I(xk, (a, b), (x, 0)) with k = 7, 8, and x, b ≥ 0. so γ =
(x, b).

Assume γ is regular, i.e. x 6= b, and x, b 6= 0, and α = (1, 1) is integral,
i.e. x + b ∈ Z. Recall θ(a, b) = (−a, b). Thus α > 0 is complex, and
θ(α) = (−1, 1) > 0 if x < b, and < 0 otherwise. Therefore

α is type C− ⇔ x > b.

8 Integral blocks of Sp(4,R)
Here is the big block:

0( 0,6): 0 [i1,i1] 1 2 ( 4, *) ( 5, *) 0 e

1( 1,6): 0 [i1,i1] 0 3 ( 4, *) ( 6, *) 0 e

2( 2,6): 0 [ic,i1] 2 0 ( *, *) ( 5, *) 0 e

3( 3,6): 0 [ic,i1] 3 1 ( *, *) ( 6, *) 0 e

4( 4,5): 1 [r1,C+] 4 9 ( 0, 1) ( *, *) 1 1

5( 5,4): 1 [C+,r1] 7 5 ( *, *) ( 0, 2) 2 2

6( 6,4): 1 [C+,r1] 8 6 ( *, *) ( 1, 3) 2 2

7( 7,3): 2 [C-,i1] 5 8 ( *, *) (10, *) 2 1,2,1

8( 8,3): 2 [C-,i1] 6 7 ( *, *) (10, *) 2 1,2,1

9( 9,2): 2 [i2,C-] 9 4 (10,11) ( *, *) 1 2,1,2

10(10,0): 3 [r2,r1] 11 10 ( 9, *) ( 7, 8) 3 2,1,2,1

11(10,1): 3 [r2,rn] 10 11 ( 9, *) ( *, *) 3 2,1,2,1

Fix an integral regular infinitesimal character (a, b) with a > b > 0. Here
are the parameters realized using only one fiber on each Cartan, using the
cross action to replace x4 with x9, and x4,5 with x7,8:
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number Cartan length x λ ν
0 0 0 0 (a, b) *
1 0 0 1 (a, b) *
2 0 0 2 (a, b) *
3 0 0 3 (a, b) *
4 1 1 9 (a+ b, 0) (1

2
(a− b), 1

2
(a− b))

5 2 1 7 (b, a) (b, 0)

6 2 1 8 (b, a) (b, 0)
7 2 2 7 (a, b) (a, 0)
8 2 2 8 (a, b) (a, 0)
9 1 2 9 (a− b, 0) (1

2
(a+ b), 1

2
(a+ b))

10 3 3 10 (a, b) (a, b)

11 3 3 10 (a+ 1, b+ 1) (a, b)

Note that 10 is the trivial representation, given by λ = ν = ρ.
Alternatively, using all xi, so the x-values match up with the output of

block:

number Cartan length x λ ν
0 0 0 0 (a, b) *
1 0 0 1 (a, b) *
2 0 0 2 (a, b) *
3 0 0 3 (a, b) *
4 1 1 4 (a+ b, 0) (1

2
(a− b),−1

2
(a− b))

5 2 1 5 (a, b) (0, b)

6 2 1 6 (a, b) (0, b)
7 2 2 7 (a, b) (a, 0)
8 2 2 8 (a, b) (a, 0)
9 1 2 9 (a− b, 0) (1

2
(a+ b), 1

2
(a+ b))

10 3 3 10 (a, b) (a, b)

11 3 3 10 (a+ 1, b+ 1) (a, b)

Here is the block dual to SO(4, 1):

0( 5,2): 1 [C+,rn] 2 0 (*,*) (*,*) 2 2

1( 6,2): 1 [C+,rn] 3 1 (*,*) (*,*) 2 2

2( 7,1): 2 [C-,i1] 0 3 (*,*) (4,*) 2 1,2,1

3( 8,1): 2 [C-,i1] 1 2 (*,*) (4,*) 2 1,2,1

4(10,0): 3 [rn,r1] 4 4 (*,*) (2,3) 3 2,1,2,1
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number Cartan length x λ ν

0 2 1 7 (b+ 1, a) (b, 0)

1 2 1 8 (b+ 1, a) (b, 0)
2 2 2 7 (a+ 1, b) (a, 0)
3 2 2 8 (a+ 1, b) (a, 0)

4 3 3 10 (a+ 1, b) (a, b)

The principal series I(x10, (a, b+1), (a, b)) is irreducible, dual to SO(5, 0).

9 Orientation Numbers for Sp(4,R)
See [?, Section 5].

Definition 9.1 Suppose γ = (x, λ, ν) is a parameter and α is a nonintegral
real root. Define

(9.2) tα(γ) = 〈ν − (λ− ρr), α∨〉 (mod 2Z)

Since α is not integral tα 6∈ Z; think of it as an element of (0, 1) ∪ (1, 2).
We say a real nonintegral root is oriented (with respect to γ) if 0 < tα(γ) <

1.

Definition 9.3 Suppose γ = (x, λ, ν) is a parameter. The orientation num-
ber `0(γ) is the sum of

the number of pairs of complex nonintegral positive roots {α,−θα}

and

the number of real nonintegral oriented roots that are positive on γ.

Here are the orientation numbers for Sp(4,R).

On Cartan 0 all roots are imaginary and `0 = 0.

9.1 Cartan 1

Consider (x, λ, ν) = (x9, c, x) = (x9, (c, 0), 1
2
(x, x)), with infinitesimal charac-

ter γ = 1
2
(x+ c, x− c). Here c ∈ Z≥0 and x ∈ R≥0. Recall (1, 1) is the unique

positive real root, and (2, 0), (0, 2) are complex.
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The values of the roots are 1
2
(x ± c), x, c. Assume γ is not integral, i.e.

c, x are not integers of the same parity.

Case 1
Assume x ∈ Z, but not of the same parity as c. The integral root sys-

tem is of type D2 = {(±1,±1)}. and the nonintegral roots are (2, 0), (0, 2)
(complex),

Table ??.1
c, x complex pair (2, 0), (0, 2) `0
c > x 0
c < x Y 1

Case 2
Assume x 6∈ Z. The only positive integral root is (1,−1), the integral

root system is type A1, and the nonintegral roots are (2, 0), (0, 2) (complex)
and (1, 1) (real).

Compute

ν − (λ− ρr) =
1

2
(x, x)− (c, 0) + (

1

2
,
1

2
) = (−c+

x− 1

2
,
x− 1

2
)

and
tα = −c+ x+ 1

Therefore α is oriented if and only if 1 < x−c < 2 (mod 2Z), or equivalently

0 < c− x < 1 (mod 2Z)

So:

Table ??.2
c, x range (mod 2Z) complex pair (2, 0), (0, 2) (1, 1) `0
c > x 0 < c− x < 1 (mod 2Z) Y 1

1 < c− x < 2 (mod 2Z) 0
c < x 0 < c− x < 1 (mod 2Z) Y Y 2

1 < c− x < 2 (mod 2Z) Y 1

Note that if we write the infinitesimal character as (γ1, γ2) then the table
becomes
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Table ??.3
c, x range (mod 2Z) complex pair (2, 0), (0, 2) (1, 1) `0
γ2 < 0 0 < γ2 <

1
2

(mod Z) 0
1
2
< γ2 < 1 (mod Z) Y 1

γ2 > 0 0 < γ2 <
1
2

(mod Z) Y 1
1
2
< γ2 < 1 (mod Z) Y Y 2

which agrees with [?, ?]

9.2 Cartan 2

Consider (x, λ, ν) = (xk, (a, b), (x, 0) with infinitesimal character (x, b). If
x ∈ Z this is integral and `0 = 0, so assume x 6∈ Z.

Compute

ν − (λ− ρr) = (x, 0)− (a, b) + (1, 0) = (x− a+ 1,−b)

and for α the real root (2, 0), tα = x− a+ 1. So α is oriented if and only if

1 < x− a < 2 (mod 2Z)

Table ??.1
x, b a range (mod 2Z) complex pair (1,±1) (2, 0) `0
x < b 0 0 < x < 1 0
x < b 0 1 < x < 2 Y 1
x < b 1 0 < x < 1 Y 1
x < b 1 1 < x < 2 0
x > b 0 0 < x < 1 Y 1
x > b 0 1 < x < 2 Y Y 2
x > b 1 0 < x < 1 Y Y 2
x > b 1 1 < x < 2 Y 1

9.3 Cartan 3

Consider I(x10, (a, b), (x, y)) with x > y > 0. The nonintegral cases are as
follows (not including the case with no integral roots). The third column gives
the type of the integral root system, and the last column gives a consequence
of the conditions in the first column.
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Case x, y type integral roots
1 x ∈ Z, y 6∈ Z A1 (2, 0)
2 x 6∈ Z, y ∈ Z A1 (0, 2)
3 x+ y ∈ Z;x− y 6∈ Z A1 (1, 1) x, y 6∈ Z + 1

2

4 x− y ∈ Z;x+ y 6∈ Z A1 (1,−1) x, y 6∈ Z + 1
2

5 x± y ∈ Z;x, y 6∈ Z D2 (1,±1) x, y ∈ Z + 1
2

We have ρ = ρr = (2, 1) and

(9.3.4) ν − (λ− ρr) = (x− a+ 2, y − b+ 1) ≡ (x− a, y − b+ 1).

Cartan 3, Case 1: x ∈ Z, y 6∈ Z
The nonintegral roots are (1,±1) and (0, 2). They are oriented if:

(9.3.5)

(1, 1) : 1 < x+ y − (a+ b) < 2 (mod 2Z)

(1,−1) : 1 < x− y − (a+ b) < 2 (mod 2Z)

(0, 2) : 1 < y − b < 2 (mod 2Z)

It is easy to see that exactly one of (1,±1) is an oriented root.

Table ??.1

b range (mod 2Z) (1, 1) xor (1,−1) (0, 2) `0
0 0 < y < 1 Y 1

1 < y < 2 Y Y 2
1 0 < y < 1 Y Y 2

1 < y < 2 Y 1

Cartan 3, Case 2: x 6∈ Z, y ∈ Z
The nonintegral roots are (1,±1) and (2, 0). Now both (1,±1) are ori-

ented, or neither are. The condition on (2, 0) is

(9.3.6) (2, 0) : 0 < x− a < 1 (mod 2Z)
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Table ??.2

a a+ b x (mod 2Z) x+ y (mod 2Z) (1, 1) and (1,−1) (2, 0) `0
0 0 0 < x < 1 0 < x+ y < 1 Y 1

1 < x+ y < 2 Y Y 3
1 < x < 2 0 < x+ y < 1 0

1 < x+ y < 2 Y 2
1 0 0 < x < 1 0 < x+ y < 1 0

1 < x+ y < 2 Y 2
1 < x < 2 0 < x+ y < 1 Y 1

1 < x+ y < 2 Y Y 3
0 1 0 < x < 1 0 < x+ y < 1 Y Y 3

1 < x+ y < 2 Y 1
1 < x < 2 0 < x+ y < 1 Y 2

1 < x+ y < 2 0
1 1 0 < x < 1 0 < x+ y < 1 Y 2

1 < x+ y < 2 0
1 < x < 2 0 < x+ y < 1 Y Y 3

1 < x+ y < 2 Y 1

Cartan 3, Case 3: x+ y ∈ Z, x− y 6∈ Z
An example is (x, y) = (3

4
, 1
4
). The nonintegral roots are (2, 0), (0, 2) and

(1,−1). The oriented conditions are:

(9.3.7)(a)

(2, 0) : 0 < x− a < 1 (mod 2Z)

(0, 2) : 1 < y − b < 2 (mod 2Z)

(1,−1) : 1 < (x− a)− (y − b) < 2 (mod 2Z)

Recall x+y ∈ Z. For example, suppose x+y is even, so x = −y (mod 2Z),
so replace x with −y everywhere:

(9.3.7)(b)

(2, 0) : 0 < −y − a < 1 (mod 2Z)

(0, 2) : 1 < y − b < 2 (mod 2Z)

(1,−1) : 1 < −2y − a+ b < 2 (mod 2Z).

After a few manipulations, including dividing the last line by 2, this is equiv-
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alent to

(9.3.7)(c)

(2, 0) : 1 < y + a < 2 (mod 2Z)

(0, 2) : 1 < y − b < 2 (mod 2Z)

(1,−1) : 0 < y + 1
2
(a− b) < 1

2
(mod Z).

If x + y is odd replace x with −y + 1 (mod 2Z), and something similar
happens. Here is the answer.

If x+ y ∈ 2Z, x− y 6∈ Z:

Table ??.3

(a, b) range (mod 2Z) (2, 0) (0, 2) (1,−1) `0
(0, 0) 0 < y < 1

2
Y 1

1
2
< y < 1 0

1 < y < 3
2

Y Y Y 3
3
2
< y < 2 Y Y 2

(1, 0) 0 < y < 1
2

Y 1
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 Y Y 2

(0, 1) 0 < y < 1
2

Y 1
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 Y Y 2

(1, 1) 0 < y < 1
2

Y Y Y 3
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 0

If x+ y ∈ 2Z + 1, x− y 6∈ Z:
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Table ??.4

(a, b) range (mod 2Z) (2, 0) (0, 2) (1,−1) `0
(0, 0) 0 < y < 1

2
Y 1

1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 Y Y 2

(1, 0) 0 < y < 1
2

Y 1
1
2
< y < 1 0

1 < y < 3
2

Y Y Y 3
3
2
< y < 2 Y Y 2

(0, 1) 0 < y < 1
2

Y Y Y 3
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 0

(1, 1) 0 < y < 1
2

Y 1
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 Y Y 2

Cartan 3, Case 4: x+ y 6∈ Z, x− y ∈ Z
An example is (x, y) = (4

3
, 1
3
).

The nonintegral roots are (2, 0), (0, 2) and (1, 1). The oriented conditions
are

(9.3.8)(a)

(2, 0) : 0 < x− a < 1 (mod 2Z)

(0, 2) : 1 < y − b < 2 (mod 2Z)

(1, 1) : 1 < (x− a) + (y − b) < 2 (mod 2Z)

Suppose x− y = n ∈ Z. As in Case 3, (a) becomes

(9.3.8)(b)

(2, 0) : 0 < y + n− a < 1 (mod 2Z)

(0, 2) : 1 < y − b < 2 (mod 2Z)

(1, 1) : 1
2
< y + 1

2
(n− a− b) < 1 (mod Z).

If x− y ∈ 2Z, x+ y 6∈ Z:
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Table ??.5

(a, b) range (mod 2Z) (2, 0) (0, 2) (1, 1) `0
(0, 0) 0 < y < 1

2
Y 1

1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 Y Y 2

(1, 0) 0 < y < 1
2

Y 1
1
2
< y < 1 0

1 < y < 3
2

Y Y Y 3
3
2
< y < 2 Y Y 2

(0, 1) 0 < y < 1
2

Y Y Y 3
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 0

(1, 1) 0 < y < 1
2

Y 1
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 Y Y 2

If x− y ∈ 2Z + 1, x+ y 6∈ Z:

Table ??.6

(a, b) range (mod 2Z) (2, 0) (0, 2) (1, 1) `0
(0, 0) 0 < y < 1

2
Y 1

1
2
< y < 1 0

1 < y < 3
2

Y Y Y 3
3
2
< y < 2 Y Y 2

(1, 0) 0 < y < 1
2

Y 1
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 Y Y 2

(0, 1) 0 < y < 1
2

Y 1
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 Y Y 2

(1, 1) 0 < y < 1
2

Y Y Y 3
1
2
< y < 1 Y Y 2

1 < y < 3
2

Y 1
3
2
< y < 2 0
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Cartan 3, Case 5: x± y ∈ Z, x, y 6∈ Z
In other words x, y ∈ Z + 1

2
. An example is (x, y) = (3

2
, 1
2
).

The nonintegral roots are (2, 0), (0, 2). The oriented conditions are

(9.3.9)(a)
(2, 0) : 0 < x− a < 1 (mod 2Z)

(0, 2) : 1 < y − b < 2 (mod 2Z)

x± y ∈ Z;x, y 6∈ Z
Table ??.7

(a, b) x (mod 2Z) y (mod 2Z) oriented `0
(0, 0) 0 < x < 1 0 < y < 1 (2, 0) 1

0 < x < 1 1 < y < 2 (2, 0), (0, 2) 2
1 < x < 2 0 < y < 1 0
1 < x < 2 1 < y < 2 (0, 2) 1

(1, 0) 0 < x < 1 0 < y < 1 0
0 < x < 1 1 < y < 2 (0, 2) 1
1 < x < 2 0 < y < 1 (2, 0) 1
1 < x < 2 1 < y < 2 (2, 0), (0, 2) 2

(0, 1) 0 < x < 1 0 < y < 1 (2, 0), (0, 2) 2
0 < x < 1 1 < y < 2 (2, 0) 1
1 < x < 2 0 < y < 1 (0, 2) 1
1 < x < 2 1 < y < 2 0

(1, 1) 0 < x < 1 0 < y < 1 (0, 2) 1
0 < x < 1 1 < y < 2 0
1 < x < 2 0 < y < 1 (2, 0), (0, 2) 2
1 < x < 2 1 < y < 2 (2, 0) 1

10 Composition Series: Integral Infinitesimal

Character

Assume the infinitesimal character γ is regular, so γ = (a, b) with a > b > 0.

Cartan 1 There are two standard modules I(x9, (a ∓ b, 0), 1
2
(a ± b, a ± b));

necessarily a∓ b ∈ Z (depending on which of the two modules we consider).
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By the preceding sections the real root (1, 1) gives reducibility if and only
if a ∈ Z, and the complex root (2, 0) gives reducibility only of I(x9, (a −
b, 0), 1

2
(a+ b, a+ b)), again only if a ∈ Z. So we may assume a, b ∈ Z.

First consider I(x9, (a+ b, 0), 1
2
(a− b, a− b)). Then (cf. (??))

I(x9, (a+ b, 0),
1

2
(a− b, a− b)) = I(x4, (a+ b, 0),

1

2
(a− b,−a+ b));

this is the module #4 in the output of block. Using klbasis we see this stan-
dard module has three composition factors, including the two large discrete
series representations at this infinitesimal character.

Remark 10.1 Recall that in order to compute the composition factors of
the standard modules using klbasis, we need to invert the matrix obtained
from the values of the KLV polynomials at 1 with the signs coming from the
lengths, as in (??).

So

(10.2)(a)

I(x9, (a+ b, 0),
1

2
(a− b, a− b)) =

J(x9, (a+ b, 0),
1

2
(a− b, a− b))

+ J(x0, (a, b)) + J(x1, (a, b)).

Next, I(x9, (a− b, 0), 1
2
(a+ b, a+ b)) is block element 9, so klbasis says

J has irreducible modules 9,0,1,4,5,6 as composition factors (with multi-
plicity one).

Then:

(10.2)(b)

I(x9, (a− b, 0),1
2
(a+ b, a+ b)) =

J(x9, (a− b, 0), 1
2
(a+ b, a+ b))

+ J(x0, (a, b)) + J(x1, (a, b))

+ J(x9, (a+ b, 0), 1
2
(a− b, a− b))

+ J(x7, (b, a), (b, 0))

+ J(x8, (b, a), (b, 0))

Cartan 2

24



The standard modules are I(xk, (ε, b), (a, 0)) and I(xk, (ε, a), (b, 0)) with
k = 7, 8 and ε = 0, 1. We continue to assume a > b > 0.

The real root (2, 0) gives reducibility I(xk, (a, b), (a, 0)) and I(xk, (b, a), (b, 0))
provided a, b ∈ Z. The complex root (1, 1) contributes to reducibility of
I(xk, (ε, b), (a, 0)), again only if a, b ∈ Z. So the infinitesimal character is
necessarily integral. These representations are in one of two blocks, depend-
ing on ε.

Using klbasis we compute the following composition series.

Here are the formulas in the big block.
I(x7, (b, a), (b, 0)) (standard module 5):

(10.2)(c) I(x7, (b, a), (b, 0)) = J(x7, (b, a), (b, 0))+J(x0, (a, b))+J(x2, (a, b)).

I(x8, (b, a), (b, 0)) (standard module 6):
(10.2)(d)

I(x8, (b, a), (b, 0)) = J(x8, (b, a), (b, 0)) + J(x1, (a, b)) + J(x3, (a, b)).

I(x7, (a, b), (a, 0)) (standard module 7):

(10.2)(e)
I(x7, (a, b), (a, 0)) = J(x7, (a, b), (a, 0)) + J(x0, (a, b))

+ J(x9, (a+ b, 0),
1

2
(a− b, a− b)) + J(x7, (b, a), (b, 0))

I(x8, (a, b), (a, 0)) (standard module 8):

(10.2)(f)
I(x8, (a, b), (a, 0)) = J(x8, (a, b), (a, 0)) + J(x1, (a, b))

+ J(x9, (a+ b, 0),
1

2
(a− b, a− b)) + J(x8, (b, a), (b, 0))

Here are the formulas in the block dual to SO(4, 1).

By the preceding I(xk, (b+1, a), (b, 0)) with k = 7, 8 are both irreducible.
These are standard modules 0,1 from this block.
I(x7, (a+ 1, b), (a, 0)) (standard module 2):

(10.2)(g)
I(x7, (a+ 1, b), (a, 0)) =J(x7, (a+ 1, b), (a, 0))

+ J(x7, (b+ 1, a), (b, 0))
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I(x8, (a+ 1, b), (a, 0)) (standard module 3):

(10.2)(h)
I(x8, (a+ 1, b), (a, 0)) =J(x8, (a+ 1, b), (a, 0))

+ J(x8, (b+ 1, a), (b, 0))

Cartan 3
These are the modules I(x10, (δ, ε), (a, b)) with δ, ε = 0, 1 and a > b > 0.
First consider the representations in the big block, so a, b ∈ Z.

I(x10, (a + 1, b + 1), (a, b)) This is block element 11, which has irreducible
modules 11,0,1,2,3,4,5,6,9, all of multiplicity one.

(10.2)(i)
I(x10, (a+ 1,b+ 1), (a, b)) = J(x10, (a+ 1, b+ 1), (a, b))

+ J(x0, (a, b)) + J(x1, (a, b)) + J(x2, (a, b)) + J(x3, (a, b))

+ J(x9, (a+ b, 0),
1

2
(a− b, a− b))

+ J(x7, (b, a), (b, 0)) + J(x8, (b, a), (b, 0))

+ J(x9, (a− b, 0),
1

2
(a+ b, a+ b))

I(x10, (a, b), (a, b)) This is block element 10, which has irreducible modules
10,0,1,4,5,6,7,8,9, all of multiplicity one except 4 has multiplicity 2. See
Section ??.

(10.2)(j)

I(x10, (a,b), (a, b)) = J(x10, (a, b), (a, b))

+ J(x0, (a, b)) + J(x1, (a, b))

+ 2× J(x9, (a+ b, 0),
1

2
(a− b, a− b))

+ J(x7, (b, a), (b, 0)) + J(x8, (b, a), (b, 0))

+ J(x7, (a, b), (a, 0)) + J(x8, (a, b), (a, 0))

+ J(x9, (a− b, 0),
1

2
(a+ b, a+ b))

Next, consider the integral block dual to SO(4, 1). There is one represen-
tation on the split Cartan, number 4.
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(10.2)(k)

I(x10, (a+ 1,b), (a, b)) = J(x10, (a+ 1, b), (a, b))

+ J(x7, (b+ 1, a), (b, 0)) + J(x8, (b+ 1, a), (b, 0))

+ J(x7, (a+ 1, b), (a, 0)) + J(x8, (a+ 1, b), (a, 0))

The principal series I(x10, (a, b+1), (a, b)) is irreducible (dual to SO(5, 0)).

11 Character Formulas: Integral Infinitesi-

mal Character

Assume the infinitesimal character γ is regular, so γ = (a, b) with a > b > 0.
Suppose µ = (x, λ, ν). Use nblock to compute the block of I(µ), and

klbasis to compute Pµ,δ for all δ in the block. Then:

(11.1) J(µ) =
∑

(−1)`(µ)−`(δ)Pδ,µ(1)I(δ)

Here are character formulas; the numbering is parallel to that of (??)(a-
k).

Cartan 1

(11.2)(a)

J(x9, (a+ b, 0),
1

2
(a− b, a− b)) =

I(x9, (a+ b, 0),
1

2
(a− b, a− b))

− I(x0, (a, b))− I(x1, (a, b)).

(11.2)(b)

J(x9,(a− b, 0),
1

2
(a+ b, a+ b)) =

I(x9, (a− b, 0),
1

2
(a+ b, a+ b))

+ I(x0, (a, b)) + I(x1, (a, b)) + I(x2, (a, b)) + I(x3, (a, b))

− I(x9, (a+ b, 0),
1

2
(a− b, a− b))

− I(x7, (b, a), (b, 0))− I(x8, (b, a), (b, 0))
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Cartan 2
Here are the formulas on the big block.

(11.2)(c) J(x7, (b, a), (b, 0)) = I(x7, (b, a), (b, 0))− I(x0, (a, b))− I(x2, (a, b))

(11.2)(d) J(x8, (b, a), (b, 0)) = I(x8, (b, a), (b, 0))−I(x1, (a, b))−I(x3, (a, b))

(11.2)(e)

J(x7,(a, b), (a, 0)) = I(x7, (a, b), (a, 0)

+ I(x0, (a, b)) + I(x1, (a, b)) + I(x2, (a, b))

− I(x9, (a+ b, 0),
1

2
(a− b, a− b))− I(x7, (b, a), (b, 0))

(11.2)(f)

J(x8,(a, b), (a, 0)) = I(x8, (a, b), (a, 0)

+ I(x0, (a, b)) + I(x1, (a, b)) + I(x3, (a, b))

− I(x9, (a+ b, 0),
1

2
(a− b, a− b))− I(x8, (b, a), (b, 0))

Here are the formulas on the block dual to SO(4, 1):

(11.2)(g)
J(x7, (a+ 1, b), (a, 0)) = I(x7, (a+ 1, b), (a, 0))− I(x7, (b+ 1, a), (b, 0))

(11.2)(h)
J(x8, (a+ 1, b), (a, 0)) = I(x8, (a+ 1, b), (a, 0))− I(x8, (b+ 1, a), (b, 0))

Cartan 3
First consider the big block, with integral infinitesimal character.

(11.2)(i)
J(x10, (a+ 1, b+ 1), (a, b)) = I(x10, (a+ 1, b+ 1), (a, b))− I(x2, (a, b))− I(x3, (a, b))

− I(x9, (a− b, 0),
1

2
(a+ b, a+ b))
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See Section ??.

(11.2)(j)

J(x10,(a, b), (a, b)) = I(x10, (a, b), (a, b))

− I(x0, (a, b))− I(x1, (a, b))− I(x2, (a, b))− I(x3, (a, b))

+ I(x9, (a+ b, 0),
1

2
(a− b, a− b))

+ I(x7, (b, a), (b, 0)) + I(x8, (b, a), (b, 0))

− I(x7, (a, b), (a, 0))− I(x8, (a, b), (a, 0))

− I(x9, (a− b, 0),
1

2
(a+ b, a+ b))

On the block dual to SO(4, 1) there is a single formula on the split Cartan:

(11.2)(k)
J(x10, (a+ 1,b), (a, b)) = I(x10, (a+ 1, b), (a, b))−

J(x7, (a+ 1, b), (a, 0))− J(x8, (a+ 1, b), (a, 0))

12 Composition Series and Character Formu-

las: Non-Integral Infinitesimal Character

Write γ = (a, b) with a > b > 0. Let ∆(γ) be the integral root system:
∆(γ) = {α | 〈γ, α∨〉 ∈ Z}. If this is empty then the standard module is
irreducible. Here are the remaining cases.

12.1 ∆(γ) = {(±1,±1)} (type D2)

If a, b ∈ Z + 1
2

then ∆(γ) = {(±1,±1)} is of type D2.
On the compact Cartan subgroup or Cartan 2 at least one of the roots

2ei is imaginary, hence integral, so this case doesn’t arise. So we’re on the
C∗ or split Cartan.

Recall ((??)) I(x9, c, x) has infinitesimal character γ = 1
2
(x + c, x − c),

with c ∈ Z, which gives D(γ) of type D2 in the following cases:

(12.1.1) I(x9, c, x) (x, c ≥ 0, integers of opposite parity)
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For example the representations with infinitesimal character (3
2
, 1
2
) are

I(x9, 1, 2) = I(x9, (1, 0), (1, 1))

I(x9, 2, 1) = I(x9, (2, 0), (1
2
, 1
2
))

These are irreducible:
Suppose x > c. For example take c = 1, x = 2, i.e. I(x9, 1, 2) =

I(x9, (1, 0), (1, 1)). Using nblock (see Section ??) this is λ− ρ = (−1,−1) =
[0,−1] and ν = (1, 1) = [0, 1]. The infinitesimal character is γ = [1, 1

2
] =

(3
2
, 1
2
).

real: nblock

choose Cartan class (one of 0,1,2,3): 1

Choose a KGB element from the following canonical fiber:

9: 2 [n,C] 9 4 10 * (0,0)#1 2,1,2

KGB number: 9

rho = [1,1]/1

NEED, on following imaginary coroot, at least given value:

[1,0] (>=-1)

Give lambda-rho: 0 -1

denominator for nu: 1

numerator for nu: 0 1

Name an output file (return for stdout, ? to abandon):

x = 9, gamma = [2,1]/2, lambda = [1,0]/1

Subsystem on dual side is of type A1.A1, with roots 4,6.

Given parameters define element 0 of the following block:

0(0,2): 0 [i2,rn] 0 0 (1,2) (*,*) *( 9, [1,0]= rho+ [0,-1]) 1 1

1(1,0): 1 [r2,rn] 2 1 (0,*) (*,*) *(10, [1,0]= rho+ [0,-1]) 0 e

2(1,1): 1 [r2,rn] 1 2 (0,*) (*,*) *(10, [1,-1]= rho+ [0,-2]) 0 e

KL polynomials (-1)^{l(0)-l(x)}*P_{x,0}:

0: 1

The KLV polynomial information tells us that this module (module 0) is
irreducible.

The two other standard modules here, on the split Cartan subgroup, are
I(x10, (1, 0), (3

2
, 1
2
)) and I(x10, (0, 1), (3

2
, 1
2
)) Using the nblock command for

these two (principal series) representations, we see that they have composi-
tion series

I(x10, (1, 0), (3
2
, 1
2
)) = J(x10, (1, 0), (3

2
, 1
2
)) + J(x9, 1, 2)

I(x10, (0, 1), (3
2
, 1
2
)) = J(x10, (0, 1), (3

2
, 1
2
)) + J(x9, 1, 2)
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and character formulas

J(x10, (1, 0), (3
2
, 1
2
)) = I(x10, (1, 0), (3

2
, 1
2
))− I(x9, 1, 2)

J(x10, (0, 1), (3
2
, 1
2
)) = I(x10, (0, 1), (3

2
, 1
2
))− I(x9, 1, 2)

More generally for x > c > 0, x, c integers of opposite parity, the standard
modules are

(12.1.2)(a)

I(x9, c, x) (x > c ≥ 0, integers of opposite parity)

I(x10, (0, c),
1
2
(x+ c, x− c))

I(x10, (1, 1 + c), 1
2
(x+ c, x− c))

and the character formulas are
(12.1.2)(b)

J(x10, (0, c),
1
2
(x+ c, x− c)) = I(x10, (0, c),

1
2
(x+ c, x− c))− I(x9, c, x)

J(x10, (1, 1 + c), 1
2
(x+ c, x− c)) = I(x10, (1, 1 + c), 1

2
(x+ c, x− c))− I(x9, c, x)

Remark 12.1.3 If we choose x > c = 0 with x an odd integer, say x = 1,
we get

real: nblock

choose Cartan class (one of 0,1,2,3): 1

Choose a KGB element from the following canonical fiber:

9: 2 [n,C] 9 4 10 * (0,0)#1 2,1,2

KGB number: 9

rho = [1,1]/1

NEED, on following imaginary coroot, at least given value:

[1,0] (>=-1)

Give lambda-rho: -1 -1

denominator for nu: 2

numerator for nu: 0 1

Name an output file (return for stdout, ? to abandon):

x = 9, gamma = [0,1]/2, lambda = [0,0]/1

Subsystem on dual side is of type A1.A1, with roots 4,6.

Given parameters define element 0 of the following block:

0(0,2): 0 [i2,rn] 0 0 (1,2) (*,*) *( 9, [0,0]= rho+ [-1,-1]) 1

1(1,0): 1 [r2,rn] 2 1 (0,*) (*,*) (10, [0,0]= rho+ [-1,-1]) e

2(1,1): 1 [r2,rn] 1 2 (0,*) (*,*) (10, [0,-1]= rho+ [-1,-2]) e

(cumulated) KL polynomials (-1)^{l(0)-l(x)}*P_{x,0}:

0: 1
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In this case, the block contains only the module I(x9, 0, x); the parameters
for I(x10, (0, 0), 1

2
(x, x)) and I(x10, (1, 1), 1

2
(x, x)) are not final; so the irre-

ducible modules J(x10, (0, 0), 1
2
(x, x)) and J(x10, (1, 1), 1

2
(x, x)) are zero. The

full principal series representations associated to these parameters are actu-
ally irreducible, and both equivalent to J(x9, 0, x).

If 0 ≤ x < c, we get the same character formulas. For example x =
1, c = 2 gives I(x9, 2, 1) = I(x9, (2, 0), 1

2
(1, 1)) with γ = (3

2
,−1

2
). In nblock

coordinates this is λ = (2, 0), λ− ρ = (0,−1) = [1,−1], ν = (1
2
, 1
2
) = [0, 1

2
].

real: nblock

choose Cartan class (one of 0,1,2,3): 1

Choose a KGB element from the following canonical fiber:

9: 2 [n,C] 9 4 10 * (0,0)#1 2,1,2

KGB number: 9

rho = [1,1]/1

NEED, on following imaginary coroot, at least given value:

[1,0] (>=-1)

Give lambda-rho: 1 -1

denominator for nu: 2

numerator for nu: 0 1

Name an output file (return for stdout, ? to abandon):

x = 9, gamma = [4,-1]/2, lambda = [2,0]/1

Subsystem on dual side is of type A1.A1, with roots 4,6.

Given parameters define element 0 of the following block:

0(0,2): 0 [i2,rn] 0 0 (1,2) (*,*) *( 9, [2,-2]= rho+ [1,-3]) 1

1(1,0): 1 [r2,rn] 2 1 (0,*) (*,*) *(10, [2,-2]= rho+ [1,-3]) e

2(1,1): 1 [r2,rn] 1 2 (0,*) (*,*) *(10, [2,-1]= rho+ [1,-2]) e

KL polynomials (-1)^{l(0)-l(x)}*P_{x,0}:

0: 1

The infinitesimal character is not dominant on the coroot (0, 1); however, it
is dominant on the integral coroots. The standard modules and character
formulas are exactly as in (??) and (??). Using

(12.1.4) I(x10(a, b), (x, y)) ∼= I(x10(a, b), (x,−y)),
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we write these formulas

(12.1.5)(a)

I(x9, c, x) (c > 0, x ≥ 0, integers of opposite parity)

I(x10, (0, c),
1
2
(x+ c,−x+ c))

I(x10, (1, 1 + c), 1
2
(x+ c,−x+ c))

and the character formulas
(12.1.5)(b)

J(x10, (0, c),
1
2
(x+ c,−x+ c)) = I(x10, (0, c),

1
2
(x+ c,−x+ c))− I(x9, c, x)

J(x10, (1, 1 + c), 1
2
(x+ c,−x+ c)) = I(x10, (1, 1 + c), 1

2
(x+ c,−x+ c))− I(x9, c, x)

In all remaining cases ∆(γ) is of type A1.

12.2 ∆(γ) = {±(1,−1)} or {±(1, 1)}
As in (??) we are on the C∗ or split Cartan. On the C∗ Cartan take

I(x9, c, x) = I(x9, (c, 0),
1

2
(x, x)) (x 6∈ Z, x ≥ 0, c > 0).

with

γ =
1

2
(x+ c, x− c)

for which (1,−1) is the unique positive integral root (and is imaginary). (If
x < c then we can conjugate to the fiber of x4 to make the infinitesimal
character dominant; then (1, 1) will be the unique positive integral root.)

The standard module is irreducible.
Here is an example; compare Section ??.

real: nblock

choose Cartan class (one of 0,1,2,3): 1

Choose a KGB element from the following canonical fiber:

9: 2 [n,C] 9 4 10 * (0,0)#1 2,1,2

KGB number: 9

rho = [1,1]/1

NEED, on following imaginary coroot, at least given value:

[1,0] (>=-1)

Give lambda-rho: 0 -1
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denominator for nu: 8

numerator for nu: 0 5

Name an output file (return for stdout, ? to abandon):

x = 9, gamma = [8,1]/8, lambda = [1,0]/1

Subsystem on dual side is of type A1, with roots 4.

Given parameters define element 0 of the following block:

0(0,2): 0 [i2] 0 (1,2) *( 9, [1,0]= rho+ [0,-1]) 1 1

1(1,0): 1 [r2] 2 (0,*) *(10, [1,0]= rho+ [0,-1]) 0 e

2(1,1): 1 [r2] 1 (0,*) *(10, [1,-1]= rho+ [0,-2]) 0 e

KL polynomials (-1)^{l(0)-l(x)}*P_{x,0}:

0: 1

Recall the situation is x 6∈ Z, x, c > 0. Compare (??) and (??) , which is
the same except that x ∈ Z of opposite parity to c. The standard modules
are

(12.2.6)(a)

I(x9, c, x) = I(x9, (c, 0),
1

2
(x, x)) (x 6∈ Z, x > c)

I(x10, (0, c),
1
2
(x+ c, x− c))

I(x10, (1, 1 + c), 1
2
(x+ c, x− c))

and the character formulas are as in (??)
(12.2.6)(b)

J(x10, (0, c),
1
2
(x+ c, x− c)) = I(x10, (0, c),

1
2
(x+ c, x− c))− I(x9, c, x)

J(x10, (1, 1 + c), 1
2
(x+ c, x− c)) = I(x10, (1, 1 + c), 1

2
(x+ c, x− c))− I(x9, c, x)

As in (??) and (??), if x < c, it may be convenient to use the formula (??)
to write
(12.2.7)

J(x10, (0, c),
1
2
(x+ c,−x+ c)) = I(x10, (0, c),

1
2
(x+ c,−x+ c))− I(x9, c, x)

J(x10, (1, 1 + c), 1
2
(x+ c,−x+ c)) = I(x10, (1, 1 + c), 1

2
(x+ c,−x+ c))− I(x9, c, x)

instead.

12.3 ∆(γ) = {±(0, 2)}
Consider

I(xk, (a, b), (x, 0)) (k = 7, 8;x 6∈ Z;x > b)
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with γ = (x, b) dominant. This standard module is irreducible. On the split
Cartan we have

(12.3.8) I(x10, (a, b), (x, b).

The character formula is (recall x > b):
(12.3.9)

J(x10, (a, b), (x, b)) = I(x10, (a, b), (x, b))− I(x7, (a, b), (x, 0))− I(x8, (a, b), (x, 0))

Remark 12.3.10 If we choose b = 0, nblock yields:

real: nblock

choose Cartan class (one of 0,1,2,3): 2

Choose a KGB element from the following canonical fiber:

7: 2 [C,n] 5 8 * 10 (0,0)#2 1,2,1

8: 2 [C,n] 6 7 * 10 (0,1)#2 1,2,1

KGB number: 7

rho = [1,1]/1

NEED, on following imaginary coroot, at least given value:

[0,1] (>=-1)

Give lambda-rho: -1 -1

denominator for nu: 3

numerator for nu: 0 2

Name an output file (return for stdout, ? to abandon):

x = 7, gamma = [2,0]/3, lambda = [0,0]/1

Subsystem on dual side is of type A1, with roots 5.

Given parameters define element 1 of the following block:

0(0,1): 0 [i1] 1 (2,*) *( 8, [0,0]= rho+ [-1,-1]) 2

1(1,1): 0 [i1] 0 (2,*) *( 7, [0,0]= rho+ [-1,-1]) 2

2(2,0): 1 [r1] 2 (1,0) (10, [0,0]= rho+ [-1,-1]) e

(cumulated) KL polynomials (-1)^{l(1)-l(x)}*P_{x,1}:

1: 1

The block contains only the two modules which are related by a cross action
through the imaginary root. Once again, the parameter attached to Cartan
3 is not final; the corresponding principal series representation is the direct
sum of the two modules 0 and 1.
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12.4 ∆(γ) = {±(2, 0)}
Consider

I(xk, (a, b), (x, 0)) (k = 7, 8;x 6∈ Z;x < b).

Now γ = (x, b) is not dominant, but conjugate to (b, x); this is dominant,
and gives integral roots ±(2, 0). Probably it is better to think of this as

(12.4.11) I(x`, (b, a), (0, x)) (` = 5, 6;x 6∈ Z;x < b).

which makes it clear that (2, 0) is an imaginary root.
These standard modules are irreducible. There is also a standard module

on the split Cartan:

(12.4.12) I(x10, (a, b), (x, b))

The character formula is precisely as in (??) (recall that now x < b):

(12.4.13)

J(x10, (a, b), (x, b)) = I(x10, (a, b), (x, b))− I(x7, (a, b), (x, 0))− I(x8, (a, b), (x, 0))

However it is probably clearer to use (??) (and rule (c) in Section ?? for
conjugation by an element of Wr) and write this as (for x < b):

(12.4.14)

J(x10,(b+ 1, a+ 1), (b, x))

=I(x10, (b+ 1, a+ 1), (b, x))− I(x5, (b, a), (0, x))− I(x6, (b, a), (0, x))

13 c-invariant Hermitian Forms

Every irreducible representation J has a distinguished c-invariant Hermitian
form. We think of this as a virtual K-representation with coefficients in
W = Z[s] where s2 = 1. A term (p + qs)µ means that the K-type µ has
multiplicity p + q, and occurs p times with a plus sign, and q with a minus.
In other words the µ-isotypic space is Vµ ⊗ V [µ] where Vµ is the space of
µ equipped with a positive definite form, and V [µ] = Cp+q with a form of
signature (p, q).
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Definition 13.1 (a) J(x, λ, ν)c is the irreducible representation J(x, λ, ν),
equipped with its canonical c-invariant Hermitian form, normalized to be pos-
itive on the lowest K-types.
(b) Write JK(x, λ, ν)c for the restriction of J(x, λ, ν) to K. I won’t always
make this distinction.
(c) Suppose IK(x, λ) is a nonzero standard final limit K-representation. Let
IK(x, λ)c denote this module equipped with the canonical c-invariant Hermi-
tian form which is positive on the (unique) lowest K-type.

The IK(x, λ)c form a basis of the Grothendieck group ofK-representations,
equipped with a c-invariant Hermitian form.

We want to compute formulas of the form

(13.2)(a) JK(x, λ, ν)c =
∑
x′,λ′

a(x′, λ′)IK(x′, λ′)c

where the sum is over nonzero final standard limit K-data, and a(x′, λ′) ∈W.
This is an identity in the Grothendieck group of K-modules with a c-invariant
form.

This proceeds in two steps. We first write J(x, λ, ν)c as a linear combi-
nation of I(x′, λ′, ν ′)c with coefficients in W. Recall (??) there is a character
formula

(13.2)(b)

J(x, λ, ν) =
∑

(x′,λ′,ν′)

(−1)`(x,λ,ν)−`(x
′,λ′,ν′)P((x′,λ′,ν′),(x,λ,ν))(1)I(x′, λ′, ν ′)

This is an identity in the Grothendieck group of (g, K)-modules and the sum
is over the block containing J(x, λ, ν).

If I(x, λ, ν) is a standard module, grI(x, λ, ν) has a distinguished, nonde-
generate, c-invariant form, obtained by deforming ν in the outward direction
so it becomes irreducible. We denote this I(x, λ, ν)c. Note that I(x, λ, ν)c is
lower semi-continuous in ν. As usual write IK(x, λ, ν)c to denote the restric-
tion to K.

In the equal rank case there is a simple generalization of (b):

(13.2)(c) J(x, λ, ν)c =
∑

(x′,λ′,ν′)

ε(s)P((x′,λ′,ν′),(x,λ,ν))(s)I(x′, λ′, ν ′)c
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where

(13.2)(d) ε(s) = s
`0(x,λ,ν)−`0(x

′,λ′,ν′)
2 (−1)`(x,λ,ν)−`(x

′,λ′,ν′).

This is an identity in the Grothendieck group of (g, K)-modules equipped
with a c-invariant form. The sum is over the block containing J(x, λ, ν);
taking s = 1 gives (b). The integers `0 are the orientation numbers of Section
??.

The second step is to write IK(x′, λ′, ν ′)c in terms of IK(x′′, λ′′)c. This is
by deforming ν to 0, which we defer to Section ??.

Here is how to compute (??). Use nblock to define J(x, λ, ν) and compute
its block; this is at possibly nonintegral or singular infinitesimal character
γ. Each parameter in the output of nblock may have an asterisk, indicating
which of the terms are nonzero at γ. The output also includes a computation
of the Pδ,µ for µ = (x, λ, ν).

Note that the character formula (b) gives the c-invariant form formula (c)
provided P∗,∗ is constant for all terms occcuring, and all orientation numbers
are 0. All orientation numbers are 0 for integral infinitesimal character.

13.1 c-Invariant Forms: Integral Infinitesimal Charac-
ter

Since the orientation numbers are all 0 the character formulas of Section ??
hold as stated unless some Pµ,δ is not a constant. The only case in which
this happens is formula (??)(i) in which the terms 2,3 have a coefficient of
q.

Therefore formulas (??)(a-h,j,k) are all valid as formulas for the c-invariant
form, except that (??)(i) should read:

(13.1.5)

J(x10, (a+ 1, b+ 1), (a, b))c =I(x10, (a, b), (a, b))c

− sI(x2, (a, b))c − sI(x3, (a, b))c

− I(x9, (a− b, 0),
1

2
(a+ b, a+ b))c
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13.2 c-Invariant Forms: Nonintegral Infinitesimal Char-
acter

In the case of nonintegral infinitesimal character, the integral root system is
type D2 or A1, and all the P polynomials are constant. Therefore the only
way for a c-invariant form formula to differ from the character formula is
from a difference of orientation numbers being odd.

So we have to consider character formulas (??), (??), (??), (??), and (??)
and see which of them require a correction due to the orientation numbers.

Cases (??), (??): I(x9, c, x) with x, c integers of opposite parity.
Combining (??) and (??) gives, for x, y ∈ Z + 1

2
, x > y > 0,

(13.2.6)
J(x10, (a, b), (x, y)) = I(x10, (a, b), (x, y))

−

{
I(x9, x− y, x+ y) x+ y = a+ b+ 1 (mod 2Z)

I(x9, x+ y, x− y) x+ y = a+ b (mod 2Z)

The orientation numbers for I(x10, (∗, ∗), 12(x+c, x−c)) are given in Table
??.7, and for I(x9, c, x) in Table ??.1.

A little monkeying around shows the following.
If x+ y = a+ b+ 1 (mod 2Z) then

`0(x10, (a, b), (x, y)) = 1, `0(x9, x− y, x+ y) = 1

so there is no contribution from the orientation numbers, and (??) holds as
a formula for c-invariant forms as follows.

Assume x+ y = a+ b+ 1 (mod 2Z), with x, y ∈ Z+ 1
2
, x > y > 0. Then

(13.2.7)

J(x10, (a, b), (x, y))c = I(x10, (a, b), (x, y))c − I(x9, x− y, x+ y)c.

Now suppose x+ y = a+ b (mod 2Z). Then

`0(x9, x+ y, x− y) = 0.

and on the other hand

`0(x10, (a, b), (x, y)) =

{
0 0 < y − b < 1

2 1 < y − b < 2

39



So this gives the first case of a nontrivial orientation number.
So: x+ y = a+ b (mod 2Z) implies

(13.2.8)

J(x10, (a, b), (x, y))c = I(x10, (a, b), (x, y))c

−

{
I(x9, x+ y, x− y)c 0 < y − b < 1

sI(x9, x+ y, x− y)c 1 < y − b < 2

Case (??): x 6∈ Z. This is very similar to cases (??), (??); see (??) and (??).

Suppose x− y ∈ Z, x+ y 6∈ Z. If x− y = a+ b (mod 2Z) then

(13.2.9)(a) J(x10, (a, b), (x, y)) = I(x10, (a, b), (x, y))− I(x9, x− y, x+ y)

If x− y 6= a+ b (mod 2Z) then I(x10, (a, b), (x, y)) is irreducible.

Suppose x+ y ∈ Z, x− y 6∈ Z. If x+ y = a+ b (mod 2Z) then

(13.2.9)(b) J(x10, (a, b), (x, y)) = I(x10, (a, b), (x, y))− I(x9, x+ y, x− y)

If x+ y 6= a+ b (mod 2Z) then I(x10, (a, b), (x, y)) is irreducible.

In (a) all terms have `0 = 1 if 0 < y < 1
2

(mod Z), and `0 = 2 if 1
2
< y < 1

(mod Z), so this holds as a formula for c-invariant forms. In other words (??)
still holds here: x− y ∈ Z, x+ y 6∈ Z, x− y = a+ b (mod 2Z) implies

(13.2.10) J(x10, (a, b), (x, y))c = I(x10, (a, b), (x, y))c − I(x9, x− y, x+ y)c

Similarly (??) still holds here: x + y ∈ Z, x − y 6∈ Z, x + y = a + b
(mod 2Z) implies

(13.2.11)

J(x10, (a, b), (x, y))c = I(x10, (a, b), (x, y))c

−

{
I(x9, x+ y, x− y)c 0 < y − b < 1

sI(x9, x+ y, x− y)c 1 < y − b < 2

Case (??):
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Now x > y = b > 0 with b ∈ Z. The character formula in this case is:
(13.2.12)
J(x10, (a, b), (x, b)) = I(x10, (a, b), (x, b))−I(x7, (a, b), (x, 0))−I(x8, (a, b), (x, 0))

The orientation numbers `0 of all terms are the same, either 1 or 2, so this
holds as a formula for c-invariant forms:
(13.2.13)

J(x10, (a, b), (x, b))c = I(x10, (a, b), (x, b))c − I(x7, (a, b), (x, 0))c − I(x8, (a, b), (x, 0))c .

Case (??):

This is analogous to the last case, with x 6∈ Z and b ∈ Z, except that now
x < b. The character formula is

J(x10,(b+ 1, a+ 1), (b, x))

=I(x10, (b+ 1, a+ 1), (b, x))− I(x7, (a, b), (x, 0))− I(x8, (a, b), (x, 0)).

If 1 < x − a < 2 (mod 2Z) then the orientation numbers of all terms
are `0 = 1; if 0 < x − a < 1 (mod 2Z) then I(x10, (b+ 1, a+ 1), (b, x)) has
orientation number 2, while the other terms have `0 = 0. So we have
(13.2.14)

J(x10, (b+ 1, a+ 1), (b, x))c = I(x10, (b+ 1, a+ 1), (b, x))c{
−sI(x7, (a, b), (x, 0))c − sI(x8, (a, b), (x, 0))c 0 < x− a < 1

−I(x7, (a, b), (x, 0))c − I(x8, (a, b), (x, 0))c 1 < x− a < 2

14 Deforming ν to 0

In the previous section we reduced the computation of J(x, λ, ν)c to comput-
ing I(x′, λ′, ν ′)c (see (??)). In this section we discuss how to write

(14.1) I(x, λ, ν)c =
∑
x′,λ′

b(x′, λ′)IK(x′, λ′)c

for b(x′, λ′) ∈ W, and the sum is over nonzero final standard limit K-data.
This proceeds by deformation to ν = 0, and by induction, which requires
using (??) along the way.
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Fix (x, λ, ν) and consider I(x, λ) = I(x, λ, 0). Assume for the moment
that I(x, λ) is final (and nonzero), so IK(x, λ) is a final limit standard K-
representation.

After deforming ν if necessary, we can assume I(x, λ, tkν) is reducible for
finitely many 0 < t1 < · · · < tn ≤ 1. This implies

I(x, λ, tν)c = IK(x, λ)c (t < t1)

Assume we’ve computed I(x, λ, tν)c for tk−1 ≤ t < tk.
Write γ = (x, λ, tkν).
First compute the composition factors J(γ′) of I(γ), and the polynomials

Q(γ′, γ). (Recall these are the polynomials satisfying I(γ) =
∑

γ′ Q(γ′, γ)(1)J(γ′).
Currently nblock computes P (γ′, γ). See Section ??.)

The c-invariant form changes sign on the odd levels of the Jantzen filtra-
tion. What this amounts to is the following.

For each γ′ with Q(γ′, γ) 6= 0 write

(14.10)(a) Q(γ′, γ)(q) =

`(γ)−`(γ′)∑
n=0

an(γ′, γ)q
`(γ)−`(γ′)−n

2

Note that an(γ′, γ) = 0 unless `(γ)− `(γ′) = n (mod 2Z), so

(14.10)(b) Q(γ′, γ)(q) =

`(γ)−`(γ′)∑
n=0

n≡`(γ)−`(γ′)

an(γ′, γ)q
`(γ)−`(γ′)−n

2

Then an is the multiplicity of J(γ′) in level n of the Jantzen filtration.
Note that γ′ can occur in an odd level of the Jantzen filtration of I(γ) only
if `(γ)− `(γ′) is odd. Therefore

(14.11)

I(x,λ, tkν)c = I(x, λ, tk−1ν)c

+ (1− s)
∑
γ′

`(γ′)−`(γ) odd

∑
n odd

s
`(γ)−`(γ′)−n

2 s
`0(γ)−`0(γ

′)
2 an(γ′, γ)J(γ′)c

By (??)(b) the inner sum, (after pulling out the `0 term), is just Q(γ′, γ)(s).
So:

(14.12)

I(x, λ, tkν)c = I(x, λ, tk−1ν)c

+ (1− s)
∑
γ′

`(γ′)−`(γ) odd

s
`0(γ)−`0(γ

′)
2 Q(γ′, γ)(s)J(γ′)c
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Here is the big block for Sp(4,R).

length 0
Of course there is nothing to do here:

(14.13) J(xk, (a, b))c = IK(xk, (a, b))c (0 ≤ k ≤ 3)

length 1, Cartan 1
Consider I(x9, (a+ b, 0), 1

2
(a− b, a− b)). It is easier to use the other co-

ordinates I(x9, c, x) = I(x9, (c, 0), 1
2
(x, x)) (??). Notice that length 1 implies

c > x.
The real root (1, 1) gives reducibility if and only if x = c (mod 2). The

complex root (2, 0) gives reducibility if and only if x = c (mod 2) and x ≥ c.
Here is how to pass back and forth. If c > x:

I(x9, c, x) = I(x9, (a+ b, 0),
1

2
(a− b, a− b)) (a =

1

2
(c+ x), b =

1

2
(c− x))

and these have length 1, while if c ≤ x:

I(x9, c, x) = I(x9, (a− b, 0),
1

2
(a+ b, a+ b)) (a =

1

2
(c+ x), b =

1

2
(x− c))

of length 2.
Suppose c is even. Then

(14.14)(a) I(x9, c, x)c = IK(x9, c)c (0 ≤ x < 2)

(This module is not final, so we can write it as a sum of two limits of discrete
series...but ignore this for this calculation.) If c > 2 then, taking x = 2,
(??)(a) gives

(14.14)(b) I(x9, c, 2) = J(x9, c, 2)+J(x0,
1
2
(c+2, c−2))+J(x1,

1
2
(c+2, c−2))

Apply (??) (or (??)). Since the reducibility points are at integral infinitesimal
character the orientation numbers are 0, and for 2 ≤ x < 4:
(14.14)(c)

I(x9, c, x)c = IK(x9, c)c

+ (1− s)[IK(x0,
1
2
(c+ 2, c− 2))c + IK(x1,

1
2
(c+ 2, c− 2))c]

Similarly if c > 4 then, taking x = 4, (??)(a) gives

(14.14)(d) I(x9, c, 4) = J(x9, c, 4)+J(x0,
1
2
(c+4, c−4))+J(x1,

1
2
(c+4, c−4))

43



and by (??) for (4 ≤ x < 6):
(14.14)(e)
I(x9, c, x)c = IK(x9, c)c

+ (1− s)[IK(x0,
1
2
(c+ 2, c− 2))c + IK(x1,

1
2
(c+ 2, c− 2))c]

+ (1− s)[IK(x0,
1
2
(c+ 4, c− 4))c + IK(x1,

1
2
(c+ 4, c− 4))c]

By induction on x we see for c even, x < c:
(14.14)(f)

I(x9, c, x)c = IK(x9, c)c

+ (1− s)
[x
2
]∑

k=1

[IK(x0,
1
2
(c+ 2k, c− 2k))c + IK(x1,

1
2
(c+ 2k, c− 2k))c]

Similarly for c odd, x < c:

(14.14)(g)

I(x9, c, x)c = IK(x9, c)c

+ (1− s)
x+1
2∑

k=1

[IK(x0,
1
2
(c+ (2k − 1), c− (2k − 1)))c

+ IK(x1,
1
2
(c+ (2k − 1), c− (2k − 1)))c]

In particular at ρ take c = 3, x = 1:
(14.14)(h)

I(x9, 3, 1)c = IK(x9, 3)c + (1− s)[IK(x0, (2, 1))c + IK(x1, (2, 1))c]

length 1, Cartan 2
Consider the representations

I(xk, (δ, a), (x, 0)) (k = 7, 8; a ∈ Z≥0)

which have length 1 if x < a. Such a representation is reducible if and only
if x = δ (mod 2).

Take k = 7 and δ = 0. There will be reducibility at x = 0, 2, . . . ,. We
start with

(14.15)(a) I(x7, (0, a), (0, 0)) = IK(x7, (0, a)).

For 0 ≤ x < 2 ≤ a, we get

I(x7, (0, a), (x, 0))c = IK(x7, (0, a))c.
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If 2 < a then taking x = 2 in (??)(c) gives

I(x7, (0, a), (2, 0)) =J(x7, (0, a), (2, 0))

+ J(x0, (a, 2)) + J(x2, (a, 2))

so by (??), if (2 ≤ x < 4):

I(x7, (0, a), (x, 0))c = IK(x7, (0, a), (x, 0))c

+ (1− s)[J(x0, (a, 2)) + J(x2, (a, 2))c]

Repeating this as in the previous case we conclude, for x < a:

(14.15)(b)

I(x7, (0,a), (x, 0))c = IK(x7, (0, a))c

+ (1− s)
[x
2
]∑

k=1

[IK(x0, (a, 2k))c + IK(x2, (a, 2k))c]

Similarly using (??)(d)

(14.15)(c)

I(x8, (0,a), (x, 0))c = IK(x8, (0, a))c

+ (1− s)
[x
2
]∑

k=1

[IK(x1, (a, 2k))c + IK(x3, (a, 2k))c]

The cases k = 7, 8, δ = 1 are similar. The results are:

(14.15)(d)

I(x7, (1,a), (x, 0))c = IK(x7, (1, a))c

+ (1− s)
[x+1

2
]∑

k=1

[IK(x0, (a, 2k − 1))c + IK(x2, (a, 2k − 1))c]

(14.15)(e)

I(x8, (1,a), (x, 0))c = IK(x8, (1, a))c

+ (1− s)
[x+1

2
]∑

k=1

[IK(x1, (a, 2k − 1))c + IK(x3, (a, 2k − 1))c]
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Consider the case of infinitesimal character ρ = (2, 1). Formulas (??)(b-e)
specialize as follows.

Take a = 2, x = 1 in (??)(b,c):

(14.16)(a) I(x7, (0, 2), (1, 0))c = IK(x7, (0, 2))c

(14.16)(b) I(x8, (0, 2), (1, 0))c = IK(x8, (0, 2))c

Take a = 2, x = 1 in (??)(d,e):

(14.16)(c)

I(x7, (1, 2), (1, 0))c = IK(x7, (1, 2))c + (1− s)[J(x0, (2, 1))c + J(x2, (2, 1))c]

(14.16)(d)

I(x8, (1, 2), (1, 0))c = IK(x8, (1, 2))c + (1− s)[J(x1, (2, 1))c + J(x3, (2, 1))c]

This completes the length 1 portion of our program. From now on we’ll
only include some special cases of a and b.

length 2, Cartan 1
These are the modules I(x9, c, x) = I(x9, (c, 0), 1

2
(x, x)) with c ≤ x. This

is reducible due to the real root (1, 1) if x = c (mod 2). It is reducible due to
the complex root (2, 0) provided this is integral, which is again the condition
x = c (mod 2). So if c is odd this is reducible at x = 1, 3, . . . , c, c+ 2, . . . .

Take c = 1. Then x = 3 gives infinitesimal character (x+c
2
, x−c

2
) = (2, 1) =

ρ.
Starting at x = 0:

(14.17)(a) I(x9, 1, x) = IK(x9, 1) (x < 1).

Reducibility at x = 1:

(14.17)(b) I(x9, 1, 1) = J(x9, 1, 1) + J(x0, (1, 0)) + J(x1, (1, 0))

The last two terms are limits of large discrete series. By (??) (since we’re at
integral infinitesimal character all orientation numbers are 0):

(14.17)(c) I(x9, 1, 1)c = IK(x9, 1)c + (1− s)[IK(x0, (1, 0))c + IK(x1, (1, 0))c]
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Reducibility at x = 3; the infinitesimal character is 1
2
(3+1, 3−1) = (2, 1) = ρ,

so this is directly from (??)(b):

(14.17)(d)

I(x9, 1, 3) = J(x9, 1, 3)2

+ J(x0, (2, 1))0 + J(x1, (2, 1))0

+ J(x9, 3, 1)1

+ J(x7, (1, 2), (1, 0))1 + J(x8, (1, 2), (1, 0))1

with lengths denoted by superscripts. Therefore (no orientation numbers
here; and recall that only modules with odd length difference occur in the
sum (??)):
(14.17)(e)
I(x9, 1, 3)c = I(x9, 1, 1)c

+ (1− s)[J(x9, 3, 1)c + J(x7, (1, 2), (1, 0))c + J(x8, (1, 2), (1, 0))c]

We’ll plug in (c) for the first term.
Now for the first time we need to express the c-invariant form on an

irreducible (each of the three in the last line) in terms of c-invariant forms
on standards, using Section ??, which goes back to the character formulas of
Section ?? in this case. Thus by (??)(a)

(14.17)(f) J(x9, 3, 1)c = I(x9, 3, 1)c − J(x0, (2, 1))c − J(x1, (2, 1))c

and plug in (??) for I(x9, 3, 1) to give:

(14.17)(g)

J(x9, 3, 1)c = IK(x9, 3)c

+ (1− s)[IK(x0, (2, 1))c + IK(x1, (2, 1))c]

− IK(x0, (2, 1))c − IK(x1, (2, 1))c

which simplifies to

(14.17)(h) J(x9, 3, 1)c = IK(x9, 3)c − s[IK(x0, (2, 1))c + IK(x1, (2, 1))c]

Similarly (??)(c) says:
(14.17)(i)
J(x7, (1, 2), (1, 0))c = I(x7, (1, 2), (1, 0))c − I(x0, (2, 1))c − I(x2, (2, 1))c.

Use (??) to expand
(14.17)(j)
I(x7, (1, 2), (1, 0))c = IK(x7, (1, 2))c + (1− s)[J(x0, (2, 1))c + J(x2, (2, 1))c]
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and so
(14.17)(k)

J(x7, (1, 2), (1, 0))c = IK(x7, (1, 2))c − s[IK(x0, (2, 1))c + IK(x2, (2, 1))c]

Finally (??)(d) says:
(14.17)(l)
J(x8, (1, 2), (1, 0))c = I(x8, (1, 2), (1, 0))c − I(x1, (2, 1))c − I(x3, (2, 1))c.

and using (??) to expand
(14.17)(m)
I(x8, (1, 2), (1, 0))c = IK(x8, (1, 2))c + (1− s)[J(x1, (2, 1))c + J(x3, (2, 1))c]

gives
(14.17)(n)

J(x8, (1, 2), (1, 0))c = IK(x8, (1, 2))c − s[IK(x1, (2, 1))c + IK(x3, (2, 1))c].

Plugging (c), (h), (k) and (n) into (e) gives:
(14.17)(o)
I(x9, 1, 3)c = IK(x9, 1)c + (1− s)[IK(x0, (1, 0))c + IK(x1, (1, 0))c]

+ (1− s){IK(x9, 3)c − s[IK(x0, (2, 1))c + IK(x1, (2, 1))c]}
+ (1− s){IK(x7, (1, 2))c − s[IK(x0, (2, 1))c + IK(x2, (2, 1))c]}
+ (1− s){IK(x8, (1, 2))c − s[IK(x1, (2, 1))c + IK(x3, (2, 1))c]}.

Grouping terms finally gives:
(14.17)(p)

I(x9, 1, 3)c = IK(x9, 1)c + (1− s)[IK(x0, (1, 0))c + IK(x1, (1, 0))c]

+ (1− s){2× IK(x0, (2, 1)c + 2× IK(x1, (2, 1)c + IK(x2, (2, 1)c + IK(x3, (2, 1))c}
+ (1− s){IK(x9, 3)c + IK(x7, 1, 2))c + IK(x8, 1, 2))c}.

length 2, Cartan 2 We compute I(x7, (2, 1), (2, 0))c and I(x8, (2, 1), (2, 0))c.
For k = 7, 8, let’s deform I(xk, (2, 1), (2, 0)) to I(xk, (2, 1), (0, 0)). By

the parity condition I(xk, (2, 1), (x, 0)) is reducible only if x = 2 (mod 2Z).
We’re taking 0 ≤ x ≤ 2, so this occurs only at the endpoints x = 0, x = 2.

At x = 0 this has to do with the fact that I(xk, (2, 1), (0, 0)) is not final.
Ignoring this for the moment, consider I(xk, (2, 1), (2, 0)), at infinitesimal
character (2, 1).
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The composition series at (2, 1) are given by (??)(e,f) (with lengths given
by superscripts)

(14.18)(a)

I(x7, (2, 1), (2, 0))2 = J(x7, (2, 1), (2, 0))2 + J(x0, (2, 1))0

+ J(x9, 3, 1)1 + J(x7, (1, 2), (1, 0))1

I(x8, (2, 1), (2, 0)) = J(x8, (2, 1), (2, 0))2 + J(x1, (2, 1))0

+ J(x9, 3, 1)1 + J(x8, (1, 2), (1, 0))1

Considering terms of odd length, with the orientation numbers being all 0,
(??) gives

(14.18)(b)

I(x7, (2, 1), (2, 0))c = I(x7, (2, 1), (0, 0))c

+ (1− s)[J(x9, 3, 1)c + J(x7, (1, 2), (1, 0))c]

I(x8, (2, 1), (2, 0))c = I(x8, (2, 1), (0, 0))c

+ (1− s)[J(x9, 3, 1)c + J(x8, (1, 2), (1, 0))c]

Here we are using that I(xk, (2, 1), (2 − ε, 0))c = I(xk, (2, 1), (0, 0))c, since
there is no reducibility for 0 < x < 2. We know J(x9, 3, 1)c, J(x7, (1, 2), (1, 0))c,
J(x8, (1, 2), (1, 0))c from (??)(h),(k) and (n), respectively. Also use (??) to
eliminate the terms I(xk, (2, 1), (0, 0))c with k = 7, 8. Plugging these in gives:

(14.18)(c)
I(x7, (2, 1), (2, 0))c = I(x0, (1, 0))c + I(x2, (1, 0))c

+ (1− s)
[
{IK(x9, 3)c − s[IK(x0, (2, 1))c + IK(x1, (2, 1))c]}

+ {IK(x7, (1, 2))c − s[IK(x0, (2, 1)) + IK(x2, (2, 1))]}
]

and this can be rewritten (recall that (1− s)(−s) = 1− s)

(14.18)(d)

I(x7, (2, 1), (2, 0))c = I(x0, (1, 0))c + I(x2, (1, 0))c

+ (1− s)
[
IK(x9, 3)c + IK(x7, (1, 2))c

+ 2× I(x0, (2, 1))c + I(x1, (2, 1))c + I(x2, (2, 1))c
]
.

Similarly

(14.18)(e)

I(x8, (2, 1), (2, 0))c = I(x1, (1, 0))c + I(x3, (1, 0))c

+ (1− s)
[
IK(x9, 3)c + IK(x8, (1, 2))c

+ I(x0, (2, 1))c + 2× I(x1, (2, 1))c + I(x3, (2, 1))c
]
.
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15 Digression: computing the Q polynomials

In the setting of the atlas software, suppose we have a block, with elements
0-n. The klbasis command gives the polynomials Pγ,γ′(q) on the block.

For example consider this part of the output for the big block of Sp(4,R):

10: 0: 1

1: 1

2: 1

3: 1

4: 1

5: 1

6: 1

7: 1

8: 1

9: 1

10: 1

This says the polynomials P0,10(q), P1,10(q), . . . , P10,10(q) are all 1. Recall
this means

J(10) =
∑
k

(−1)`(10)−`(k)Pk,10(q)I(k).

Taking lengths into account (from the block command) gives

J(10) = I(10)−I(9)−I(8)−I(7)+I(6)+I(5)+I(4)−I(3)−I(2)−I(1)−I(0)

This is the character formula for the trivial representation. See (??)(j).
On the other hand we’re interested in the Q polynomials, which satisfy

I(n) =
∑
k

Qk,n(1)J(k)

Here’s how to get these from klbasis.
Make G the dual group, and G∨ the group. Then

Qk,n(q) = Pn∨,k∨(q)

where k → k∨ is the duality map, given by dualmap.
For example take G = SO(3, 2), G∨ = Sp(4,R). Consider this part of

the output of klbasis:
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7: 0: 2

1: 1

2: 1

3: 1

4: 1

7: 1

Also dualmap gives

[10, 11, 9, 7, 8, 5, 6, 4, 0, 1, 2, 3]

The first line says P0,7(q) = 2 for SO(3, 2), and dualmap says 0∨ = 10, 7∨ = 4,
so

2 = P SO
0,7 (q) = QSp

4,10(q),

which says J(4) has multiplicity 2 in I(10) for Sp(4,R). See (??)(j).

16 Second Digression: An alternative version

of the calculation

Recall we used (??) to write the form on a standard module I(x, λ, ν) in
terms of forms on a standard module with smaller ν parameter, and forms
on more tempered irreducible modules J(γ′):

(16.1)

I(x, λ, tkν)c = I(x, λ, tk−1ν)c

+ (1− s)
∑
γ′

`(γ′)−`(γ) odd

s
`0(γ)−`0(γ

′)
2 Qγ′,γ(s)J(γ′)c

We proceeded by induction, assuming we’d already computed the terms
J(γ′)c.

Here is an equivalent formulation, which combines the two steps, and is
easier from a computational point of view. We restate this in a self-contained,
single step.
Inductive algorithm

Suppose we are given I(γ) = I(x, λ, ν). Typically this is at singular, and
possibly nonintegral, infinitesimal character. For small ε > 0, I(x, λ, (1+ε)ν)
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is irreducible. By (??) we have

(16.2)(a)

I(γ)c = I(x, λ, (1− ε)ν)c

+ (1− s)
∑
γ′<γ

`(γ)−`(γ′) odd

s
`0(γ)−`0(γ

′)
2 Qγ′,γ(s)J(γ′)c

By (??), for each γ′, write

(16.2)(b) J(γ′)c =
∑
δ′≤γ′

(−1)`(γ
′)−`(δ′)s

`0(γ
′)−`0(δ

′)
2 Pδ′,γ′(s)I(δ′)c

This formula is computed at (possibly singular, non-integral) infinitesimal
character. Plug it in to give

(16.2)(c)

I(γ)c = I(x, λ, (1− ε)ν)c

+ (1− s)
∑

δ′≤γ′<γ
`(γ)−`(γ′) odd

(−1)`(γ
′)−`(δ′)s

`0(γ)−`0(δ
′)

2 Pδ′,γ′(s)Qγ′,γ(s)I(δ′)c

or, spelling it out more explicitly:
(16.2)(d)

I(γ)c = I(x, λ, (1− ε)ν)c

+ (1− s)
∑
δ′

δ′<γ

s
`0(γ)−`0(δ

′)
2

[ ∑
γ′

δ′≤γ′<γ
`(γ)−`(γ′) odd

(−1)`(γ
′)−`(δ′)Pδ′,γ′(s)Qγ′,γ(s)

]
I(δ′)c

17 Invariant Forms

Suppose J is a representation of Sp(4,R) with a central character, and µ is
a K-type of π. Identify µ with its highest weight (r, s).

The element τ defining Sp(4,R) is diag(i, i,−i,−i), which is central in
K, and has square −I. It acts in µ by the scalar ir+s. Note that if −I acts
in J by ε = ±1 then (ir+s)2 = ε, i.e.

r + s is

{
even ε = 1

odd ε = −1.

Now assume J is irreducible and µ = (r, s) is a lowest K-type of J . Write
〈 , 〉 for the invariant form on J , and 〈 , 〉c for the c-invariant form as usual.
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Lemma 17.1 Suppose we have a formula as in (??)

(17.2) J(x, λ, ν)c =
∑
x′,λ′

a(x′, λ′)IK(x′, λ′)c.

Suppose −I acts by ε in J(x, λ, ν) and choose ζ2 = ε. Write the (unique)
lowest K-type of IK(x′, λ′) as (r(x′, λ′), s(x′, λ′)). Define

δ(x′, λ′) =

{
1 ζir(x

′,λ′)+s(x′,λ′) = 1

s ζir(x
′,λ′)+s(x′,λ′) = −1.

Then an invariant form on J is given by

(17.3) J(x, λ, ν)0 =
∑
x′,λ′

δ(x′, λ′)a(x′, λ′)IK(x′, λ′)0.

where IK(x′, λ′)0 is the unique positive definite invariant form. There is one
other invariant form, − this one.

In particular an invariant form on J is definite if and only if, for all x′, λ′

appearing in (??),

(17.4)(a) δ(x′, λ′)a(x′, λ′) ∈ Z for all (x′, λ′)

or

(17.4)(b) δ(x′, λ′)a(x′, λ′) ∈ sZ for all (x′, λ′)

17.1 Some Invariant Forms on Irreducibles for Sp(4,R)

We have some formulas for c-invariant forms on some irreducible represen-
tations: (??)(h,k,n) on J(x9, 3, 1), J(x7, (1, 2), (1, 0)) and J(x8, (1, 2), (1, 0)),
all at ρ. Let’s convert these to invariant forms.

These representations all have trivial central character. Therefore, we
may take ζ = 1 in Lemma ??. If (r, s) is a lowest K-type then the sign in

the lemma is (−1)
r+s
2 .

First consider J(x8, (1, 2), (1, 0)).
Equation (??)(n) says

(17.1.5)(a)

J(x8, (1, 2), (1, 0))c = IK(x8, (1, 2))c − s[IK(x1, (2, 1))c + IK(x3, (2, 1))c]

53



By Section ?? the lowest K-types on the right hand side are (−1,−3), (1,−3)

and (−3,−3), respectively, which have (−1)
r+s
2 = 1,−1,−1, respectively.

Therefore
(17.1.5)(b)

J(x8, (1, 2), (1, 0))0 = IK(x8, (1, 2))0 − [IK(x1, (2, 1))0 + IK(x3, (2, 1))0] .

This representation is unitary. This is representation 6 from the output of
block.

Of course, using (??)(k), J(x7, (1, 2), (1, 0))0 is essentially the same:
(17.1.5)(c)

J(x7, (1, 2), (1, 0))0 = IK(x7, (1, 2))0 − [IK(x0, (2, 1))0 + IK(x2, (2, 1))0] .

and this is unitary. This is representation 5 from the output of block.
Finally (??)(h) says

(17.1.5)(d) J(x9, 3, 1)c = IK(x9, 3)− s[IK(x0, (2, 1)) + IK(x1, (2, 1))]

and the invariant formula is

(17.1.5)(e) J(x9, 3, 1)0 = IK(x9, 3)0 − [IK(x0, (2, 1))0 + IK(x1, (2, 1))0]

which is unitary. This is representation 4 from the output of block.

Remark 17.1.6 Using the blocku command we can confirm the unitar-
ity. These representations are indeed Aq(λ) modules attached to theta stable
parabolic subalgebras with Levi factors L = U(1)×SL(2,R) and L = U(1, 1),
respectively.

18 c-Invariant Forms on Irreducible Repre-

sentations

We already have some formulas for c-invariant forms on some irreducible rep-
resentations: (??)(h,k,n) on J(x9, 3, 1), J(x7, (1, 2), (1, 0)) and J(x8, (1, 2), (1, 0)),
all at ρ.
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18.1 The c-invariant form on J(x9, 1, 3)

Let’s use (??)(p) to get a formula for J(x9, 1, 3)c. Recall J(x9, 1, 3) =
J(x9, (1, 0), 1

2
(3, 3)), irreducible representation 9 from the output of block

(see Section ??). The formula for J(x9, 1, 3)c is given by (??)(b) with a =
2, b = 1:

(18.1.1)
J(x9, 1, 3)c = I(x9, 1, 3)c

+ I(x0, (2, 1))c + I(x1, (2, 1))c + I(x2, (2, 1))c + I(x3, (2, 1))c

− I(x9, 3, 1)c

− I(x7, (1, 2), (1, 0))c − I(x8, (1, 2), (1, 0))c

The terms on the right hand side are given by (??)(p), (??) (4 times), (??)(h)
and (??)(d,e), respectively. The last three are also given in (??)(a,d,e). This
gives:

(18.1.2)
J(x9,1, 3)c ={

IK(x9, 1)c + (1− s)[IK(x0, (1, 0))c + IK(x1, (1, 0))c]

+ (1− s){2IK(x0, (2, 1))c + 2IK(x1, (2, 1))c}
+ (1− s){IK(x2, (2, 1))c + IK(x3, (2, 1))c}
+ (1− s){IK(x9, 3)c + IK(x7, 1, 2)c) + IK(x8, 1, 2)c}

}
+ IK(x0, (2, 1))c + IK(x1, (2, 1))c + IK(x2, (2, 1))c + IK(x3, (2, 1))c

−
{
IK(x9, 3)c + (1− s)[IK(x0, (2, 1))c + IK(x1, (2, 1))c]

}
−
{
IK(x7, (1, 2))c + (1− s)[IK(x0, (2, 1))c + IK(x2, (2, 1))c]

}
−
{
IK(x8, (1, 2))c + (1− s)[IK(x1, (2, 1))c + IK(x3, (2, 1))c]

}
Here is a table of the terms:
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k λ coefficients total (r, s) δ
9 1 1 1 (1,−1) 1
0 (1, 0) 1− s 1− s (2, 0) s
1 (1, 0) 1− s 1− s (0,−2) s
0 (2, 1) 2(1− s) + 1− (1− s)− (1− s) 1 (3,−1) s
1 (2, 1) 2(1− s) + 1− (1− s)− (1− s) 1 (1,−3) s
2 (2, 1) (1− s) + 1− (1− s) 1 (3, 3) s
3 (2, 1) (1− s) + 1− (1− s) 1 (−3,−3) s
9 3 (1− s)− 1 −s (2,−2) 1
7 (1, 2) (1− s)− 1 −s (3, 1) 1
8 (1, 2) (1− s)− 1 −s (−1,−3) 1

And the answer is:
(18.1.3)

J(x9, 1, 3)c = IK(x9, 1)c+

+ (1− s)
[
IK(x0, (1, 0))c + IK(x1, (1, 0))c

]
+
[
IK(x0, (2, 1))c + IK(x1, (2, 1))c + IK(x2, (2, 1))c + IK(x3, (2, 1))c

]
− s
[
IK(x9, 3)c + IK(x7, (1, 2))c + IK(x8, (1, 2))c

]
Note that if s = 1 this gives (??)(b) again, as it must.

Using Section ??, the invariant form is given as follows.

(18.1.4)

J(x9, 1, 3)0 = IK(x9, 1)0+

+ (s− 1)
[
IK(x0, (1, 0))0 + IK(x1, (1, 0))0

]
+ s
[
IK(x0, (2, 1))0 + IK(x1, (2, 1))0 + IK(x2, (2, 1))0 + IK(x3, (2, 1))0

− s
[
IK(x9, 3)0 + IK(x7, (1, 2))0 + IK(x8, 1, 2)0

]
This is not unitary. Note that we can tell this from the previous expression
because of the hyperbolic term (1− s).

18.2 The c-invariant form on J(x7,8, (2, 1), (2, 0))

The character formula for J(x7, (2, 1), (2, 0)) is (??)(e), and this holds as a
formula for c-invariant forms:
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(18.2.5)

J(x7,(2, 1), (2, 0))c = I(x7, (2, 1), (2, 0))c

+ I(x0, (2, 1))c + I(x1, (2, 1))c + I(x2, (2, 1))c

− I(x9, (3, 1))c − I(x7, (1, 2), (1, 0))c

The non-discrete series terms on the right hand side are given by (??)(d),
(??)(h) and (??)(c). The result is:
(18.2.6)

J(x7, (2, 1), (2, 0))c = −s[I(x9, 3)c + I(x7, (1, 2))c]

+ [I(x0, (1, 0))c + I(x2, (1, 0))c]

+ [I(x0, (2, 1))c + I(x1, (2, 1))c + I(x2, (2, 1))c]

The lowestK-types of these terms are: (2,−2), (3, 1), (2, 0), (2, 2), (3,−1), (1,−3), (3, 3).
We multiply by 1, 1, s, 1, s, s, s respectively, to give the invariant form:
(18.2.7)

J(x7, (2, 1), (2, 0))0 = −s[I(x9, 3)0 + I(x7, (1, 2))0]

+ [sI(x0, (1, 0))0 + I(x2, (1, 0))0]

+ s[I(x0, (2, 1))0 + I(x1, (2, 1))0 + I(x2, (2, 1))0]

This representation is not unitary: the signs differ on the two lowest
K-types (2, 2) and (2, 0).

Similarly:

(18.2.8)

J(x8, (2, 1), (2, 0))c = −s[I(x9, 3)c + I(x8, (1, 2))c]

+ [I(x1, (1, 0))c + I(x3, (1, 0))c]

+ [I(x0, (2, 1))c + I(x1, (2, 1))c + I(x3, (2, 1))c]

19 The Trivial Representation

Let’s prove the trivial representation J(x10, (2, 1), (2, 1)) is unitary.
The deformation will go as follows. Let ν = (1 + ε)(2, 1) for ε > 0

small. Deforming ν to 0 we have the following reducibility points, up to
small deformations.
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(19.1)(a) ν = (2, 1), (
4

3
,
2

3
), (1,

1

2
), (

2

3
,
1

3
)

At the first point the integral root system is C2; at all the others it is of
type A1.

Here is the reducibility at ν = (2
3
, 1
3
), obtained using nblock.

The input is λ = ρ = (2, 1), so λ− ρ = (0, 0).

real: nblock

choose Cartan class (one of 0,1,2,3): 3

Choosing the unique KGB element for the Cartan class:

10: 3 [r,r] 10 10 * * (0,0)#3 1^2x1^e

rho = [1,1]/1

Give lambda-rho: 0 0

denominator for nu: 3

numerator for nu: 1 1

x=10, lambda=[1,1]/1, gamma=[1,1]/3.

Name an output file (return for stdout, ? to abandon):

Subsystem on dual side is of type A1, with roots 6.

Given parameters define element 1 of the following block:

0(0,2): 0 [i2] 0 (1,2) *(x= 4, nu= [2,-1]/6,,lam=rho+ [-2,0]) 2,1,2

1(1,0): 1 [r2] 2 (0,*) *(x=10, nu= [1,1]/3,,lam=rho+[-2,-2]) e

2(1,1): 1 [r2] 1 (0,*) *(x=10, nu= [1,1]/3,,lam=rho+[-2,-1]) e

KL polynomials (-1)^{l(1)-l(x)}*P_{x,1}:

0: -1

1: 1

This says:

(19.1)(b) I(x10, (2, 1), (
2

3
,
1

3
)) = J(x10, (2, 1), (

2

3
,
1

3
)) + J(x9, 1,

1

3
).

Dangerous Bend: Here come some orientation numbers.
Applying (??) as usual, for the first time we have some nontrivial orien-

tation numbers.
By Table ??.4, (a = 0, b = 1, y = 1

3
), `0(x10, (2, 1), (2

3
, 1
3
)) = 3. On the

other hand by Table (??).2, with (c = 1, x = 1
3
), `0(x9, 1,

1
3
) = 1. The

orientation number contribution to (??) is s
1
2
(3−1) = s, so:
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(19.1)(c)
I(x10, (2, 1), (

2

3
,
1

3
))c = IK(x10, (2, 1))c + (1− s)sIK(x9, 1)c

= IK(x10, (2, 1))c + (s− 1)IK(x9, 1)c.

The next reducibility point is (1, 1
2
). We’re interested in I(x10, (2, 1), (1, 1

2
)).

This is of type AIsn in the notation of [?, Section 6]. Here is nblock:

real: nblock

choose Cartan class (one of 0,1,2,3): 3

Choosing the unique KGB element for the Cartan class:

10: 3 [r,r] 10 10 * * (0,0)#3 1^2x1^e

rho = [1,1]/1

Give lambda-rho: 0 0

denominator for nu: 2

numerator for nu: 1 1

x=10, lambda=[1,1]/1, gamma=[1,1]/2.

Name an output file (return for stdout, ? to abandon):

Subsystem on dual side is of type A1, with roots 7.

Given parameters define element 2 of the following block:

0(0,1): 0 [i1] 1 (2,*) *(x= 5, nu= [-1,1]/2,,lam=rho+ [0,-1]) 1,2,1

1(1,1): 0 [i1] 0 (2,*) *(x= 6, nu= [-1,1]/2,,lam=rho+ [0,-1]) 1,2,1

2(2,0): 1 [r1] 2 (0,1) *(x=10, nu= [1,1]/2,,lam=rho+[-2,-2]) e

KL polynomials (-1)^{l(2)-l(x)}*P_{x,2}:

0: -1

1: -1

2: 1

This says
(19.1)(d)

I(x10, (2, 1), (1,
1

2
)) = J(x10, (2, 1), (1,

1

2
))+J(x5, (1, 0), (0,

1

2
))+J(x6, (1, 0), (0,

1

2
))

or alternatively
(19.1)(e)

I(x10, (2, 1), (1,
1

2
)) = J(x10, (2, 1), (1,

1

2
))+J(x7, (0, 1), (

1

2
, 0))+J(x8, (0, 1), (

1

2
, 0))

Now apply (??). There is an orientation number here: `0(x10, (2, 1), (1, 1
2
)) =

2 (Table ??.1) and `0(x7,8, (0, 1), (1
2
, 0)) = 0 (Table ??.1). So:
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(19.1)(f)
I(x10, (2, 1), (1,

1

2
))c = I(x10, (2, 1)(

2

3
,
1

3
))c

+ (1− s)s
[
IK(x7, (0, 1))c + IK(x8, (0, 1))c

]
Plugging in (c) gives

(19.1)(g)
I(x10, (2, 1), (1,

1

2
))c = IK(x10, (2, 1))c + (s− 1)IK(x9, 1)c

+ (s− 1)
[
IK(x7, (0, 1))c + IK(x8, (0, 1))c

]
However there is one more step: I(x7, (0, 1)) and I(x8, (0, 1)) are not final.
Use (??) to give
(19.1)(h)

I(x10, (2, 1), (1,
1

2
))c = IK(x10, (2, 1))c + (s− 1)IK(x9, 1)c

+ (s− 1)
[
IK(x0, (1, 0))c + IK(x1, (1, 0))c + IK(x2, (1, 0))c + IK(x3, (1, 0))c

]
Let’s move on to (4

3
, 2
3
), i.e. I(x10, (2, 1), (4

3
, 2
3
)). This standard module

is irreducible. The integral real root is (1, 1). By the table in Section ??
this fails the parity condition, so doesn’t give reducibility. This is also what
nblock says:

real: nblock

choose Cartan class (one of 0,1,2,3): 3

Choosing the unique KGB element for the Cartan class:

10: 3 [r,r] 10 10 * * (0,0)#3 1^2x1^e

rho = [1,1]/1

Give lambda-rho: 0 0

denominator for nu: 3

numerator for nu: 2 2

x=10, lambda=[1,1]/1, gamma=[2,2]/3.

Name an output file (return for stdout, ? to abandon):

Subsystem on dual side is of type A1, with roots 6.

Given parameters define element 0 of the following block:

0(0,0): 0 [rn] 0 (*,*) *(x=10, nu= [2,2]/3,,lam=rho+[-2,-2]) e

KL polynomials (-1)^{l(0)-l(x)}*P_{x,0}:

0: 1
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Note that in [?, Section 6], case AIsn, this example doesn’t appear (mean-
ing it is irreducible); in that notation we’d be considering J(x, 2e, (4

3
, 2
3
)), but

what appears in the table is J(x, 2o, (4
3
, 2
3
)).

Finally we come to ν = (2, 1). By (??)(j) with a = 2, b = 1:

(19.1)(i)

I(x10, (2,1), (2, 1))3 =

J(x10, (2, 1), (2, 1))3

+ J(x0, (2, 1))0 + J(x1, (2, 1))0

+ 2× J(x9, 3, 1)1

+ J(x7, (1, 2), (1, 0))1 + J(x8, (1, 2), (1, 0))1

+ J(x7, (2, 1), (2, 0))2 + J(x8, (2, 1), (2, 0))2

+ J(x9, 1, 3)2

Remember J(x9, c, x) = J(x9, (c, 0), 1
2
(x, x)), with infinitesimal character

1
2
(x+ c, x− c).

We’re at integral infinitesimal character, so there are no orientation num-
bers, so (??) gives

(19.1)(j)

I(x10, (2,1), (2, 1))c = I(x10, (2, 1), (1,
1

2
))c

+ (1− s)
[
IK(x0, (2, 1))c + IK(x1, (2, 1))c

]
+ (1− s)

[
J(x7, (2, 1), (2, 0))c + J(x8, (2, 1), (2, 0))c + J(x9, 1, 3)c

]
and plugging in (h) for J(x10, (2, 1), (1, 1

2
))c gives

(19.1)(k)
I(x10, (2,1), (2, 1))c = IK(x10, (2, 1))c

+ (s− 1)IK(x9, 1)c

+ (s− 1)
[
IK(x0, (1, 0))c + IK(x1, (1, 0))c + IK(x2, (1, 0))c + IK(x3, (1, 0))c

]
+ (1− s)

[
IK(x0, (2, 1))c + IK(x1, (2, 1))c

]
+ (1− s)

[
J(x7, (2, 1), (2, 0))c + J(x8, (2, 1), (2, 0))c + J(x9, 1, 3)c

]
We still have to deal with the terms J(x7, (2, 1), (2, 0)) J(x8, (2, 1), (2, 0))

and J(x9, 1, 3).
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These are available from (??), (??) and (??). So:

(19.1)(l)
I(x10, (2,1), (2, 1))c = IK(x10, (2, 1))c

+ (s− 1)IK(x9, 1)c

+ (s− 1)
[
IK(x0, (1, 0))c + IK(x1, (1, 0))c + IK(x2, (1, 0))c + IK(x3, (1, 0))c

]
+ (1− s)

[
IK(x0, (2, 1))c + IK(x1, (2, 1))c

]
+ (1− s)

{
− s[I(x9, 3)c + I(x7, (1, 2))c]

+ I(x0, (1, 0))c + I(x2, (1, 0))c

+ I(x0, (2, 1))c + I(x1, (2, 1))c + I(x2, (2, 1))c

− s[I(x9, 3)c + I(x8, (1, 2))c]

+ I(x1, (1, 0))c + I(x3, (1, 0))c

+ I(x0, (2, 1))c + I(x1, (2, 1))c + I(x3, (2, 1))c

+ IK(x9, 1)c + (1− s)
[
IK(x0, (1, 0))c + IK(x1, (1, 0))c

]
+ IK(x0, (2, 1))c + IK(x1, (2, 1))c + IK(x2, (2, 1))c + IK(x3, (2, 1))c

− s
[
IK(x9, 3)c + IK(x7, (1, 2)c + IK(x8, 1, 2)c

] }
Here is a table of the terms:
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k λ coefficients total
10 (2, 1) 1 1
9 1 (s− 1) + (1− s) 0
9 3 (1− s) + (1− s) + (1− s) 3(1− s)
8 (1, 2) (1− s) + (1− s) 2(1− s)
7 (1, 2) (1− s) + (1− s) 2(1− s)
3 (2, 1) (1− s) + (1− s) 2(1− s)
2 (2, 1) (1− s) + (1− s) 2(1− s)
1 (2, 1) (1− s) + (1− s) + (1− s) + (1− s) 4(1− s)
0 (2, 1) (1− s) + (1− s) + (1− s) + (1− s) 4(1− s)
3 (1, 0) (s− 1) + (1− s)) 0
2 (1, 0) (s− 1) + (1− s)) 0
1 (1, 0) (s− 1) + (1− s) + (1− s)2 2(1− s)
0 (1, 0) (s− 1) + (1− s) + (1− s)2 2(1− s)

The character formula for the trivial representation is (??)(j) with a =
2, b = 1, and this holds without change for c-invariant forms (see Section ??):

(19.1)(m)
J(x10, (2,1), (2, 1))c = I(x10, (2, 1), (2, 1))c

−
{
I(x9, 1, 3)c + I(x7, (2, 1), (2, 0))c + I(x8, (2, 1), (2, 0))c

}
+
{
I(x7, (1, 2), (1, 0))c + I(x8, (1, 2), (1, 0))c + I(x9, 3, 1)c

}
−
{
I(x3, (2, 1))c + I(x2, (2, 1))c + I(x1, (2, 1))c + I(x0, (2, 1))c

}
We know the terms on the right hand side:

(1) I(x10, (2, 1), (2, 1))c: (??)

(2) I(x9, 1, 3)c: (??)

(3) I(x9, 3, 1)c: (??)(h)

(4) I(xk, (1, 2), (1, 0))c (k = 7, 8): (??)

(5) I(xk, (2, 1), (2, 0))c (k = 7, 8): (??)(d) and (e)

Of course the last four terms require no further comment.
So let’s tabulate everything. The next table has a column for each

standard module on the right hand side of (??), each row is a limit K-
representation IK(x, λ), and the columns give the multiplicities in the ex-
pression of the c-invariant form on the standard module.
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I(x10, (2, 1), (2, 1))c I(x9, 1, 3)c I(x7, (2, 1), (2, 0))c I(x8, (2, 1), (2, 0))c

IK(x10, (2, 1))c 1
IK(x9, 1)c 0 −1
IK(x9, 3)c 3(1− s) −(1− s) −(1− s) −(1− s)
IK(x8, (1, 2))c 2(1− s) −(1− s) −(1− s)
IK(x7, (1, 2))c 2(1− s) −(1− s) −(1− s)
IK(x3, (2, 1))c 2(1− s) −(1− s) −(1− s)
IK(x2, (2, 1))c 2(1− s) −(1− s) −(1− s)
IK(x1, (2, 1))c 4(1− s) −2(1− s) −(1− s) −2(1− s)
IK(x0, (2, 1))c 4(1− s) −2(1− s) −2(1− s) −(1− s)
IK(x3, (1, 0))c −1
IK(x2, (1, 0))c −1
IK(x1, (1, 0))c 2(1− s) −(1− s) −1
IK(x0, (1, 0))c 2(1− s) −(1− s) −1

I(x7, (1, 2), (1, 0))c I(x8, (1, 2), (1, 0))c I(x9, 3, 1)c DS Sum

IK(x10, (2, 1))c 1
IK(x9, 1)c −1
IK(x9, 3)c 1 1
IK(x8, (1, 2))c 1 1
IK(x7, (1, 2))c 1 1
IK(x3, (2, 1))c (1− s) −1 −s
IK(x2, (2, 1))c (1− s) −1 −s
IK(x1, (2, 1))c (1− s) (1− s) −1 −s
IK(x0, (2, 1))c (1− s) (1− s) −1 −s
IK(x3, (1, 0))c −1
IK(x2, (1, 0))c −1
IK(x1, (1, 0))c −s
IK(x0, (1, 0))c −s

So:
(19.1)(n)
J(x10, (2, 1), (2, 1))c = IK(x10, (2, 1))c

+
[
IK(x9, 3)c − IK(x9, 1)c

]
+
[
IK(x7, (1, 2))c + IK(x8, (1, 2))c

]
− s
[
IK(x0, (2, 1))c + IK(x1, (2, 1))c + IK(x2, (2, 1))c + IK(x3, (2, 1))c

]
−
[
sIK(x0, (1, 0))c + sIK(x1, (1, 0))c + IK(x2, (1, 0))c + IK(x3, (1, 0))c

]
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To get the invariant form, we give the lowest K-types and the correspond-
ing correction factors:

IK(x10, (2, 1)) (0, 0) 1
IK(x9, 1) (1,−1) 1
IK(x9, 3) (2,−2) 1
IK(x8, (1, 2)) (−1,−3) 1
IK(x7, (1, 2)) (3, 1) 1
IK(x3, (2, 1)) (−3,−3) s
IK(x2, (2, 1)) (3, 3) s
IK(x1, (2, 1)) (1,−3) s
IK(x0, (2, 1)) (3,−1) s
IK(x3, (1, 0)) (−2,−2) 1
IK(x2, (1, 0)) (2, 2) 1
IK(x1, (1, 0)) (0,−2) s
IK(x0, (1, 0)) (2, 0) s

Taking this into account we compute the invariant form on the trivial
representation J(x10, (2, 1), (2, 1)):

(19.1)(o)
J(x10, (2, 1), (2, 1))0 = IK(x10, (2, 1))

+
[
IK(x9, 3)− IK(x9, 1)

]
+
[
IK(x7, (1, 2)) + IK(x8, (1, 2))

]
−
[
IK(x0, (2, 1)) + IK(x1, (2, 1)) + IK(x2, (2, 1)) + IK(x3, (2, 1))

]
−
[
IK(x0, (1, 0)) + IK(x1, (1, 0)) + IK(x2, (1, 0)) + IK(x3, (1, 0))

]
.

Therefore the trivial representation of Sp(4,R) is unitary. If anyone knows
an easier proof please let me know.
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