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Suppose G(R) is a real reductive group, with L-group
∨
GΓ, and φ : WR →

∨
GΓ is an L-homomorphism. There is a close relationship between the L-
packet associated to φ and characters the component group of the centralizer
of the image of φ. This was originally observed by Shelstad [10], and further
refined by Arthur, Kottwitz, Langlands and Shelstad. This is reinterpreted
in [3], to (among other things) make it a canonical bijection. This involves
a number of changes, including using the notion of strong real form, several
strong real forms at once, and taking a cover of the component group. This
cover is not necessarily a two-group, so the values of the character may not
be just signs.

An important special case is that of discrete series L-packets. It is worth-
while to make the correspondence between characters of (covers of) the cen-
tralizer and the (generalized) L-packet in this case. While this is a special
case of [3], it isn’t so easy to extract it from there, or from the more elemen-
tary reference [1].

These notes consist of a mostly self-contained treatment of this special
case, with some details in the case of unitary groups. We also address a
question raised by Michael Harris about endoscopy.

While the primary reference is The Langlands Classification and Irre-
ducible Characters [3], for what is in this paper other more accessible refer-
ences are sufficient. Lifting of Characters [1], which concentrates on the case
of regular integral infinitesimal character has most of what is needed. Some
of the approach here follows that of Algorithms for Representation Theory
of Real Reductive Groups [4], for which Guide to the Atlas Software [2] is a
good introduction.
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1 Basic Setup

Our starting point is a connected, complex, reductive group G. We begin
with some definitions independent of any real structure.

We fix Cartan and Borel subgroups H ⊂ B of G. Let G∨ be the (con-
nected, complex) dual group, and fix Cartan and Borel subgroups H∨ ⊂ B∨

of G∨. By construction we have canonical identifications

(1.1) X∗(H) = X∗(H
∨), X∗(H) = X∗(H∨)

where X∗ and X∗ denote the character and co-character lattices, respec-
tively. Let R and R∨ be the root and coroot lattices, respectively. We write
R(G,H), R∨(G,H) etc. if it is necessary to specify the extra data. Define
the weight and coweight lattices P, P∨:

(1.2)
P = {λ ∈ X∗(H)⊗ R | 〈λ, α∨〉 ∈ Z for all α∨ ∈ R∨}
P∨ = {γ∨ ∈ X∗(H)⊗ R | 〈α, γ∨〉 ∈ Z for all α ∈ R}.

These are lattices if G is semisimple, and in general contain real vector spaces
of dimension dim(Z), where Z = Z(G) is the center of G. For the choice of
R here (versus Q or C) see Definition 2.1. Let W be the Weyl group. We
have:

(1.3)
P∨ = {γ∨ ∈ X∗(H)⊗ R | exp(2πiγ∨) ∈ Z}

X∗(H) = {γ∨ ∈ X∗(H)⊗ R | exp(2πiγ∨) = 1}.

We’re interested in representations of real forms of G. A real form of G
is the fixed points G(R) of an anti-holomorphic involution σ of G. There
is a holomorphic involution θ of G commuting with σ, such that G(R)θ is
a maximal compact subgroup of G(R). This is the Cartan involution of G
corresponding to G(R). The complexification of G(R)θ is Gθ, and is denoted
K. This is a complex reductive group (possibly disconnected).

For example if G = GL(n,C) and σ(g) = g (complex conjugate of co-
ordinates), then G(R) = GL(n,R). The maximal compact subgroup of
GL(n,R) is K(R) = O(n). This is the fixed points of θ(g) = tg−1, and
K = Gθ = O(n,C).

The classification of real forms of G can be stated entirely in terms of
the (holomorphic) Cartan involutions θ. For g ∈ G write int(g) for the inner
automorphism int(g)(h) = ghg−1.
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Definition 1.4 A real form of G is a holomorphic involution θ of G. Two
real forms θ1, θ2 are said to be equivalent if θ2 = int(g)θ1int(g

−1) for some
g ∈ G.

For the relation with the standard definition of real forms see [4, Section 3]
and the references there.

For example θ = 1 is the compact real form ofG: K = G, soG(R) = K(R)
is compact.

It is natural to consider multiple real forms simultaneously; not all real
forms but those in a given inner class. Write Aut(G), Int(G) for the groups of
(holomorphic) automorphisms of G and inner automorphisms, respectively.

Definition 1.5 Two real forms θ1, θ2 are in the same inner class if θ1, θ2
have the same image in Out(G) = Aut(G)/Int(G), i.e. θ2 = int(g) ◦ θ1 for
some g ∈ G.

Fix an involution γ ∈ Out(G). The associated inner class of real forms
of G is the set of involutions θ ∈ Aut(G) whose image in Out(G) is γ.

This is equivalent to the usual notion of inner class. For more details see [4,
Section 3].

The collection of real forms which have discrete series representations
forms a single inner class. The next result is standard; the only hard part is
(4), which is a basic result of Harish-Chandra.

Lemma 1.6 Suppose G(R) is a real form of G. Let θ be a corresponding
Cartan involution of G, and let K = Gθ. The following conditions are equiv-
alent:

1. G(R) contains a compact Cartan subgroup;

2. rank(G) = rank(K);

3. θ is an inner involution;

4. G(R) has discrete series representations.

This is the equal rank inner class of real forms of G. It is also known as the
compact inner class, since it is the inner class of the compact real form θ = 1.

Associated to an inner class of real forms of G is the extended group
GΓ = G ⋊ Γ, where Γ = Gal(C/R). For example see [4, Section 5]. The
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action of Γ is by the Cartan involution of the most compact real form in the
inner class. In the case of the compact inner class this action is trivial, so
GΓ = G×Γ and we may safely drop Γ from the notation. Many constructions
of [1], [3] and [4] involving the “twist” simplify in this setting.

2 Strong real forms

We turn next to a refinement of the notion of real form which plays an
important role. We emphasize that we work entirely in the equal rank inner
class, i.e. the Cartan involutions are inner (cf. Lemma 1.6).

There is one technical point which arises only if G is not semisimple. An
element g of G is said to be elliptic if the closure in the analytic topology of
the cyclic subgroup generated by g is compact [3, Definition 22.1]. If g has
finite order then it is elliptic.

Definition 2.1 A strong involution of G (in the equal rank inner class) is
an elliptic element x ∈ G satisfying x2 ∈ Z. A strong real form of G (in the
equal rank inner class) is a conjugacy class of strong involutions. If x is a
strong involution let θx = int(x) and Kx = Gθx = CentG(x).

The map x→ θx is a surjection

(2.2)(a) {strong involutions}։ {involutions}

and factors to a surjection

(2.2)(b) {strong real forms of G}։ {real forms of G}

(the involutions in (a) are inner, and the real forms in (b) are equal rank).
If G is adjoint (b) is a bijection.

In [3] and elsewhere we make the stronger assumption that x2 has finite
order. The elliptic condition in Definition 2.1 makes the construction of
Section 6 easier. If G is semisimple this condition is empty since Z is finite.

To emphasize the distinction with strong real forms, we sometimes refer
to the real forms of Definition 1.4 as weak real forms.

From (1.3) we have
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Lemma 2.3 Let X1 = {x ∈ H | x2 ∈ Z, x is elliptic}. There are canonical
bijections

(2.4)(a) X1
1−1←→ P∨/2X∗(H)

and

(2.4)(b) {strong real forms of G} 1−1←→ X1/W.

The set X1 is a special case of the set Xτ (with τ = 1) of [4, Section 11].
Proof. First assume G is semisimple. The map

(2.5) P∨ ∋ γ∨ → exp(πiγ∨) ∈ X1

factors to the bijection (a). Every strong involution is conjugate to an element
of H, i.e. an element of X1; two such elements are conjugate if and only if
they are conjugate by W . Together with (a) this gives (b).

The proof in general is the same, using the fact [3, Lemma 22.2] that
x ∈ H is elliptic if and only if x = exp(X) for X ∈ X∗(H)⊗ R (cf. 1.2).

It is often convenient to consider only those x with x2 fixed; this is always
a finite set. So fix z ∈ Z and let

(2.6) X1[z] = {x ∈ H | x2 = z}.

We refer to X1[z] (resp. X1[z]/W ) as the as the strong involutions (resp.
strong real forms) of type z.

For w ∈ Z the map x→ wx is a bijection between X1[z] and X1[w
2z]. In

particular these two spaces map to the same set of weak real forms via (2.2).
For this reason it is useful to cut down the space X1 to the reduced parameter
space X r

1 : choose a set of representative {z1, . . . , zn} of Z/Z2, and define

(2.7) X r
1 =

⋃

i

X1[zi].

The map from Xr
1 to weak real forms is surjective. See [4, Section 13].

An important special class of strong real forms is the following. Let
z(ρ∨) = exp(2πiρ∨) where ρ∨ = 1

2

∑
α∨ ∈ P (G∨, H∨); the sum is over

any set of positive roots, and is independent of this choice. Following [15,
Definition 2.6] we say a strong involution or real form is pure if x ∈ X1[z(ρ

∨)].
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Example 2.8 Suppose x ∈ Z. Then θx = 1 and K = G, so this maps the
compact weak real form of G. Thus the fiber of the map from strong real
forms to the compact weak real form is Z.

At the other extreme let x = exp(πiρ∨). We will see later in (5.9) that
θx is the Cartan involution of a quasisplit real form.

3 Representations of strong real forms

Suppose for the moment that G(R) is a real form of G, with Cartan involu-
tion θ and complexified maximal compact subgroup K = Gθ. Let g be the
(complex) Lie algebra of G. A (g, K)-modules is a vector space V , equipped
with compatible actions of g and K. For more details, and the relation with
representations of G(R), see [14].

Return now to the setting of the previous section. A representation of a
strong involution is a pair (x, π) where x is a strong involution and π is a
(g, Kx)-module.

Some care is required to to allow a notion of equivalence which allows
conjugation by G. We say (x, π) is equivalent to (x′, π′) if there exists g ∈ G
such that gxg−1 = x′ and π′ ≃ πg. Write [x, π] for the equivalence class of
(x, π). A representation of a strong real form of G is an equivalence class of
representations of strong involutions. Here is a key example.

Example 3.1 Let G = SL(2,C) and x = diag(i,−i). Then Kx = H = C×

and the corresponding real group is SU(1, 1) ≃ SL(2,R). There is a unique
irreducible (g, Kx)-module whose restriction to Kx is the direct sum of the
characters zk (k = 2, 4, 6, . . . ). This is the (g, Kx)-module of a discrete series
representation of SL(2,R).

Suppose g is a representative of the nontrivial element of the Weyl group.
Then int(g) is an automorphism of (g, Kx), which acts by h → h−1 on Kx,
and therefore takes π to the contragredient π. However we do not want to
consider π and π to be equivalent.

This is taken care of by the fact that we keep track not only of Kx but of
the strong involution x. Replace π with [x, π], the equivalence class of (x, π).
Then int(g)(x) = −x, so [x, π] = [int(g)x, πg] = [−x, π], but [x, π] 6= [x, π].

Note that {π, π} is an L-packet of discrete series representations. Using
strong real forms this is {[x, π], [x, π]}. We prefer to think of this as

(3.2) {[x, π], [−x, π]},
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which is parametrized by the set {x,−x} of strong involutions. This is a
special case of the general situation; see Proposition 5.3.

4 L-parameters

We continue to work with the equal rank inner class of real forms of G. The

L-group of a real form only depends on its inner class; let
∨
GΓ be the L-group

of the equal rank inner class. Basic references for this section are [5] and [8];
also see [4, Section 7].

Let WR be the Weil group of R, and suppose φ is an admissible homo-

morphism of WR into
∨
GΓ. Fix a strong involution x. Langlands associates

to x and φ a (possibly empty) L-packet denoted Π(x, φ). This is a finite set
of (g, Kx)-modules, all having the same infinitesimal character.

Define

(4.1) Π(φ) = {[x, π] | x ∈ X1, π ∈ Π(x, φ)}.
We embed Π(x, φ) in Π(φ) by the map π → [x, π]. This map is injective,
since [x, π] = [x, π′] if and only if there exists g ∈ G such that gxg−1 = x
and πg ≃ π′. This holds if and only if g ∈ Kx in which case πg ≃ π.

It is helpful to make some choices to make this more explicit. Choose a
set X ′

1 of representatives of X1/W ; by (2.4)(b) X ′
1 parametrizes the strong

real forms. Then there is a canonical bijection

(4.2) Π(φ)
1−1←→

∐

x∈X ′

1

Π(x, φ).

Each Π(x, φ) is an L-packet of (g, Kx)-modules. Suppose two strong real
forms map to the same weak real form in (2.2)(a), i.e. x, x′ ∈ X ′

1 satisfy: x′

is conjugate to zx for some z ∈ Z. Then Kx ≃ Kx′ , Π(x, φ) and Π(x′, φ) are
isomorphic, and this L-packet occurs twice.

Thus, unless G is adjoint these sets are often larger than necessary. (In
particular if G is not semisimple they are infinite). For these reasons it is
sometimes helpful to fix an element z ∈ Z, and define (cf. (2.6))

(4.3) Πz(φ) = {[x, π] | x2 = z} ⊂ Π(φ).

These sets are finite, and the number of strong real forms mapping to a
single weak real form is small, and often 1. On the other hand for a fixed z
some real forms may fail to occur. For an example see Section 8.1.
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5 Discrete Series L-packets

We specialize to the case of discrete series. Let φ : WR →
∨
GΓ be a discrete

series parameter. These are characterized by any of several conditions, for
example the centralizer of the image being finite. See [5, 10.3 and 10.5]. This
determines an infinitesimal character, and Π(x, φ) is the set of discrete series
(g, Kx)-modules with this infinitesimal character.

Here is a little more detail. Write WR = 〈C∗, j〉 with relations jzj−1 = z
and j2 = −1. After conjugating by G∨ we may assume assume φ(C×) ∈ H∨.
The fact that this is a discrete series parameter implies φ(j)hφ(j)−1 = h−1

for h ∈ H∨, and φ(z) = (z/z)λ (z ∈ C∗), with λ a regular element of
ρ + X∗(H) (where ρ is one-half the sum of any set of positive roots). We
may assume λ is B-dominant. See [4, Section 7]. This implies

(5.1) Sφ = {h ∈ H∨ |h2 = 1}.

For x ∈ X1, γ ∈ ρ + X∗(H) regular, write πx(γ) for the discrete series
(g, Kx)-module with Harish-Chandra parameter γ. Then πx(λ) ≃ πx(wλ) if
and only if w ∈ W (Kx), the Weyl group of H in Kx. Thus

(5.2)(a) Π(x, φ) = {πx(w
−1λ) |w ∈ W/W (Kx)}.

This embeds in Π(φ) as

(5.2)(b) Π(x, φ) = {[x, πx(w
−1λ)] |w ∈ W/W (Kx)}.

A key point is that we may identify this subset in a different way, using
[x, πx(w

−1λ)] = w[x, πx(w
−1λ)] = [wx, πwx(λ)] for all w ∈ W , i.e.

(5.2)(c) Π(x, φ) = {[wx, πwx(λ)] |w ∈ W/W (Kx)}.

Recall φ determines λ, so the second coordinate is determined by the first,
so there is a bijection

(5.2)(d) Π(x, φ)
1−1←→ {wx |w ∈ W/W (Kx)} = {y ∈ X1 | y ∼ x}

where ∼ denotes G-conjugacy. Thus we obtain a map

(5.2)(e) X1 → Π(φ), x→ [x, πx(λ)].

By the preceding discussion this is a bijection. This proves:
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Proposition 5.3 Suppose φ is a discrete series L-parameter for G. There
is a canonical bijection

(5.4) X1
1−1←→ Π(φ).

Given x ∈ X1 this restricts to a bijection

(5.5) {y ∈ X1 | y ∼ x} 1−1←→ Π(x, φ).

Given z ∈ Z it restricts to a bijection (cf. (2.6) and (4.3))

(5.6) X1[z]
1−1←→ Πz(φ).

We say a (g, Kx)-module π is generic if the corresponding representation πR

of G(R) admits a Whittaker model. This is equivalent to: π is large, i.e. has
maximal Gelfand-Kirillov dimension. This implies G(R) is quasisplit. See
[13, Section 6].

It is important to know which elements of X1 correspond via (5.4) to
generic discrete series representations. A discrete series representation π(λ)
is large if and only if every simple root in the chamber defined by λ is non-
compact (for example see [13, Theorem 6.2(f)]). In our setting a root α is
compact with respect to θx if α(x) = 1, and is noncompact if α(x) = −1. It
is enough to consider simple roots, so:

Lemma 5.7 In the bijection (5.4) x ∈ X1 corresponds to a generic discrete
series representation if and only if

(5.8) α(x) = −1 for all simple roots α.

Let ρ∨ = 1
2

∑
α∨ where the sum is over the roots of H∨ in B∨. Then

(5.9) xb = exp(πiρ∨)

is a canonical element satisfying α(xb) = (−1)〈α,ρ∨〉 = −1 for all simple roots
α. This provides a canonical basepoint in X1, corresponding to a generic
discrete series representation of a quasisplit strong involution of G. This
plays an important role in what follows.
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6 The groups Sφ and S̃φ

Fix a discrete series L-homomorphism φ. Let

(6.1) Sφ = CentG∨(Image(φ)).

We want to relate characters of Sφ to elements of Π(φ).
Recall (5.1) Sφ = {h ∈ H∨ |h2 = 1}, and by (1.3) this is isomorphic to

X∗(H
∨)/2X∗(H

∨) = X∗(H)/2X∗(H).
Let p : G∨

sc → G∨ be the topologically simply connected cover of G∨. Thus
G∨

sc = Cn ×G∨
d,sc where n = dim(Z) and G∨

d,sc is the simply connected cover
of the derived group G∨

d . Define

(6.2) S̃φ = p−1(Sφ) ⊂ G∨
sc.

This is a variant of the algebraic cover G∨,alg of [3, (1.16) and (5.10)], which
is the projective limit of the finite covers of G∨. The difference is due to
the fact that we define strong involutions to be elliptic elements, rather than
having finite order (Definition 2.1).

The inverse image ofH∨ inG∨
sc is isomorphic toX∗(H

∨)⊗C/R∨(G∨, H∨) ≃
X∗(H)⊗ C/R(G,H). From this it follows easily that there is a natural iso-
morphism

(6.3) X∗(H)/2R ≃ S̃φ.

This contains a lattice of rank dim(Z). For λ ∈ X∗(H) write s(λ) for the

corresponding element of S̃φ. The map p : S̃φ → Sφ is then the natural map

(6.4) S̃φ ≃ X∗(H)/2R→ X∗(H)/2X∗(H) ≃ Sφ.

Use ̂ to denote Pontriagin dual.

Lemma 6.5 There is a canonical group isomorphism X1 ≃ S̃φ̂.
Proof. Consider the map from X∗(H) to the Pontriagin dual of X1 given
by restricting to X1. This is surjective, since any character of the maximal
compact subgroup Hc of H extends to an algebraic character of H, and
X1 ⊂ Hc by definition. The kernel is 2R, so X̂1 ≃ X∗(H)/2R ≃ S̃φ by (6.3).
Apply Pontriagin duality.
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Explicitly, using the map s of (6.3), the character χ of S̃φ corresponding
to x ∈ X1 is given by

(6.6) χ(s(λ)) = λ(x) (λ ∈ X∗(H)).

Together with (5.4) we obtain bijections S̃φ̂ 1−1←→ X1
1−1←→ Π(φ), taking

the trivial character of S̃φ to the identity element of X1, and hence to a finite
dimensional representation of a compact strong real form G (cf. Example
2.8). This is not the right normalization: we prefer the basepoint to be
a generic discrete series of a quasisplit strong involution. This is provided
(canonically) by the element xb of 5.9.

Definition 6.7 For x ∈ X1 define τx ∈ S̃φ̂ by

(6.8) τx(s(λ)) = λ(xx−1
b ).

In other words if x = exp(πiγ∨) (γ∨ ∈ X∗(H)) then

(6.9) τx(s(λ)) = eπi〈γ
∨−ρ∨,λ〉.

This defines a canonical bijection of sets

(6.10) S̃φ̂ 1−1←→ X1

taking the trivial character to xb. Composing with (5.4) we obtain:

Proposition 6.11 There is a a canonical bijection

(6.12) S̃φ̂ 1−1←→ Π(φ).

taking the trivial character of S̃φ to [xb, πxb
(λ)], a generic discrete series

representation of a quasisplit strong real form of G.

Definition 6.13 Given τ ∈ S̃φ̂ let xτ ∈ X1 be the corresponding element
via (6.10), and let π(τ) = [xτ , πxτ

(λ)] ∈ Π(φ) be the corresponding element
of Π(φ) via (6.12).

This bijection has the advantage that it is canonical. On the other hand
it differs from more familiar constructions in several respects. It involves the
group S̃φ; in applications (and over other fields) it is the more natural group
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Sφ which plays a role. Furthermore S̃φ is often larger than necessary (even
infinite), due in part to the failure of injectivity in the map (2.2)(b).

In any event for z ∈ Z it is helpful to identify the image of Πz(φ) under

the bijection (6.12). The basic issue is to identify Ŝφ as a subset of S̃φ̂:

(6.14) Ŝφ = {τxxb
| x2 = 1} = {τx | x2 = z(ρ∨)} 1−1←→ Πz(ρ∨)(φ).

The last set is the representations of pure strong real forms.
Now fix y ∈ X1[z]. Then τyŜφ = {τyτx | x2 = z(ρ∨)}. Using the elemen-

tary identity τyτx = τyxx−1

b
, and noting that (yxx−1

b )2 = y2 = z, we have the

following result.

Lemma 6.15 Fix z ∈ Z and choose y ∈ X1[z]. Then τyŜφ ⊂ S̃φ̂ is inde-
pendent of the choice of y, and the bijection of Proposition 6.11 restricts to
a canonical bijection

(6.16)(a) τyŜφ
1−1←→ Πz(φ).

In particular taking y = xb we obtain a canonical bijection

(6.16)(b) Ŝφ
1−1←→ Πz(ρ∨)(φ)

taking the identity to [xb, πxb
(λ)], a generic discrete series representation of

a quasisplit strong real form of G.

Proposition 6.11 is not perfectly suited to the classical theory, and neither
is the Lemma: the map from strong real forms of type z to weak real forms is
not necessarily surjective or injective. Also note that, except in the setting of

(6.16)(b), a further choice (of y) is required to give a bijection Ŝφ
1−1←→ Πz(φ).

See Section 9.

7 Endoscopic Lifting

We continue in the setting of the previous Section, with a discrete series
parameter φ, and the bijections S̃φ̂ ∋ τ → xτ ∈ X1 and τ → π(τ) ∈ Π(φ) of
Definition 6.13.

For x ∈ X1 let

(7.1) e(x) = (−1)dim(G/Kx)−dim(G/Kxb
).
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Recall from (5.9) that Kxb
is the complexified maximal compact of the qua-

sisplit real form of G; e(x) is the Kottwitz invariant [6] of a real form of G
defined by x.

Definition 7.2 Fix s̃ ∈ S̃φ. Let

(7.3)(a) η̃(s̃) =
∑

τ∈S̃φ̂

e(xτ )τ(s̃)π(τ).

Fix x ∈ X1 and let

(7.3)(b) η̃x(s̃) = e(x)
∑

{τ |xτ∼x}

τ(s̃)π(τ).

This only depends on the image of x in X1/W , and is a linear combination
of representations of this strong real form of G (cf. (2.4)(b)).

This is a special case of the discussion on pages 20-21 of [3]; see [3,
Theorem 26.8] for details. This is a collection of virtual representations of

strong real forms of G, parametrized by S̃φ. Now [3, Theorem 1.39] relates
these virtual characters to characters of an endoscopic group, and is the
version of endoscopic lifting of [3]. For the purposes of these notes we use
only Definition 7.2.

In order to compare this with the lifting defined by Shelstad we write
(7.3)(b) in more familiar terms. First of all we may write

(7.4) η̃x(s̃) = e(x)τx(s̃)
∑

{τ |xτ∼x}

(τ(s̃)/τx(s̃))π(τ).

Note that {τ | xτ ∼ x} = {τwx |w ∈ W/W (Kx)}. Recall π(τwx) = [wx, πwx(λ)],
and (cf. 5.2) this equals [x, πx(w

−1λ)], where πx(w
−1λ) is the discrete series

(g, Kx)-module with Harish-Chandra parameter w−1λ. We will see momen-
tarily that τwx/τx factors to Sφ, so for x ∈ X1, s ∈ Sφ define a function κ(x, s)
on W :

(7.5) κ(x, s)(w) = (τwx/τx)(s).

Then:

Proposition 7.6 Given x ∈ X1, s̃ ∈ S̃φ, let s = p(s̃) ∈ Sφ. Then

(7.7) η̃x(s̃) = e(x)τx(s̃)
∑

w∈W/W (Kx)

κ(x, s)(w)πx(w
−1λ).
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Here are some elementary properties of the constants κ(x, s).

Lemma 7.8 (1) κ(x, s) : W → ±1;

(2) κ(x, s)(w) = 1 for w ∈ W (Kx);

(3) κ(x, s)(w1w2) = κ(x, s)(w1) for w2 ∈ W (Kx);

(4) κ(x, s)(w1w2) = κ(w2x, s)(w1)κ(x, s)(w2);

Proof. If x = exp(πiγ∨) (γ∨ ∈ X∗(H
∨)) then (cf. 6.9)

(7.9) (τwx/τx)(s(λ)) = eπi〈wγ∨−γ∨,λ〉 (λ ∈ X∗(H)).

This equals 1 if λ ∈ 2X∗(H). Since the kernel of S̃φ → Sφ is 2X∗(H
∨)/2R(H∨)

(6.3) κ(x, s) is well defined for s ∈ Sφ. It is easy to see (7.9) implies (1) and
(4), and (2) and (3) are special cases of (4).

The functions κ(x, s) appear in [12, Section 3]. It follows from Lemma
7.8 that η̃x(s̃) agrees, up to a constant of absolute value 1 with the lifting
of Shelstad defined in [10, Section 4]. This is also discussed in [3, pg. 289].
See [11] for an update of [10], using the transfer factors of Langlands and
Shelstad [9], which makes some use of a cover of Sφ and multiple real forms.

Definition 7.2 is entirely canonical, but involves the group S̃φ. The part

of the sum (7.3)(a) over Ŝφ ⊂ S̃φ̂ involves just the pure strong real forms.
Thus define

(7.10)(a) ηz(ρ∨)(s) =
∑

τ∈Ŝφ

e(xτ )τ(s)π(τ).

This is a linear combination of the representations of pure strong real forms.
More generally, (cf. (6.14) and (6.16)(b)), for z ∈ Z, choose x ∈ X1[z].

The part of the sum (7.3)(a) giving a linear combination of the elements of
Πz(φ) is:

(7.10)(b) ηz(s̃) = τx(s̃)
∑

τ∈Ŝφ

e(xττx)τ(s)π(ττx)

where s = p(s̃) ∈ Sφ. Note that (a) is obtained from (b) by making the
canonical choice x = xb (so τx = 1); in general there is no canonical choice
of a basepoint x.
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We return to (7.3)(b). Note that xτ ∼ x implies τ ∈ τxŜφ (cf. (6.16)(a)),

so we can write the sum (7.3)(b) as being over {ττx | τ ∈ Ŝφ, xττx ∼ x}. So:
given x ∈ X1, s ∈ Sφ and ǫ = ±1 let

(7.11) Ŝφ(x, s)ǫ = {τ ∈ Ŝφ | xττx ∼ x, τ(s) = ǫ}.

Then the sum (7.3)(b) becomes

(7.12) η̃x(s̃) = e(x)τx(s̃)[
∑

Ŝφ(x,s)+

π(ττx)−
∑

Ŝφ(x,s)−

π(ττx)].

The right hand side is a linear combination of representations of the strong
real form x; the coefficients are signs times τx(s̃), which is a complex number
of absolute value 1. (If we chose our strong involutions to have finite order as
in [3] this would be a root of unity.) The question of the signs, and precisely
how they depend on the choices involved, was brought to our attention by
Michael Harris; see ([7], pages 200-201). The case of U(p, q) is discussed in
Section 10.

8 Example: Strong Real forms of GL(n,C)

Let ( , ) be a non-degenerate Hermitian form on Cn. It is determined up to
equivalence by its signature (p, q) with p + q = n, and the symmetry group
of this form is denoted U(p, q). These are the weak real forms of GL(n,C)
of equal rank.

The map from X1 to weak real forms is surjective, with infinite fibers.
For example

(8.1) x = diag(

p︷ ︸︸ ︷
α, . . . , α,

q︷ ︸︸ ︷
−α, . . . ,−α)

maps to U(p, q) for any α ∈ S1. It is much better to fix z ∈ Z and consider
X1[z], which is finite. Note that Z/Z2 = 1, so X1[z] is the reduced parameter
space X r

1 (2.7).
The Hermitian form −( , ) is not equivalent to ( , ) (unless p = q) but

their symmetry groups U(p, q) and U(q, p) are isomorphic. Thus the map
from equivalence classes of Hermitian forms to weak real forms is two-to-one
(unless p = q). It turns out we can identify strong real forms of type z with
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equivalence classes of Hermitian forms (although not canonically). Thus we
can think of strong real forms of type z as {U(p, q) | p + q = n} where we
distinguish U(p, q) and U(q, p). We proceed to make this precise.

Let G = GL(n,C) and fix z = βI ∈ Z with |β| = 1. Furthermore fix α
with α2 = β. Then

(8.2) X1[z] = {αdiag(±1, . . . ,±1)}.
The elements conjugate to

(8.3) x = diag(

p︷ ︸︸ ︷
α, . . . , α,

q︷ ︸︸ ︷
−α, . . . ,−α)

constitute a single strong real form, which we think of as U(p, q). Those
conjugate to −x also constitute a single strong real form, distinct from the
previous one unless p = q, which we think of as U(q, p). Note that this
labelling depends on a choice of

√
β. In any event the elements conjugate to

±x all map to the same weak real form U(p, q) = U(q, p).
The pure strong real forms are an important special case. Note that

z(ρ∨) = (−1)n−1I, so β = (−1)n−1 and we can take α = in−1. Thus with
this choice x ∈ X1[z(ρ

∨)] gives the strong real form U(p, q) where p is the
dimension of the in−1 eigenspace of x.

8.1 Strong real forms of SL(n,C)

The equal rank real forms of SL(n,C) are the special unitary groups SU(p, q)
with p+ q = n.

If n is odd then the map from strong real forms to weak real forms is
bijective. If n is even the picture is essentially the same as for GL(n,C). In
both cases we work with the reduced parameter space. Here are the details.

First assume n is odd. Since Z/Z2 = 1 we can choose arbitrary z ∈ Z
and take the reduced parameter space X r

1 to be X1[z] (cf. 2.7), and the
map from strong real forms of type z to weak real forms is surjective. In
fact it is a bijection in this case. For example take z = z(ρ∨) = I. Then
X1[I] ∋ x = diag(±1, . . . ,±1) maps to the real form SU(p, q) where q is the
number of minus signs, which is even. For example if n = 5 the weak real
forms are SU(5, 0), SU(3, 2) and SU(1, 4).

Now suppose n = 2m is even. In this case z(ρ∨) = −I, and the pure
strong involutions are

(8.4) X1[z(ρ
∨)] = {idiag(ǫ1, . . . , ǫn)}
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with ǫi = ±1 and
∏

ǫi = (−1)m.
As in (8.3) the elements conjugate to

(8.5) x = diag(

p︷ ︸︸ ︷
i, . . . , i,

q︷ ︸︸ ︷
−i, . . . ,−i)

map to the weak real form SU(p, q), where now p ≡ q ≡ m (mod 2). The
map from pure strong real forms to weak real forms is not surjective.

Since n = 2m is even |Z/Z2| = 2, so we choose another element of Z.
Take

(8.6) z′ =

{
I m is odd

e2πi/nI m is even.

Then

(8.7) X1[z
′] = {diag(ǫ1, . . . , ǫn) |

∏
ǫi = 1} (m odd)

or

(8.8) X1[z
′] = {eπi/ndiag(ǫ1, . . . , ǫn) |

∏
ǫi = −1} (m even).

There is a two-to-one map from strong real forms of type z′ to the weak real
forms SU(2p, 2q) (m odd) or SU(2p+ 1, 2q + 1) (m even).

Thus we see the map from strong real forms of type z(ρ∨) = −I or z′ to
weak real forms two-to-one, except the fiber of the weak real form SU(m,m)
is a singleton. This is just like the case of U(p, q) except that Z/Z2 now has
two elements.

For example if n = 6, the pure real forms are SU(5, 1), SU(3, 3) and
SU(1, 5), with z = z(ρ∨) = −I. Taking z′ = I gives the other strong real
forms SU(6, 0), SU(4, 2), SU(2, 4) and SU(0, 6).

Take n = 8. In this case the pure real forms, given by z(ρ∨) = −I, are
SU(8, 0), SU(6, 2), SU(4, 4), SU(2, 6) and SU(0, 8). On the other hand z′ =
e2πi/8 gives the strong real forms SU(7, 1), SU(5, 3), SU(3, 5) and SU(1, 7).

9 Discrete series of U(p, q)

Let G = GL(n,C) and suppose φ is a discrete series L-parameter. Fix z ∈ Z

and y ∈ X1[z]. We make the bijection τyŜφ
1−1←→ Πz(φ) of (6.16)(a) explicit.
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Fix z = βI for some β ∈ C×. In this case there is a natural choice of base-
point y (or rather two such). Recall (5.9) xb = in−1(1,−1, . . . , (−1)n−1) ∈
X [z(ρ∨)] defines a generic discrete series representation of a quasisplit strong
real form. Choose α2 = β and let

(9.1) y = αi−n+1xb = α(1,−1, . . . , (−1)n−1) ∈ X1[z].

We have Sφ ≃ Z/2Zn, embedded diagaonlly in H. For δi = ±1 write
{δ1, . . . , δn} for the corresponding character of Sφ.

Lemma 9.2 With y as in (9.1) the bijection τyŜφ
1−1←→ X1[z] of (6.16)(a) is

given as follows. If τ = {δ1, . . . , δn} then

(9.3) τyτ → α(δ1,−δ2, δ3, . . . , (−1)n−1δn).

In particular the case of pure strong real forms is given by z = (−1)n−1I, so
it is natural to take α = in−1, so y = xb and τy = 1. Then the bijection is

(9.4) Ŝφ ∋ τ = {δ1, . . . , δn} → in−1(δ1,−δ2, . . . , (−1)n−1δn) ∈ X1[z(ρ
∨)].

This is an easy exercise in the definitions.
Let τ0 = {1,−1, . . . , (−1)n} ∈ Ŝφ. If τ = {δ1, . . . , δn} let p(τ), q(τ) be the

number of δi equal to 1,−1 respectively.

Lemma 9.5 In the setting of the Lemma suppose τ, τ ′ ∈ Ŝφ and τyτ →
x, τyτ

′ → x′ via the bijection (9.3).
Then x, x′ define the same strong real form if and only if p(ττ0) = p(τ ′τ0).

They map to the same weak real form if and only if p(ττ0) = p(τ ′τ0) or
p(ττ0) = q(τ ′τ0).

As discussed in Section 8 the choice of α =
√
β amounts to a labelling

of the strong real forms as U(p, q) or U(q, p). That is, we may define the
strong real form U(p, q) to be those x ∈ X1[z] for which the dimension of the
α-eigenspace is p. With this convention we have:

Corollary 9.6 τyτ ∈ τyŜφ goes to a discrete series representation of the
strong real form U(p(ττ0), q(ττ0)).

The most natural case is z = z(ρ∨), i.e. β = (−1)n−1, in which case it is
natural to take α = in−1. Then U(p, q) is the strong real form corresponding
to those x with in−1 occuring as an eigenvalue of multiplicity p.
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Note that each weak real form U(p, q) occurs twice (as the strong real
forms U(p, q) and U(q, p)) unless p = q. The total number of discrete series

representations is therefore
∑n

p=0

(
n
p

)
= 2n = |Ŝφ|.

Note that x → −x is an automorphism of X1[z], taking the strong real
form U(p, q) to U(q, p). It is helpful to consider the effect of this automor-
phism on our basepoints, i.e. generic discrete series representations. We
consider the pure case z = z(ρ∨). Others are similar.

It is not hard to see that for τ ∈ Ŝφ, π(τ) is generic if and only if xτ = ±xb.
If n = 2m, ±xb are conjugate, so we’re getting two generic discrete series
representations of the same strong real form U(m,m). If n = 2m+1 then ±xb

are not conjugate; these correspond to generic discrete series representations,
one each of the two strong real forms U(m+ 1,m) and U(m,m+ 1).

It is helpful to express the bijection (5.4) in more familiar parameters.
This is primarily an exercise in the definitions. We illustrate this with the
examples of GL(4) and GL(3).

9.1 Example: GL(4)

Consider pure strong real forms of GL(4,C), so take z = −I. In the set-
ting of (9.4) we have α = −i and y = xb = −idiag(1,−1, 1,−1), We
work at infinitesimal character (4, 3, 2, 1), which is a central shift of ρ =
(3/2, 1/2,−1/2,−3/2).

The quasisplit group is U(2, 2). Write a Harish-Chandra parameter for
U(2, 2) as (a, b; c, d). This indicates that, writing the positive roots as {ei −
ej | 1 ≤ i < j ≤ 4}, the positive compact roots are e1 − e2, e3 − e4, and
e2−e3 is noncompact. Write π(a, b; c, d) for the discrete series representation
with this Harish-Chandra parameter. Then π(4, 2; 3, 1) is a generic discrete
series representation: the simple roots are e1−e3, e3−e2, e2−e4, all of which
are noncompact. The other generic discrete series representation with this
infinitesimal character is π(3, 1; 4, 2).

We need to fix a generic discrete series representation of U(2, 2): choose
π(4, 2; 3, 1). We then easily compute the following table, showing the bijec-

tions Ŝφ → X1[z(ρ
∨)] of (9.4) and Ŝφ → Πz(ρ∨)(φ) of (6.16)(b).

Recall labelling the strong real forms as U(p, q), U(q, p) requires a choice
of
√
−1, which it was most natural to take to be in−1 = −i. Therefore define
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the strong real form U(p, q) to be the conjugacy class of x with eigenvalue
−i of multiplicity p.

U(2, 2)

τ ∈ Ŝφ x ∈ X1[z(ρ
∨)] HC parameter

{1,1,1,1} -i(1,-1,1,-1) (4,2;3,1)
{1,-1,-1,1} -i(1,1,-1,-1) (4,3;2,1)
{1,1,-1,-1} -i(1,-1,-1,1) (4,1;3,2)
{-1,-1,1,1} -i(-1,1,1,-1) (3,1;4,2)
{-1,-1,-1,-1} -i(-1,1,-1,1) (3,2;4,1)
{-1,1,1,-1} -i(-1,-1,1,1) (2,1;4,3)

The representations of the strong real form U(3, 1) are:

U(3, 1)

τ ∈ Ŝφ x ∈ X1[z(ρ
∨)] HC parameter

{1,−1, 1, 1} -i(1,1,1,-1) (4,3,2;1)
{1,−1,−1,−1} -i(1,1,-1,1) (4,3,1;2)
{1, 1, 1,−1} -i(1,-1,1,1) (4,2,1;3)
{−1,−1, 1,−1} -i(-1,1,1,1) (3,2,1;4)

The negatives of these three parameters give representations of the strong
real form U(1, 3):

U(1, 3)

τ ∈ Ŝφ x ∈ X1[z(ρ
∨)] HC parameter

{−1, 1,−1,−1} -i(-1,-1,-1,1) (1;4,3,2)
{−1, 1, 1, 1} -i(-1,-1,1,-1) (2;4,3,1)
{−1,−1,−1, 1} -i(-1,1,-1,-1) (3;4,3,1)
{1, 1,−1, 1} -i(1,-1,-1,-1) (4;3,2,1)

Finally for the compact strong real forms we have:

τ ∈ Ŝφ x ∈ X1[z(ρ
∨)] G HC parameter

{1,−1, 1,−1} -i(1,1,1,1) U(4, 0) (4,3,2,1)
{−1, 1,−1, 1} -i(-1,-1,-1,-1) U(0, 4) (4,3,2,1)

As discussed above this entire table has an automorphism given by multi-
plication by −1, which has the effect of switching U(p, q) and U(q, p), and
interchanging the two generic discrete series representations of U(2, 2).
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9.2 Example: GL(3)

This is a little different from the preceding example since 3 is odd. In this
case xb = −(1,−1, 1). Fix infinitesimal character (3, 2, 1). In this case there
is only one generic discrete series representation of U(2, 1), so there is no
choice to make.

The result is:

τ ∈ Ŝφ x ∈ X1[z(ρ
∨)] G HC parameter

{1,1,1} -(1,-1,1) U(2, 1) (3,1;2)
{1,-1,-1} -(1,1,-1) U(2, 1) (3,2;1)
{-1,-1,1} -(-1,1,1) U(2, 1) (2,1;3)
{1,-1,1} -(1,1,1) U(3, 0) (3,2,1)
{-1,-1,-1} -(-1,1,-1) U(1, 2) (2;3,1)
{-1,1,1} -(-1,-1,1) U(1, 2) (1;3,2)
{1,1,-1} -(1,-1,-1) U(1, 2) (3;2,1)
{-1,1,-1} -(-1,-1,-1) U(0, 3) (3,2,1)

In this case the two generic discrete representations are −(1,−1, 1) of U(2, 1)
and −(−1, 1,−1) of U(1, 2).

10 Endoscopy for U(p, q)

We consider the question at the end of Section 7 in the case of U(p, q). Set
n = p+ q and G = GL(n,C).

Recall (7.11): for x ∈ X1, s ∈ Sφ and ǫ = ± we set

(10.1) Ŝφ(x, s)ǫ = {τ ∈ Ŝφ | xττx ∼ x, τ(s) = ǫ}.

Let V be the standard module of GL(n,C), with basis {v1, . . . , vn}. Then
(cf. 5.1) Sφ ⊂ H∨ ⊂ GL(V ) acts on V and its exterior algebra, write this
action s : γ → s · γ. Write Sφ ≃ (Z/2Z)n so that (s1, . . . , sn) · vi = sivi.

Proposition 10.2 Given x, s and ǫ, choose α such that x2 = α2I. Let

(10.3) δ = (τx/ταI)(s)ǫ = ±1.

Let r be the dimension of the α-eigenspace of x. Then there is a natural
bijection between Ŝφ(x, s)ǫ and a basis of the δ-eigenspace of s acting on
Λn−r(V ).
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Remark 10.4 Both δ and r depend on α, so write δα, rα. The δα-eigenspace
of s acting on Λn−rα(V ) is in bijection with the δα det(s)-eigenspace of s
acting on Λn−(n−rα)(V ). It is easy to see δα det(s) = δ−α and rα = n − r−α,
confirming that the statement is independent of the choice of α.

For an explicit description of the sign (τx/ταI)(s) see (10.11).

Lemma 10.5 Fix 0 ≤ r ≤ n. Let S = (Z/2Z)n, embedded diagonally in
GL(V ) = GL(n,C). Let τ = diag(δ1, . . . , δn) (δi = ±1) be a character of S,
and let q(τ) be the number of δi equal to −1. Suppose s ∈ S and ǫ = ±1.

There is a natural bijection between a basis of

(10.6)(a) {γ ∈ Λr(V ) | s · γ = ǫγ}

and

(10.6)(b) {τ ∈ Ŝ | q(τ) = r, τ(s) = ǫ}

Proof. The proof is elementary. Suppose 1 ≤ i1 < · · · < ir ≤ n are the
indices for which δij = −1. Then τ(s) =

∏
j sij . Map τ to γ = vi1 ∧ vi2 ∧

· · · ∧ vir . Then s · γ =
∏

j sijγ. It is easy to see this is a bijection.

Proof of the Proposition. The fact that x2 = α2I implies x = α(x1, . . . , xn)
with xi ∈ ±1. Two such elements are conjugate if and only if the dimension
of their α-eigenspaces agree. Thus

(10.7) Ŝφ(x, s)ǫ = {τ ∈ Ŝφ | dim of the α-eigenspace of xττx = r, τ(s) = ǫ}.

With notation as in Section 9 write τ = {δ1, . . . , δn}. A short calculation
shows that

(10.8) xττx = α(δ1x1, . . . , δnxn).

Therefore if we let µx = {x1, . . . , xn} ∈ Ŝφ then

(10.9) Ŝφ(x, s)ǫ = {τ ∈ Ŝφ | p(τµx) = r, τ(s) = ǫ}

where p(∗) is the number of times 1 occurs. Let τ ′ = τµx, so

(10.10) Ŝφ(x, s)ǫ = {τ ′µx | τ ′ ∈ Ŝφ, p(τ
′) = r, τ ′(s) = µx(s)ǫ}.
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Replace the condition p(τ ′) = r with q(τ ′) = n − r. It is straightforward to
see that µx = τx/ταI . The result follows from the Lemma.

From the proof we see that if we write x = α(x1, . . . , xn) with xi ∈ ±1,
and s = diag(s1, . . . , sn) then

(10.11) (τx/ταI)(s) =
∏

{i |xi=−1}

si
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