Computing Global Characters

 $\pi:$ irreducible admissible representation of G

 π : irreducible admissible representation of G

Problem: Compute the (distribution) character θ_{π} of π

 π : irreducible admissible representation of G **Problem:** Compute the (distribution) character θ_{π} of π Harish-Chandra: function on the regular semisimple set

 $\pi :$ irreducible admissible representation of G

Problem: Compute the (distribution) character θ_{π} of π Harish-Chandra: function on the regular semisimple set Roughly: fix H,

$$\theta_{\pi}(g) = \frac{\sum a(\pi, w) e^{w\lambda}(g)}{\Delta(g)}$$

 π : irreducible admissible representation of G

Problem: Compute the (distribution) character θ_{π} of π Harish-Chandra: function on the regular semisimple set Roughly: fix H,

$$\theta_{\pi}(g) = \frac{\sum a(\pi, w) e^{w\lambda}(g)}{\Delta(g)}$$

Problem: Compute $a(\pi, w)$

θ_{π} determines π

 θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?

 θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change,...

 θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change,...

Stability

Application: Given a unipotent Arthur paramter Ψ , compute the Arthur packet Π_{ψ} .

 θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change,...

Stability

Application: Given a unipotent Arthur paramter Ψ , compute the Arthur packet Π_{ψ} .

Need to compute: $AV(\pi)$ (a set of real nilpotent orbits)

 θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change,...

Stability

Application: Given a unipotent Arthur paramter Ψ , compute the Arthur packet Π_{ψ} .

Need to compute: $AV(\pi)$ (a set of real nilpotent orbits)

(not just $AV(Ann(\pi))$ (a single complex nilpotent orbit))

 θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change,...

Stability

Application: Given a unipotent Arthur paramter Ψ , compute the Arthur packet Π_{ψ} .

Need to compute: $AV(\pi)$ (a set of real nilpotent orbits)

(not just $AV(Ann(\pi))$ (a single complex nilpotent orbit)) Not known...

 θ_{π} determines π - e.g., how do you tell when two representations are isomorphic?

Applications: the Langlands program, lifting, base change,...

Stability

Application: Given a unipotent Arthur paramter Ψ , compute the Arthur packet Π_{ψ} .

Need to compute: $AV(\pi)$ (a set of real nilpotent orbits)

(not just $AV(Ann(\pi))$ (a single complex nilpotent orbit))

Not known... use character theory to get some information (see www.liegroups.org/tables/unipotent)

Example: Reductive groups of rank m, and semisimple rank n:

Example: Reductive groups of rank m, and semisimple rank n:

pair of $m \times n$ integral matrices (A, B)

Example: Reductive groups of rank m, and semisimple rank n:

pair of $m \times n$ integral matrices (A, B)

such that $A \times B^t$ is a Cartan matrix

Example: Reductive groups of rank m, and semisimple rank n:

pair of $m \times n$ integral matrices (A, B)

such that $A \times B^t$ is a Cartan matrix $(A, B) \sim (g^t A, Bg^{-1})$ for $g \in GL(m, \mathbb{Z})$ Example: Here is complete information about representations of $SL(2, \mathbb{R})$, including their characters.

```
block: block

0(0,1): 0 [i1] 1 (2,*) 0 e

1(1,1): 0 [i1] 0 (2,*) 0 e

2(2,0): 1 [r1] 2 (0,1) 1 1

block: klbasis

0: 0: 1

1: 1: 1

2: 0: 1

1: 1

2: 1
```

5 nonzero polynomials, and 0 zero polynomials, at 5 Bruhat-comparable pairs.

Inducted character formula, focus on the discrete series

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T, Λ character of T_{ρ} (later)

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T, Λ character of T_{ρ} (later)

 $D(\widetilde{g}) = \prod (1 - e^{-\alpha}(g)) e^{\rho}(\widetilde{g})$

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T, Λ character of T_{ρ} (later)

$$D(\widetilde{g}) = \prod (1 - e^{-\alpha}(g))e^{\rho}(\widetilde{g})$$

 \exists unique irreducible representation $\pi=\pi(\Lambda)$ satisfying:

$$\theta_{\pi}(g) = \frac{\sum \operatorname{sgn}(w)(w\Lambda)(\widetilde{g})}{D(\widetilde{g})}$$

Question: Formula for θ_{π} on other Cartans?

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T, Λ character of T_{ρ} (later)

$$D(\widetilde{g}) = \prod (1 - e^{-\alpha}(g))e^{\rho}(\widetilde{g})$$

 \exists unique irreducible representation $\pi=\pi(\Lambda)$ satisfying:

$$\theta_{\pi}(g) = \frac{\sum \operatorname{sgn}(w)(w\Lambda)(\widetilde{g})}{D(\widetilde{g})}$$

Question: Formula for θ_{π} on other Cartans? notoriously difficult

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T, Λ character of T_{ρ} (later)

$$D(\widetilde{g}) = \prod (1 - e^{-\alpha}(g))e^{\rho}(\widetilde{g})$$

 \exists unique irreducible representation $\pi=\pi(\Lambda)$ satisfying:

$$\theta_{\pi}(g) = \frac{\sum \operatorname{sgn}(w)(w\Lambda)(\widetilde{g})}{D(\widetilde{g})}$$

Question: Formula for θ_{π} on other Cartans? notoriously difficult

Herb:

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T, Λ character of T_{ρ} (later)

$$D(\widetilde{g}) = \prod (1 - e^{-\alpha}(g))e^{\rho}(\widetilde{g})$$

 \exists unique irreducible representation $\pi=\pi(\Lambda)$ satisfying:

$$\theta_{\pi}(g) = \frac{\sum \operatorname{sgn}(w)(w\Lambda)(\widetilde{g})}{D(\widetilde{g})}$$

Question: Formula for θ_{π} on other Cartans? notoriously difficult

Herb:

(1) Stable sums of discrete series (two-structures)

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T, Λ character of T_{ρ} (later)

$$D(\widetilde{g}) = \prod (1 - e^{-\alpha}(g))e^{\rho}(\widetilde{g})$$

 \exists unique irreducible representation $\pi=\pi(\Lambda)$ satisfying:

$$\theta_{\pi}(g) = \frac{\sum \operatorname{sgn}(w)(w\Lambda)(\widetilde{g})}{D(\widetilde{g})}$$

Question: Formula for θ_{π} on other Cartans? notoriously difficult

Herb:

(1) Stable sums of discrete series (two-structures)

(2) Endoscopy

Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T, Λ character of T_{ρ} (later)

$$D(\widetilde{g}) = \prod (1 - e^{-\alpha}(g))e^{\rho}(\widetilde{g})$$

 \exists unique irreducible representation $\pi=\pi(\Lambda)$ satisfying:

$$\theta_{\pi}(g) = \frac{\sum \operatorname{sgn}(w)(w\Lambda)(\widetilde{g})}{D(\widetilde{g})}$$

Question: Formula for θ_{π} on other Cartans? notoriously difficult

Herb:

(1) Stable sums of discrete series (two-structures)

(2) Endoscopy

Other approaches (Schmid, Goresky-Kottwitz-MacPherson, Zuckerman, $\ldots)$

Alternative Approach: All representations at once, using KLV polynomials

Alternative Approach: All representations at once, using KLV polynomials (atlas software) Alternative Approach:

All representations at once, using KLV polynomials

(atlas software)

Assume regular infinitesimal character λ

Alternative Approach:

All representations at once, using KLV polynomials

(atlas software)

Assume regular infinitesimal character λ

Theorem:

 $\Pi(G,\lambda)=\{(H,\Lambda)\mid\Lambda\in\widehat{H(\mathbb{R})_{\rho}},d\Lambda\sim\lambda\}/G(\mathbb{R})$

Alternative Approach:

All representations at once, using KLV polynomials

(atlas software)

Assume regular infinitesimal character λ

Theorem:

$$\Pi(G,\lambda) = \{(H,\Lambda) \mid \Lambda \in \widehat{H(\mathbb{R})_{\rho}}, d\Lambda \sim \lambda\}/G(\mathbb{R})$$

 $(H,\Lambda) \to \begin{cases} I(H,\Lambda) & \text{standard (induced) module} \\ \pi(H,\Lambda) & \text{irreducible Langlands quotient} \end{cases}$

Fix H, Δ^+ ,

Fix $H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H_{\rho}$

Fix $H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H_{\rho}$

$$D(\Delta^+, \widetilde{g}) = \prod (1 - e^{-\alpha}(g))e^{\rho}(\widetilde{g}) \quad (\widetilde{g} \in H(\mathbb{R})_{\rho})$$

Fix
$$H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H_{\rho}$$

$$D(\Delta^+, \tilde{g}) = \prod (1 - e^{-\alpha}(g)) e^{\rho}(\tilde{g}) \quad (\tilde{g} \in H(\mathbb{R})_{\rho})$$

 $H(\mathbb{R})_{+} = \{g \in H \mid |e^{\alpha}(g)| > 1 \quad (\alpha \text{ real})\}$

Fix
$$H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H_{\rho}$$

 $D(\Delta^+, \tilde{g}) = \prod (1 - e^{-\alpha}(g))e^{\rho}(\tilde{g}) \quad (\tilde{g} \in H(\mathbb{R})_{\rho})$
 $H(\mathbb{R})_+ = \{g \in H \mid |e^{\alpha}(g)| > 1 \quad (\alpha \text{ real})\}$
 $\sum a(\pi, \Delta^+, \Lambda)\Lambda(\tilde{g})$

$$\theta_{\pi}(h) = \frac{\sum a(\pi, \Delta^+, \Lambda)\Lambda(g)}{D(\Delta^+, \widetilde{g})} \quad (g \in H(\mathbb{R})_+)$$

Fix
$$H, \Delta^+, \rho = \frac{1}{2} \sum_{\Delta^+} \alpha, H_{\rho}$$

 $D(\Delta^+, \tilde{g}) = \prod (1 - e^{-\alpha}(g))e^{\rho}(\tilde{g}) \quad (\tilde{g} \in H(\mathbb{R})_{\rho})$
 $H(\mathbb{R})_+ = \{g \in H \mid |e^{\alpha}(g)| > 1 \quad (\alpha \text{ real})\}$
 $\theta_{\pi}(h) = \frac{\sum a(\pi, \Delta^+, \Lambda)\Lambda(\tilde{g})}{D(\Delta^+, \tilde{g})} \quad (g \in H(\mathbb{R})_+)$

 $({\rm drop}\ \Delta^+)$

Proposition: Formula for $\theta_{I(H,\Lambda)}$ on $H(\mathbb{R})$:

$$\theta_{I(H,\Lambda)}(h) = \frac{\sum_{W_{\mathbb{R}}} \operatorname{sgn}(w)(w\Lambda)(h)}{D(h)} \quad (h \in H(\mathbb{R})_{+})$$
$$W_{\mathbb{R}} = W(G(\mathbb{R}), H(\mathbb{R})) \subset W(G, H)$$

Proposition: Formula for $\theta_{I(H,\Lambda)}$ on $H(\mathbb{R})$:

$$\theta_{I(H,\Lambda)}(h) = \frac{\sum_{W_{\mathbb{R}}} \operatorname{sgn}(w)(w\Lambda)(h)}{D(h)} \quad (h \in H(\mathbb{R})_{+})$$
$$W_{\mathbb{R}} = W(G(\mathbb{R}), H(\mathbb{R})) \subset W(G, H)$$

Sue me:

Proposition: Formula for $\theta_{I(H,\Lambda)}$ on $H(\mathbb{R})$:

$$\theta_{I(H,\Lambda)}(h) = \frac{\sum_{W_{\mathbb{R}}} \operatorname{sgn}(w)(w\Lambda)(h)}{D(h)} \quad (h \in H(\mathbb{R})_+)$$

 $W_{\mathbb{R}} = W(G(\mathbb{R}), H(\mathbb{R})) \subset W(G, H)$

Sue me: I'm surpressing an irksome sign

Proposition: Formula for $\theta_{I(H,\Lambda)}$ on $H(\mathbb{R})$:

$$\theta_{I(H,\Lambda)}(h) = \frac{\sum_{W_{\mathbb{R}}} \operatorname{sgn}(w)(w\Lambda)(h)}{D(h)} \quad (h \in H(\mathbb{R})_+)$$

 $W_{\mathbb{R}} = W(G(\mathbb{R}), H(\mathbb{R})) \subset W(G, H)$

Sue me: I'm surpressing an irksome sign

Corollary: $\Gamma \in \widehat{H(\mathbb{R})_{\rho}}$:

$$a(I(H,\Lambda),\Gamma) = \begin{cases} \pm 1 & \Gamma = w\Lambda\\ 0 & \text{otherwise} \end{cases}$$

Question: Formula for $\theta_{I(H,\Lambda)}$ on other Cartan subgroups?

Question: Formula for $\theta_{I(H,\Lambda)}$ on other Cartan subgroups? Theory of leading terms (growth of matrix coefficients): Question: Formula for $\theta_{I(H,\Lambda)}$ on other Cartan subgroups? Theory of leading terms (growth of matrix coefficients): If

(*)
$$\operatorname{Re}\langle d\Lambda, \alpha^{\vee} \rangle \ge 0 \text{ for all } \alpha \in \Delta^+$$

then Λ occurs in $I(H, \Lambda)$ and the character formula for no other standard module:

Question: Formula for $\theta_{I(H,\Lambda)}$ on other Cartan subgroups? Theory of leading terms (growth of matrix coefficients): If

(*)
$$\operatorname{Re}\langle d\Lambda, \alpha^{\vee} \rangle \ge 0 \quad \text{for all } \alpha \in \Delta^+$$

then Λ occurs in $I(H, \Lambda)$ and the character formula for no other standard module:

Theorem: Fix (H, Λ) satisfying (*):

$$a(I(H', \Lambda'), \Lambda) = \begin{cases} \pm 1 & (H, \Lambda) \sim (H', \Lambda') \\ 0 & \text{otherwise} \end{cases}$$

$$I = \sum m(I, \pi)I$$

$$I = \sum m(I, \pi) I$$
 (multiplicity formula)

$$I = \sum m(I, \pi)I \text{ (multiplicity formula)}$$
$$\pi = \sum M(I, \pi)I \text{ (character formula)}$$

$$I = \sum m(I, \pi)I \text{ (multiplicity formula)}$$

$$\pi = \sum M(I, \pi)I \text{ (character formula)}$$

This is precisely what is computed by the Kazhdan-Lustig-Vogan polynomials (the klbasis command)

$$a(\pi, \Lambda) = \pm \mathcal{M}(I(H, \Lambda), \pi)$$

$$a(\pi, \Lambda) = \pm M(I(H, \Lambda), \pi)$$

= $\pm P_{I,\pi}(1)$ (KLV polynomial)

$$a(\pi, \Lambda) = \pm M(I(H, \Lambda), \pi)$$

= $\pm P_{I,\pi}(1)$ (KLV polynomial)

General A: use coherent continuation (wgraph command)

$$a(\pi, \Lambda) = \pm M(I(H, \Lambda), \pi)$$

= $\pm P_{I,\pi}(1)$ (KLV polynomial)

General A: use coherent continuation (wgraph command)

$$a(\pi, w \times \Lambda) = \pm \mathcal{M}(I(H, \Lambda), w^{-1} \cdot \pi)$$

$$a(\pi, \Lambda) = \pm M(I(H, \Lambda), \pi)$$

= $\pm P_{I,\pi}(1)$ (KLV polynomial)

General Λ : use coherent continuation (wgraph command)

$$a(\pi, w \times \Lambda) = \pm \mathcal{M}(I(H, \Lambda), w^{-1} \cdot \pi)$$

Conclusion: KLV-polynomials \Rightarrow explicit formulas for all $a(\pi, \Lambda)$

Example: $Sp(4, \mathbb{R})$

0(0,6):	0	[i1,i1]	1	2	(4,*)	(5,*)	0	е
1(1,6):	0	[i1,i1]	0	3	(4,*)	(6,*)	0	е
2(2,6):	0	[ic,i1]	2	0	(*,*)	(5,*)	0	е
3(3,6):	0	[ic,i1]	3	1	(*,*)	(6,*)	0	е
4(4,5):	1	[r1,C+]	4	9	(0,1)	(*,*)	1	1
5(5,4):	1	[C+,r1]	7	5	(*,*)	(0,2)	2	2
6(6,4):	1	[C+,r1]	8	6	(*,*)	(1,3)	2	2
7(7,3):	2	[C-,i1]	5	8	(*,*)	(10, *)	2	1,2,1
8(8,3):	2	[C-,i1]	6	7	(*,*)	(10, *)	2	1,2,1
9(9,2):	2	[i2,C-]	9	4	(10,11)	(*,*)	1	2,1,2
10(10,0):	3	[r2,r1]	11	10	(9,*)	(7,8)	3	2,1,2,1
11(10,1):	3	[r2,rn]	10	11	(9,*)	(*, *)	3	2,1,2,1

0:	0:	1	9:	0:	1
4.	4.			1:	1
1:	1:	1		2:	1
<u>.</u>	<u>.</u>	1		J: ⊿.	1
2.	2.	1		ч. с.	1
3.	3.	1		6.	1
5.	5.	1		۵. ۵.	1
4.	٥٠	1		5.	1
	1.	1	10.	٥.	1
	<u>م</u> .	1	10.	1.	1
	-1.	-		2.	1
5.	٥.	1		3.	1
0.	2.	1		4.	1
	5.	1		5.	1
	۰.	-		6.	1
6:	1:	1		7:	1
	3:	1		8:	1
	6:	1		9:	1
	•••	-		10:	1
7:	0:	1			
	1:	1	11:	2:	q
	2:	1		3:	q
	4:	1		9:	1
	5:	1		11:	1
	7:	1			
8:	0:	1			
	1:	1			
	3:	1			
	4:	1			
	6:	1			
	8:	1			

	$\mathbb{R}^* \times \mathbb{R}^*$: Irreducible Modules							
π	(2,1)	(1, 2)	(2, -1)	(-1, 2)	(1, -2)	(-2, 1)	(-1, -2)	(-2, -1)
$\pi(0)$						1, 1	1, 0	0, 1
$\pi(1)$						1, 1	1, 0	0, 1
$\pi(2)$							1, 0	-1, 0
$\pi(3)$							1, 0	-1, 0
$\pi(4)$				1,1		-1,-1	-1,1	1,-1
$\pi(5)$					1,0	-1,0	-1,0	1,0
$\pi(6)$					1,0	-1,0	-1,0	1,0
$\pi(7)$			1,0	-1,0	-1,0	1,0	1,0	-1,0
$\pi(8)$			1,0	-1,0	-1,0	1,0	1,0	-1,0
$\pi(9)$		1,1		-1,-1	-1,1	2,0	1,-1	-2,0
$\pi(10)$	1,0	-1,0	-1,0	1,0	1,0	-1,0	-1,0	1,0
$\pi(11)$	0,1	0,-1	0,1	1,0	0,-1	-1,0	-1,0	1,0