THE REAL CHEVALLEY INVOLUTION SINGAPORE CONFERENCE ON BRANCHING LAWS

Jeffrey Adams

 $March\ 26,\ 2012$

THE CHEVALLEY INVOLUTION

G: connected, reductive, H: Cartan subgroup

THEOREM

- (1) There is an involution C of G satisfying: $C(h) = h^{-1}$ $(h \in H)$;
- (2) $C(g) \sim g^{-1}$ for all semisimple elements g;
- (3) Any two such involutions are conjugate by an inner automorphism;
- (4) C is the Cartan involution of the split real form of $G(\mathbb{C})$.

C is the Chevalley involution of G

suppose G defined over F (local field)

 π : irreducible admissible representation of G(F)

 $\pi^* = \text{contragredient of } \pi$

QUESTION

What is $\pi \to \pi^*$ in terms of L-homomorphisms?

$$\phi: W_F' \to {}^L\!G, \ \pi \in \Pi(\phi) \longrightarrow \phi^* \text{ s.t. } \pi^* \in \Pi(\phi^*)$$

Question is: what is the map $\phi \to \phi^*$?

C: Chevalley involution of ${}^L\!G$

CONJECTURE (A/VOGAN)

$$\phi^* = C \circ \phi$$

i.e.

$$\Pi(\phi)^* = \Pi(C \circ \phi)$$

(true for GL(n,F), F p-adic)

THEOREM (A/VOGAN)

True $F = \mathbb{R}$.

(Mumbai 2012, arXiv 1201.0496)

COROLLARY

Every L-packet is self-dual if and only if $-1 \in W(G, H)$

$$(W(G,H) = W(G(\mathbb{C}),H(\mathbb{C})))$$

Today: the group side

QUESTION

What about realizing π^* via an involution of $G(\mathbb{R})$?

- (1) Is the Chevalley involution defined over \mathbb{R} ?
- (2) Does it satisfy $C(g) \sim_{G(\mathbb{R})} g^{-1}$ for all $g \in G(\mathbb{R})$?

Note: (1) only implies $C(g) \sim_{G(\mathbb{C})} g^{-1}$

MOTIVATION

General question: automorphisms of G, on the dual side

Hermitian dual, applications to unitarity

Character theory

Frobenius-Schur (symplectic/orthogonal) indicator

Applications to L-functions (contragredient)

recent paper of D. Prasad and Ramakrishnan

Example (D. Prasad)

 $G = F_4, G_2, E_8, F \text{ p-adic}, G(F) \text{ split}$

There are Chevalley involutions C of G, defined over F

None of them satisfy: $C(g) \sim_{G(F)} g^{-1}$

(only
$$C(g) \sim_{G(\overline{F})} g^{-1}$$
)

(since every automorphism of G(F) is inner, and G(F) has non-self dual representations)

EXAMPLE

$$G = SL(2, \mathbb{R})$$

$$x = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\tau(g) = xgx^{-1}$$

$$\tau(g) \sim g^{-1} \ (g \in \text{split Cartan subgroup})$$

$$\text{But } \tau(g) \not\vdash g^{-1} \quad (g \in \text{compact Cartan})$$

$$y = \text{diag}(i, -i)$$

$$C(g) = ygy^{-1}, \ C(g) \sim g^{-1} \text{ for all } g$$

Moral: Focus on the fundamental (most compact) Cartan subgroup

THE REAL CHEVALLEY INVOLUTION

G defined over \mathbb{R} , $\theta = \text{Cartan involution}$

H is fundamental if the split rank of $H_f(\mathbb{R})$ is minimal

DEFINITION

A Chevalley involution is fundamental if $C(g) = g^{-1}$ for all g in some fundamental Cartan subgroup of G.

THE REAL CHEVALLEY INVOLUTION

THEOREM

- (1) There is a fundamental Chevalley involution C of G;
- (2) C is defined over \mathbb{R} , $C: G(\mathbb{R}) \to G(\mathbb{R})$;
- (3) $C(g) \sim_{G(\mathbb{R})} g^{-1} \ (g \in G(\mathbb{R}) \ semisimple)$
- (3) Any two fundamental Chevalley involutions are conjugate by an inner automorphism of $G(\mathbb{R})$.

Sketch of proof of the Theorem

Existence of C:

Pinning:
$$\mathcal{P} = (B, H, \{X_{\alpha}\})$$

Line everything up with respect to \mathcal{P}

$$C(X_{\alpha}) = X_{-\alpha}, \quad \sigma_c(X_{\alpha}) = -X_{-\alpha} \ (G^{\sigma_c} \ \text{compact})$$

$$δ$$
: distinguished automorphism (preserving \mathcal{P}), $x ∈ H^δ$

$$\theta(X_{\alpha}) = \alpha(x) X_{\delta(\alpha)}$$

$$\sigma = \theta \sigma_c$$
, $G(\mathbb{R}) = G^{\sigma}$

Sketch of proof of the Theorem

Lemma

$$\theta \sigma_c = \sigma_c \theta$$

$$C\theta = \theta C$$

$$C\sigma = \sigma C$$

DIGRESSION

Proposition (Lusztig)

F algebraically closed \Rightarrow

$$C(g) \sim_G g^{-1} \text{ for all } g$$

QUESTION

 $C = fundamental \ Chevalley \ involution$

$$C(g) \sim_{G(\mathbb{R})} g^{-1}$$
 for all g ?

Note added after the talk: Lusztig's proof generalizes readily to answer the question affirmatively. Binyong Sun proved this for (certain) classical groups, and Sun, Vogan and I saw how to generalize Lusztig and Sun's proofs to the general real case.

since $C(g) \sim_{G(\mathbb{R})} g^{-1}$ (g semisimple)

COROLLARY

$$\pi \ irreducible \Rightarrow \pi^C \simeq \pi^*$$

COROLLARY

Every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if C is inner for $G(\mathbb{R})$

Necessary but not sufficient: $-1 \in W(G, H)$

 $H(\mathbb{R})$ fundamental

$$W(G(\mathbb{R}), H(\mathbb{R})) = \operatorname{Norm}_{G(\mathbb{R})}(H(\mathbb{R}))/H(\mathbb{R}) \hookrightarrow W(G, H)$$

Proposition

Every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if

$$-1 \in W(G(\mathbb{R}), H(\mathbb{R}))$$

(easy consequence of the Theorem)

$$G, G(\mathbb{R}) = G\sigma, K = G^{\theta} (K \text{ is complex})$$

$$H_K = H \cap K \subset H$$
: Cartan subgroup of K

Equal rank case: $H_K = H$

$$W(K,H) \simeq W(G(\mathbb{R}),H(\mathbb{R}))$$

COROLLARY

Every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if

$$-1 \in W(K, H)$$

Dangerous Bend In the unequal rank case

$$W(K,H) \simeq W(K,H_K)$$

right hand side: Weyl group of a (disconnected) reductive group but -1 has different meaning on the two sides $x \in \operatorname{Norm}_K(H) = \operatorname{Norm}_K(H_K)$,

$$xhx^{-1} = h^{-1} \quad (h \in H_K) \Rightarrow xhx^{-1} = h^{-1} \quad (h \in H)$$

PROPOSITION

Every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if every irreducible representation of K is self-dual, and, in the unequal rank case, $-1 \in W(G, H)$

(equal rank case: $-1 \in W(K, H_K) \Rightarrow -1 \in W(G, H)$)

Proposition

 $G(\mathbb{R})$ is simple: every irreducible representation of $G(\mathbb{R})$ is self-dual if and only if $-1 \in W(G, H)$ and, in the equal rank case, $G(\mathbb{R})$ is a pure real form.

pure:
$$\theta = \operatorname{int}(x)$$
, $x^2 = 1$

 $(-1 \in W(G, H) \Rightarrow Z(G) = \text{two-group} \Rightarrow \text{purity independent of the choice of } x)$ "Purity Of Essence"

Key point: $g \in \text{Norm}_G(H)$ representative of $-1 \in W(G, H)$:

$$-1 \in W(K, H) \Leftrightarrow xgx^{-1} = g \Leftrightarrow x^2g = g \Leftrightarrow x^2 = 1$$

COROLLARY

 $G \ adjoint, -1 \in W(G, H) \Rightarrow$

every irreducible representation of $G(\mathbb{R})$ is self-dual

LIST OF SIMPLE $G(\mathbb{R})$, WITH ALL π SELF-DUAL

- (1) A_n : SO(2,1), SU(2) and SO(3).
- (2) B_n : Every real form of the adjoint group, Spin(2p, 2q + 1) (p even).
- (3) C_n : Every real form of the adjoint group, Sp(p,q).
- (4) D_{2n+1} : none.
- (5) D_{2n} , unequal rank: all real forms
- (6) D_{2n} , equal rank (various cases...)
- (7) E_6 : none.
- (8) E_7 : Every real form of the adjoint group, simply connected compact.
- (9) G_2, F_4, E_8 : every real form.
- (10) complex groups of type $A_1, B_n, C_n, D_{2n}, G_2, F_4, E_7, E_8$

$$T: \pi \simeq \pi^* \to \langle v, w \rangle = (Tv)(w)$$

 \langle,\rangle bilinear, symmetric or antisymmetric:

$$\langle v, w \rangle = \epsilon_{\pi} \langle w, v \rangle \quad (\epsilon_{\pi} = \pm 1)$$

 ϵ_{π} = Frobenius-Schur indicator

PROBLEM

How do you compute ϵ_{π} ?

(interesting invariant of self-dual representations)

FROBENIUS-SCHUR INDICATOR: FINITE DIMENSIONAL REPRESENTATIONS

$$G(\mathbb{R}), \pi \simeq \pi^*$$
 finite dimensional,

$$\chi_{\pi}$$
: central character

$$z(\rho^{\vee}) = \exp(2\pi i \rho^{\vee}) \in Z(G)$$

(fixed by all automorphisms)

Proposition (Bourbaki)

$$\epsilon_{\pi} = \chi_{\pi}(z(\rho^{\vee}))$$

FROBENIUS-SCHUR INDICATOR: FINITE DIMENSIONAL REPRESENTATIONS

Key ingredient of proof:

$$w_0 \in W = W(G, H)(\text{ long element})) \to g \in \text{Norm}_H(G) \pmod{w_0}$$

 $\to g^2 \in H$

 $q^2 = z(\rho^{\vee}),$

LEMMA

We can choose g so that

If $-1 \in W$ this is independent of all choices.

(proof: uses the Tits group)

Remark: Same fact (dual side): discrete series are parametrized by $X^*(H) + \rho$

Frobenius-Schur indicator: Finite Dimensional Representations

proof of Proposition:

$$\chi_{\pi}(g^{2})\langle v, \pi(g)v \rangle = \langle \pi(g^{2})v, \pi(g)v \rangle$$
$$= \langle \pi(g)v, v \rangle$$
$$= \epsilon(\pi)\langle v, \pi(g)v \rangle$$

i.e.

$$\chi_{\pi}(g^2)\langle v, \pi(g)v\rangle = \epsilon(\pi)\langle v, \pi(g)v\rangle$$

Take $v \in V_{\lambda}$ (highest weight space), $\pi(g)v \in V_{-\lambda}$, $\langle v, \pi(g)v \rangle \neq 0$ (also see [Prasad, IMRN 1999])

Suppose every irreducible π (infinite dimensional) is self-dual μ : lowest K-type, multiplicity one, self-dual (by previous lemma)

$$\epsilon_{\pi} = \epsilon_{\mu}$$

Example: Assume K is connected

Take π finite dimensional

(1)
$$\epsilon_{\pi} = \chi_{\pi}(z(\rho_G^{\vee}))$$
 (result applied to G)

(2)
$$\epsilon_{\pi} = \epsilon_{\mu} = \chi_{\mu}(z(\rho_{K}^{\vee}))$$
 (result applied to K)

How can this be?

This implies

$$K \text{ connected}, -1 \in W(K, H) \Rightarrow z(\rho_G^{\vee}) = z(\rho_K^{\vee})$$

alternative proof:

$$W(G,H) \ni -1 \to g \to g^2 = z(\rho_G^{\vee})$$

view $g \in W(K,H), -1 \to g^2 = z(\rho_K^{\vee})$

Surprise:

LEMMA

Assume $-1 \in W(K, H)$. Then

$$z(\rho_G^{\vee}) = z(\rho_K^{\vee})$$

Example:
$$G = SL(2)/PGL(2)$$

$$G(\mathbb{R}) = SL(2,\mathbb{R})/PGL(2,\mathbb{R}) : z(\rho_G^{\vee}) = -I$$

$$K = SO(2)/O(2)$$
: $z(\rho_K^{\vee}) = I$

$$SL(2,\mathbb{R}): z(\rho_G^{\vee}) = -I \neq I = z(\rho_K^{\vee}) \ (-1 \notin W(K,H))$$

$$PGL(2,\mathbb{R})\colon\thinspace z(\rho_G^\vee)=-I=I=z(\rho_K^\vee)\ (-1\in W(K,H))$$

Hint of proof (equal rank case):

$$\theta(g) = xgx^{-1}$$

h: coxeter number

$$c = \begin{cases} h - 1 & \text{Hermitian symmetric case} \\ \frac{h}{2} & \text{otherwise} \end{cases}$$

$$-1 \in W(G, H) \Rightarrow c \in \mathbb{Z}$$

Fact: WLOG

$$x = \exp(\frac{\pi i}{c}(\rho_K^{\vee} - \rho_G^{\vee}))$$

Then (by the purity lemma) $1 = x^2 \Rightarrow$

$$z(\rho_K^{\vee})/z(\rho_G^{\vee}) = x^{2c} = (x^2)^c = 1$$

THEOREM

Every irreducible representation self-dual implies

$$\epsilon_{\pi} = \chi_{\pi}(z(\rho^{\vee}))$$

Proof: $z(\rho_K^{\vee}) = z(\rho_G^{\vee})$, minimal K-type μ ...

Done if K is connected

delicate argument about the disconnectedness of K

Key point: $\mu|_{K^0}$ has multiplicity one (branching law!)

Reduce to K^0 or $\langle K^0, C \rangle$.

COROLLARY

 $-1 \in W(G, H)$, G adjoint implies every irreducible representation of $G(\mathbb{R})$ is self-dual and orthogonal.

PROBLEM

Consider the Frobenius-Schur indicator in general

(some of the same ideas apply)