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1 Introduction

Let π be an irreducible representation of a real reductive group G. The
global character θπ of π may be considered as a function on the regular
semisimple elements of G. The global character determines π, and it is of
great interest to compute it. For example Harish-Chandra found the discrete
series representations of G by computing their characters, and characters
play an important role in the Langlands program.

Fix a Cartan subgroup H of G and let D be the Weyl denominator. Let λ
be the infinitesimal character of π. The function θπ restricted to the regular
elements of H is roughly of the form

(1.1) θπ =

∑
w∈W aw(π)ewλ

D

for certain integers aw(π). We would like to compute these integers.
There are several methods for doing this in the literature. The character

of any irreducible representation is an integer combination of characters of
standard modules, i.e., induced from (limits of) discrete series representa-
tions. Together with the induced character formula this reduces the problem
in principle to computing characters of the discrete series.

The most conceptual algorithm for this case is due to Rebecca Herb [11].
It is based on the theory of endoscopy. First one computes the character of a
stable sum of discrete series representations. Then one computes the charac-
ter of an individual discrete series representation in terms of the characters
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of stable sums of discrete series for G and for various endoscopic groups of
lower dimension.

Alternatively, properties of the discrete series characters, including the
Hecht-Schmid character identities, give recursive formulas which determine
these constants [15, Chapter 13, §4]. In [14] Hirai uses this approach to give
a very different formula from that of Herb.

Another very different formula is [6]. Other special cases include [17],
[18], [8], [16], [19], [5], and unpublished work of Zuckerman. Also see the
references in [11] and [14] and [15, Chaper 13].

We follow a more computational approach, based on the Kazhdan-Lusztig-
Vogan (KLV) polynomials. Certain terms ewλ only appear with nonzero co-
efficient in the character formula for a single standard module I. It follows
that for any irreducible representation π, aw(π) = ±M(I, π), where M(I, π)
is the coefficient of I in the expression of π as a sum of standard modules,
which is given by a KLV polynomial. We then compute other coefficients
aw(π) by using coherent continuation. The KLV polynomials are computed
by the atlas software (available at www.liegroups.org). A version of this
approach appears in an unpublished manuscript of Vogan [20].

The main ideas here are all present, in one form or another, in the litera-
ture, especially [10], as well as [20]. The main point here is to formulate the
result in as self-contained and clean a form as possible, with an emphasis on
the KLV polynomials for use in computations. These calculations will even-
tually be incorporated in the atlas software, which is a primary motivation
for this paper.

One noteworthy aspect of this presentation is our use of covers of Cartan
subgroups, which simplifies many of the formulas. In particular we give an
elementary proof of the Zuckerman character formula. In these terms we
write the trivial representation as a linear combination of standard modules
parametrized by holomorphic characters of (covers of) Cartan subgroups.

An excellent reference for the basics of character theory is [10]. Also
see [15], especially Chapters 10-13. We have tried to keep the presentation
as elementary as possible. Everything is based on Harish-Chandra’s theory,
and most of what is required was available in the early 1980s. A notable
exception is the theory of D-modules, which are not discussed explicitly here,
but which play an important role behind the scenes, and a fundamental one
in the theory of the KLV polynomials.

We thank David Vogan for some helpful discussions, and Dragan Miličić
and Becky Herb for assistance with Section 9.
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2 Weyl denominators and related functions

Fix a connected, complex reductive group G and a Cartan subgroup H. Let
∆ = ∆(G,H) be the set of roots of H in G, and let W = W (G,H) = W (∆)
be the Weyl group. If ∆+ is a set of positive roots, let ρ = ρ(∆+) = 1

2

∑
∆+ α

as usual. The ρ-cover of H is defined as in [4, Section 5]:

(2.1) Hρ = {(h, z) ∈ H × C∗ | e2ρ(h) = z2}.

Projection on the first factor is a two-to-one cover of H. Projection on the sec-
ond factor, denoted eρ, is a genuine character of Hρ (one not factoring to H)
satisfying eρ(h, z)2 = e2ρ(h). If w∆+ is another choice of positive roots then
Hρ is canonically isomorphic to Hwρ, via the map (h, z) → (h, ewρ−ρ(h)z). It

is convenient to eliminate the dependence on ∆+: define H̃ to be the inverse
limit of {Hwρ |w ∈ W}.

The Weyl group acts on Hρ by w : (h, z) → (wh, ew−1ρ−ρ(h)z), and hence

on H̃.
Now assume H is defined over R, with real points H(R). Let H(R)ρ be

the inverse image of H(R) in Hρ, and define H̃(R) to be the inverse limit of
the H(R)wρ.

Let h be the Lie algebra of H, h∗ = HomC(h, C), and write 〈, 〉 for the
pairing h∗×h → C. If α ∈ ∆ ⊂ h∗, α∨ ∈ h denotes the corresponding coroot.

The cross action on characters is defined as follows. For λ ∈ h∗ let
W (λ) = {w ∈ W |wλ − λ is a sum of roots}. For Λ a genuine character of
H(R)ρ, w ∈ W (dΛ), define

(2.2) w × Λ = Λ ⊗ (wdΛ − dΛ).

The expression wdΛ − dΛ is a sum of roots, which we consider as a (non-
genuine) character of H(R)ρ; the right hand side is naturally a genuine char-
acter of H(R)ρ.

This definition of the cross action is simpler than that of [21, Definition
8.3.1], thanks to the fact that we are using the ρ-cover of H.

Now suppose θ is a Cartan involution of G corresponding to G(R), i.e.
G(R)θ is a maximal compact subgroup of G(R). For H a θ-stable Cartan
subgroup set

(2.3)

∆i = {α ∈ ∆ | θ(α) = α}

∆r = {α ∈ ∆ | θ(α) = −α}

∆cx = {α ∈ ∆ | θ(α) 6= ±α}.
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Then ∆i, ∆r are root systems (∆cx typically is not), and we denote their
Weyl groups Wi,Wr.

Fix a set of positive roots ∆+. For ∗ = i, r or cx let ∆+
∗ = ∆+∩∆∗. Then

∆+
i , ∆+

r are positive roots for ∆i, ∆r, respectively. Define ρ∗ = 1
2

∑
∆+

∗
α.

We need to allow the positive systems for ∆i, ∆r to vary independently
of ∆+. We will write Ψi ⊂ ∆i, Ψr ⊂ ∆r for choices of positive imaginary and
real roots respectively, with ρi, ρr defined accordingly. The covers H(R)ρi

and H(R)ρr
are defined as above.

Definition 2.4 If ∆+ is a set of positive roots define

D0(∆+, g) =
∏

α∈∆+

(1 − e−α(g)) (g ∈ H),(2.5)(a)

D(∆+, g̃) = D0(∆+, g)eρ(g̃) (g̃ ∈ H̃)(2.5)(b)

where g is the image of g̃ in H, and

|D(∆+, g)| = |D0(∆+, g)eρ(g̃)| (g ∈ H)(2.5)(c)

where g̃ is any inverse image of g in H̃.

The dependence of D on ∆+ is obvious (modulo chasing the covers a bit):

(2.6) D(∆+, w−1g̃) = D(w∆+, g̃) = sgn(w)D(∆+, g̃) (w ∈ W ).

It is also easy to see

(2.7) D(∆+, g̃) =
∑

w∈W

sgn(w)(w × eρ)(g̃) (g̃ ∈ Hρ).

Suppose H is defined over R. After conjugating by G(R) we may assume
H is θ-stable, which we often do without further comment. The real Weyl
group is W (G(R), H(R)) = NormG(R)(H(R))/H(R). This is a subgroup of
W θ, the elements of W commuting with the action of θ on H.

Fix positive imaginary and real roots Ψi, Ψr. For w ∈ W θ define wi ∈
W (∆i), wr ∈ W (∆r) by wΨi = wiΨi and wΨr = wrΨr. Define wcx by
w = wcxwiwr. Then wcx ∈ W θ, wcx fixes Ψi, Ψr, and sgn(wcx) = 1. See [22,
Section 3]. Define sgni(w) = sgn(wi). Although wi depends on the choice of
Ψi, sgn(wi) is independent of this choice.
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If H is θ-stable let A be the identity component of {h ∈ H | θ(h) = h−1}.
Let M = CentG(A); this is a connected complex reductive group. If H is
defined over R then so are A and M , and M θ is a complexified maximal
compact subgroup of M(R). With d denoting the derived group define

(2.8)
qH =

1

2
dimC(Md/(Md)

θ)

=
1

2
|{α ∈ ∆i |α is noncompact}|.

Fix a set of positive real roots Ψr. For later use we define functions
ǫ(Ψr, g) = ±1, γ(Ψr)(g̃) = ±1,±i and τ(Ψr, w)(g) = ±1, and give some
elementary properties.

For g ∈ H(R) define

(2.9) ǫ(Ψr, g) = sgn
∏

α∈Ψr

(1 − e−α(g)).

View eρr as a genuine character of H(R)ρr
and define

(2.10) γ(Ψr)(g̃) =
eρr(g̃)

|eρr(g̃)|
(g̃ ∈ H(R)ρr

).

Since |eρr(g̃)| factors to H(R), γ(Ψr) is a genuine character of H(R)ρr
, and

e2ρr(g) ∈ R× implies γ(Ψr)(g̃)4 = 1. For w ∈ W θ define

(2.11) τ(Ψr, w)(g) =
γ(Ψr)

γ(wΨr)
(g) = sgn(eρr−wρr(g)) (g ∈ H(R)).

As indicated this factors to a character on H(R), with values in ±1.

Lemma 2.12 For all w, x, y ∈ W θ:
(1) τ(Ψr, w) = τ(Ψr, wr).
(2) τ(Ψr, xy) = τ(Ψr, x) xτ(Ψr, y);
(3) ǫ(Ψr, wg) = sgn(wr)ǫ(Ψr, g)τ(Ψr, w

−1
r )(g).

We omit the straightforward proofs. For (2) see [4, (8.26)(b)]).

Definition 2.13 Suppose H is θ-stable and ∆+ is a set of positive roots. Let

(2.14) B(∆+) =
1

2
|{α ∈ ∆+ complex | θα ∈ ∆+}|.
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We make repeated use of the condition

(2.15) α ∈ ∆+ complex ⇒ θ(α) 6∈ ∆+,

i.e. B(∆+) = 0. See [21, Lemma 6.7.1].
Suppose α is a complex root. Then eα+α takes positive real values on

H(R), and has a natural positive square-root. Accordingly for h ∈ H(R) we
define

(2.16)
e

1

2
(α+α)(h) =

√
eα+α(h)

e
1

2
(α−α)(h) = eα(h)e−

1

2
(α+α)(h).

Since ρcx is a sum of terms 1
2
(α±α), eρcx is a well defined character of H(R).

In particular if ∆+ satisfies (2.15) then eρcx(h) > 0 for h ∈ H(R).

Suppose Λ is a character of H̃(R), and 〈dΛ, α∨〉 ∈ R6=0 for all roots. We
define

(2.17) ǫ(Λ, ∆+) = sgn(w) where 〈wdΛ, α∨〉 > 0 for all α ∈ ∆+.

We often apply this to ∆+
i in which case it is enough to assume 〈dΛ, α∨〉 6= 0

for all imaginary roots.

3 Limits of Relative Discrete Series

We say a Cartan subgroup H (defined over R) is relatively compact if H(R)
is compact modulo the center of G(R). By a result of Harish-Chandra G(R)
has relative discrete series representations (i.e. discrete series modulo the
center) if and only if it has a relatively compact Cartan subgroup. It also has
limits of such representations, which are obtained by translating to singular
infinitesimal character.

Let q = qH = 1
2
dimC(Gd/(Gd)

θ) (cf. 2.8).

Definition 3.1 A relative discrete series parameter is a pair γ = (H, Λ)

where H is relatively compact, Λ is a genuine character of H̃(R) and

(3.2) 〈dΛ, α∨〉 6= 0 for all α ∈ ∆(G,H).

Let ∆+ = ∆+(dΛ) = {α | 〈dΛ, α∨〉 > 0}.
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Let I(γ) be the unique relative discrete series representation whose char-
acter restricted to the regular elements of H(R) is

(3.3) ΘI(γ)(g) = (−1)qD(∆+, g̃)−1
∑

w∈W (G(R),H(R))

sgn(w)(wΛ)(g̃)

where g̃ ∈ H̃(R) maps to g.
More generally let γ = (H, ∆+, Λ) where Λ is a genuine character of

H̃(R) satisfying

(3.4)(a) 〈dΛ, α∨〉 6= 0 if α is compact and simple for ∆+,

and ∆+ satisfies

(3.4)(b) {α | 〈dΛ, α∨〉 > 0} ⊂ ∆+.

Choose Λ′ regular so that Λ′ − Λ is a sum of roots, and satisfying ∆+ =
∆+(Λ′). Define a discrete series representation I(H, Λ′) by the preceding con-
struction. Let I(H, ∆+, Λ) = Ψ(I(H, Λ′)) where Ψ is the Jantzen-Zuckerman
translation functor taking infinitesimal character dΛ′ to infinitesimal charac-
ter dΛ. See [15, Chapter 12, §7].

Every relative limit of discrete series representation is obtained this way,
and I(γ) ≃ I(γ′) if and only if γ is G(R) conjugate to γ′.

See [4, Example 8.14].
Formula (3.3) holds for limits of discrete series. However the uniqueness

statement does not. For example for SO(2, 1) the character of the (unique)
limit of discrete series representation vanishes on the compact Cartan sub-
group (since sα ∈ W (G(R), H(R))).

4 Regular Integral Standard Modules

In this section we consider standard modules with regular integral infinitesi-
mal character. The basic reference for this section and the next is [4, Section
8]. Also see [3, Theorem 11.4] and [1, Theorem 6.1].

We first dispense with a technical issue about the covers. Suppose H
is θ-stable, ∆+ is a set of positive roots, and define ρi, ρr, ρcx with respect
to ∆+

i , ∆+
r and ∆+

cx as in Section 2. Recall (end of Section 2) eρcx is a well
defined character of H(R).
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Definition 4.1 Fix H (defined over R) and ∆+. Suppose χ, τ are genuine
characters of H(R)ρ, H(R)ρr

, respectively. Define:

(4.2) (χ ⊗ τ)(h) = (χe−ρ)(h)(τeρr)(h)eρcx(h)eρi(h) (h ∈ H(R)ρi
)

where h is the image of h in H(R). This is a genuine character of H(R)ρi
,

satisfying d(χ ⊗ τ) = dχ + dτ .

Definition 4.3 A regular character for G(R) is a pair γ = (H, Λ) where H

is a Cartan subgroup of G, defined over R, Λ is a genuine character of H̃(R),
and dΛ is regular and integral, i.e. 〈dΛ, α∨〉 ∈ Z 6=0 for all roots.

We say γ = (H, Λ) is based on H. The group G(R) acts on regular characters
by conjugation.

Now suppose Λ is a genuine character of H̃(R). Fix positive imaginary
and real roots Ψi, Ψr. Choose positive roots ∆+ containing Ψi, Ψr, and apply
Definition 4.1 to define (cf. (2.10))

(4.4) ΛM(Ψr) = Λ ⊗ γ(Ψr)
−1,

a genuine character of H(R)ρi
. It is easy to see this is independent of the

choice of ∆+, and the dependence on Ψr is given by

(4.5) ΛM(wΨr) = τ(Ψr, w)ΛM(Ψr) (w ∈ Wr).

Given γ = (H, Λ), conjugate by G(R) as usual to assume H(R) is θ-stable.
Define A and M = CentG(A) as in Section 2. Let a = Lie(A). Recall M is
defined over R. Let P = MN be a parabolic subgroup such that

(4.6) {α | 〈dΛ|a, α
∨〉 ≥ 0} for all weights α of h in Lie(N).

It is easy to see that N and P are defined over R.

Definition 4.7 Suppose γ = (H, Λ) is a regular character. Let

(4.8) Ψr = {α ∈ ∆r | 〈dΛ, α∨〉 > 0},

define ΛM by (4.4), and the relative discrete series representation IM(H, ΛM)
by Definition 3.1 applied to M(R). Choose P as above, and define

(4.9) I(γ) = Ind
G(R)
P (R)(IM(H, ΛM)).
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Theorem 4.10 I(γ) is non-zero, independent of the choice of P , and has
a unique irreducible quotient, denoted π(γ). Every irreducible representation
of G(R) with regular integral infinitesimal character is isomorphic to π(γ)
for some regular character γ, unique up to conjugacy by G(R).

Example 4.11 Let G(R) = SL(2, R) and let H(R) be a split Cartan sub-
group. Choose an isomorphism h : R∗ ≃ H(R). The cover H(R)ρ is trivial,
so we may drop it from the notation. Let Ψr = {α} where α(h(x)) = sgn(x).
Then eρr(h(x)) = x and γ(Ψr)(h(x)) = sgn(x). If Λ is a character of H(R)
then ΛM(h(x)) = Λ(h(x))sgn(x). In particular if Λ = eρ then ΛM(h(x)) =
|x|.

Example 4.12 Consider the split Cartan subgroup H(R) ≃ R∗ of PGL(2, R).
Now some care is required with the covers. Choose an isomorphism h : R∗ ≃
H(R), and choose Ψr = {α} where α(h(x)) = x. Then H(R)ρ = H(R)ρr

=
{(h(x), z) | z2 = x}. On the other hand H(R)ρi

= {(h(x), ǫ) | ǫ2 = 1} (trivial
cover).

Suppose Λ is a genuine character of H(R)ρ. Write Λ(h(x), z) = µ(x)z for
µ a character of R∗. Note that γ(Ψr)(h, z) = z/|z|. According to Definition
4.1 if (h, ǫ) ∈ H(R)ρi

:

ΛM(h(x), ǫ) = (Λe−ρ)(h(x))(γ(Ψr)
−1eρr)(h(x))ǫ

= µ(x)|z|ǫ = µ(x)|x|
1

2 ǫ.

We may ignore the trivial cover H(R)ρi
and write ΛM(h(x)) = µ(x)|x|

1

2 . In

particular µ = 1 gives Λ = eρ and ΛM(h(x)) = |x|
1

2 .

5 General Standard Modules

Although our computation of characters of irreducible representations (see
Section 12) is limited to the case of regular integral infinitesimal character,
it is only a little extra effort to prove various intermediate results in greater
generality.

In this section we consider general standard modules, where are obtained
by dropping the assumption that dΛ is regular and integral. This necessitates
some further choices. First of all we need to choose Ψi to define limits of
discrete series for M(R). Secondly Ψr is not determined by (4.8), so we need
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to choose Ψr to define ΛM . For references see the beginning of the previous
section.

Definition 5.1 Standard limit data is a set γ = (H, Ψi, Ψr, Λ) where H is
defined over R, Ψi, Ψr are sets of positive imaginary and real roots, respec-

tively, and Λ is a genuine character of H̃(R). We require:

{α ∈ ∆i | 〈dΛ, α∨〉 > 0} ⊂ Ψi(5.2)(a)

if α ∈ ∆i is compact and simple for Ψi then 〈dΛ, α∨〉 6= 0.(5.2)(b)

We say γ = (H, Ψi, Ψr, Λ) is based on H. The group G(R) acts on standard
limit data by conjugation.

Definition 5.3 Suppose γ = (H, Ψi, Ψr, Λ) is standard limit data. Define
ΛM by (4.4) and IM(H, Ψi, ΛM) by Definition 3.1 applied to M . Choose a
parabolic subgroup P = MN such that

(5.4) Re〈dΛ|a, α
∨〉 ≥ 0 for all roots α of h in Lie(N)

and define

(5.5) I(γ) = Ind
G(R)
P (R)(IM(H, Ψi, ΛM(Ψr))).

As before I(γ) is independent of the choice of P . However it may not have
a unique irreducible quotient, and we let π(γ) be the co-socle of I(γ), the
direct sum of all of the irreducible quotients.

If dΛ is regular and integral we recover Definition 4.3:

(5.6)(a) I(H, Λ) = I(H, ∆+
i , ∆+

r , Λ)

where ∆+ = {α | 〈dΛ, α∨〉 > 0}. More generally if 〈dΛ, α∨〉 6= 0 for all
imaginary roots we define

(5.6)(b) I(H, Ψr, Λ) = I(H, Ψi, Ψr, Λ)

where Ψi = {α ∈ ∆i | 〈dΛ, α∨〉 > 0}.
The choice of Ψr introduces a twist in the notion of equivalence of data.

By (2.11) and (4.4) if w ∈ Wr, then I(H, Ψi, Ψr, Λ) ≃ I(H, Ψi, wΨr, τ(Ψr, w)Λ).
We therefore define

(H, Ψi, Ψr, Λ) ∼ (H, Ψi, wΨr, τ(Ψr, w)Λ) (w ∈ Wr).

Incorporating conjugation by G(R) we make the following definition.
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Definition 5.7 Fix γ = (H, Ψi, Ψr, Λ). We say standard limit data γ′ is
equivalent to γ if there exists g ∈ G(R), w ∈ Wr such that

(5.8) gγ′g−1 = (H, Ψi, wΨr, τ(Ψr, w)Λ).

In particular (H, Ψi, Ψr, Λ) ∼ (H, Ψ′
i, Ψ

′
r, Λ

′) if and only if there exists y ∈
W (G(R), H(R)) such that

(1) Ψi = yΨ′
i,

(2) yΛ′ = τ(Ψr, w)Λ where w ∈ Wr satisfies wΨr = yΨ′
r.

Theorem 5.9

(1) Every irreducible representation is a summand of I(γ) for some γ.
(2) Suppose γ, γ′ are standard limit data. Then I(γ) ≃ I(γ′) if γ ∼ γ′;

If the infinitesimal character is regular then the converse holds in (2)
(Theorem 4.10). In general an additional final condition is necessary to make
this hold, and to make π(γ) irreducible. See [3, Definition 11.13, Condition
(b)] or [1, Theorem 6.1, Condition 5].

A virtual character is an element of the Grothendieck group, i.e. a finite
linear combination of irreducible representations, with integral coefficients.
A basic result is that the representations I(γ) span the virtual characters.
At regular infinitesimal character these form a basis (at singular infinites-
imal character this is not true without the final condition of the previous
paragraph). We restrict to regular infinitesimal character.

Definition 5.10 For π a virtual representation with regular infinitesimal
character define integers M(I(γ), π) by

(5.11) π =
∑

γ

M(I(γ), π)I(γ)

in the Grothendieck group.

For π irreducible the integers M(I(γ), π) are computed by the Kazhdan-
Lusztig-Vogan algorithm.
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6 Character Formulas

Fix a Cartan subgroup H defined over R and write H(R)reg for the regular
elements of H(R). Fix a set of positive real roots Ψr. Let

(6.1) H(R)+ = {g ∈ H(R)reg | |e
α(g)| > 1 for all α ∈ Ψr}.

Every element of H(R)reg is conjugate via Wr ⊂ W (G(R), H(R)) to a unique
element of H(R)+.

We parametrize infinitesimal characters by Weyl group orbits of elements
of h∗. Let

(6.2) P(H,λ) = {Λ |Λ is a genuine character of H̃(R), dΛ ∈ Wλ}.

Since we make frequent use of the trivial representation, let ρ be one-half the
sum of any set of positive roots and define

(6.3) P(H, C) = P(H, ρ).

Recall if ∆+ is any set of positive roots then ∆+
r = ∆+∩∆r is a set of positive

roots of ∆r.

Proposition 6.4 Suppose π is an admissible representation. Fix a Cartan
subgroup H, defined over R, and a set of positive roots ∆+. Suppose π has
infinitesimal character λ ∈ h∗. Use ∆+

r to define H(R)+. Then the restriction
of Θπ to H(R)+ may be written

(6.5) θπ(g) =

∑
Λ∈P(H,λ) a(π, ∆+, Λ)Λ(g̃)

D(∆+, g̃)

for some unique integers a(π, ∆+, Λ).

Here g̃ is an inverse image of g in H̃(R); the right hand side is independent
of this choice.

This is essentially due to Harish-Chandra [7], see [10, 3.41], except that
the set on which this expansion is valid is larger. Also see see [1, Theorem
5.8] and [20].

We want to compute the integers a(π, ∆+, Λ).
From invariance of θπ it is easy to see that if w ∈ W (G(R), H(R)) then

(6.6)(a) a(π,w∆+, wΛ) = a(π, ∆+, Λ)
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and if, furthermore, w∆+
r = ∆+

r , then (cf. (2.6))

(6.6)(b) a(π, ∆+, wΛ) = sgn(w)a(π, ∆+, Λ).

However if w ∈ Wr there is often no relationship between a(π, ∆+, Λ) and
a(π, ∆+, wΛ).

The dependence of a(π, ∆+, Λ) on ∆+ is fairly innocuous, and we record
it here.

Lemma 6.7 Fix a θ-stable Cartan subgroup H, ∆+, and suppose w ∈ W .
There exist unique x, y ∈ W such that

x ∈ Wr and (w∆+)r = x(∆+
r ),(6.8)(a)

(y∆+)r = ∆+
r ,(6.8)(b)

w = xy.(6.8)(c)

If w ∈ W θ then (w∆+)r = w(∆+
r ) and x = wr (cf. Section 2).

Proof. The element x satisfying (a) exists and is unique, so let y = x−1w.
It is enough to show y satisfies (b). Note that (x−1w∆+)r = x−1[(w∆+)r]
since x ∈ Wr. Thus

(6.9) (y∆+)r = (x−1w∆+)r = x−1[(w∆+)r] = x−1[x(∆+
r )] = ∆+

r .

�

Lemma 6.10 In the setting of Proposition 6.4 suppose w ∈ W, and write
w = xy as in the Lemma. Then

(6.11)(a) a(π,w∆+, Λ) = sgn(y)a(π, ∆+, x−1Λ).

In particular

a(π,w∆+, Λ) = sgn(w)a(π, ∆+, Λ) (w∆+)r = w(∆+
r )(6.11)(b)

a(π,w∆+, Λ) = a(π, ∆+, w−1Λ) (w ∈ Wr).(6.11)(c)

In particular (b) holds for w ∈ Wi.
Proof. Assuming |eα(g)| > 1 for all α ∈ ∆+

r , we have

(6.12) Θπ(g) = D(∆+, g̃)−1
∑

a(π, ∆+, Λ)Λ(g̃).
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Since (w∆+)r = x(∆+
r ), g satisfies the previous condition if and only if

|eβ(xg)| > 1 for all β ∈ (w∆+)r. Therefore

(6.13)

Θπ(xg) = D(w∆+, xg̃)−1
∑

a(π,w∆+, Γ)Γ(xg̃)

= sgn(w)sgn(x)D(∆+, g̃)−1
∑

a(π,w∆+, Γ)(x−1Γ)(g̃)

= sgn(y)D(∆+, g̃)−1
∑

a(π,w∆+, xΛ)Λ(g̃)

Setting θπ(g) = θπ(xg) gives the result. �

It makes sense to use (6.11)(b) to move Λ to the dominant ∆+
i -chamber

using Wi, which (provided dΛ is regular) introduces a term ǫ(Λ, ∆+
i ) (see the

end of Section 2).
It is also useful to record how a(π, ∆+, Λ) depends on ∆+ provided

∆+
i , ∆+

r are fixed. Recall (Definition 2.13) B(∆+) = 1
2
|{α ∈ ∆+complex | θα ∈

∆+}|.

Lemma 6.14 Let ∆+
1 , ∆+

2 be sets of positive roots, containing the same real
and imaginary roots. Then

(6.15) a(π, ∆+
1 , Λ) = (−1)B(∆+

1
)−B(∆+

2
)a(π, ∆+

2 , Λ).

Proof. Choose w such that w∆+
1 = ∆+

2 . By Lemma 6.10 a(π, ∆+
1 , Λ) =

(−1)ℓ(w)a(π, ∆+
2 , Λ). It is easy to see ℓ(w) = B(∆+

1 ) − B(∆+
2 ) (mod 2). �

Example 6.16 Suppose H is a relatively compact Cartan subgroup, and
I(H, Λ) is a relative discrete series representation (Section 3). Then with qH

as in (2.8),

a(I(H, Λ), ∆+, Γ) =

{
(−1)qH sgn(w) Γ = wΛ (w ∈ W (G(R), H(R))

0 otherwise.

Equivalently,

a(I(H, Λ), ∆+, Γ) =

{
(−1)qH ǫ(Γ, ∆+) Γ is G(R) − conjugate to Λ

0 otherwise.

14



7 Example: The Trivial Representation

The character of the trivial representation C is the identity function. By
(2.7):

(7.1) θC(g) = D(∆+, g̃)−1
∑

w∈W

sgn(w)(w × eρ)(g̃) (g̃ ∈ H(R)ρ)

(where ρ = ρ(∆+)).
We reinterpret this formula in terms of holomorphic characters. The

group Hρ inherits from H a holomorphic structure. Therefore it makes sense
to talk about holomorphic characters of Hρ. The character ρ is holomorphic,
so the genuine holomorphic characters of Hρ are precisely the holomorphic
characters of H, (pulled back to Hρ and) tensored with ρ.

It is clear from the definition of the cross action that if Λ is holomorphic
then w × Λ is (defined and) holomorphic for all w ∈ W . It is also clear that
for w ∈ W , w × eρ is the unique genuine holomorphic character of H(R)ρ

with differential wρ. Thus Λ occurs in the character formula of the trivial
representation if and only if dΛ ∈ Wρ and Λ is holomorphic. Recall (6.3)
P(H, C) is the set of genuine characters of with differential in Wρ. So if we
let

Phol(H, C) = {Λ ∈ P(H, C) |Λ is holomorphic}

we may reformulate (7.1) as

(7.2) θC = D(∆+)−1
∑

Λ∈Phol(H,C)

ǫ(Λ, ∆+)Λ

(for ǫ see (2.17)). In other words:

Corollary 7.3 Fix H and ∆+. Then

(7.4) a(C, ∆+, Λ) =

{
ǫ(Λ, ∆+) Λ ∈ Phol(H, C)

0 otherwise.

Equivalently

(7.5) a(C, ∆+, w × eρ) = sgn(w)

and all other a(C, ∆+, Λ) are 0.
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8 Character formula for standard modules

Suppose γ is standard limit data based on H. We give a formula for the
character of I(γ) on H(R). This combines the character formula for (relative)
discrete series on a (relatively) compact Cartan subgroup (3.3) with a special
case of the induced character formula, which we now state. See [10, Theorem
5.7].

Proposition 8.1 Suppose H is a Cartan subgroup, defined over R, and
P = MN is a parabolic subgroup defined over R as usual. Suppose σ is an ad-
missible representation of M(R), pulled back to P (R). Let π = Ind

G(R)
P (R)(σ⊗1)

(normalized induction). Then (for any choice of positive roots ∆+)

(8.2) Θπ(g) = |D(∆+, g)|−1
∑

w

|D(∆+
i , wg)|Θσ(wg) (g ∈ H(R)reg)

where the sum is over W (M(R), H(R))\W (G(R), H(R)).

Here is the main result of this section. Recall qH is given in (2.8), B(∆+)
is given by (2.14), and (see Section 2) for w ∈ W θ, sgni(w) is defined.

Proposition 8.3 Suppose γ = (H, Ψi, Ψr, Λ) is standard limit data. Choose
positive roots ∆+ containing Ψi and Ψr and set δ = (−1)qH+B(∆+). Then for
g ∈ H(R)reg

(8.4) ΘI(γ)(g) = δ
ǫ(Ψr, g)

D(∆+, g̃)

∑

w∈W (G(R),H(R))

sgni(w)τ(Ψr, w)(g)(wΛ)(g̃)

where g̃ is an inverse image of g in H̃(R). In other words for Λ a genuine

character of H̃(R):

a(I(γ), ∆+, Γ) =

{
δsgni(w) Γ = τ(Ψr, w)(wΛ) (w ∈ W (G(R), H(R))

0 otherwise.

Remark 8.5 The fact that the right hand side of (8.4) is invariant under
g → wg for w ∈ W (G(R), H(R)) follows from (and is essentially equivalent
to) Lemma 2.12.
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Proof of Proposition 8.3. Write WG = W (G(R), H(R)) and WM =
W (M(R), H(R)). Recall I(H, Ψi, Ψr, Λ) is induced from IM(H, Ψi, ΛM(Ψr))
where ΛM(Ψr) is given by (4.4). To save a little space write ΛM = ΛM(Ψr).
By Proposition 8.3 and (3.3):

(8.6)

ΘI(γ)(g) = |D(∆+, g)|−1
∑

w∈WM\WG

|D(Ψi, wg)|ΘIM (H,Ψi,ΛM )(wg)

= |D(∆+, g)|−1
∑

w∈WM\WG

|D(Ψi, wg)|×

(−1)qHD(Ψi, wg)−1
∑

y∈WM

sgn(y)(yΛM)(wg).

Here wg is an inverse image of wg in H(R)ρi
. Also choose an inverse image

g̃ of g in H(R)ρ. This gives

(8.7) (−1)qHD(∆+, g̃)−1
∑

y,w

D(∆+, g̃)

|D(∆+, g)|

|D(Ψi, wg)|

D(Ψi, wg)
sgn(y)ΛM(y−1wg).

Using D(Ψi, y
−1wg) = sgn(y)D(Ψi, wg) and D(∆+, g̃) = sgn(w)D(∆+, wg̃)

we can combine the sums:
(8.8)

(−1)qHD(∆+, g̃)−1
∑

w∈W (G(R),H(R))

sgn(w)
D(∆+, wg̃)

|D(∆+, wg)|

|D(Ψi, wg)|

D(Ψi, wg)
ΛM(wg)

The final terms equal

(8.9)
eρ(wg̃)/eρi(wg)

|eρ(wg̃)|/|eρi(wg)|

∏

∆+\Ψi

(1 − e−α(wg))

|(1 − e−α(wg))|
ΛM(wg)

Assume ∆+ satisfies (2.15). Since θα = −α, this says the positive complex
roots come in pairs α, α. Then the product becomes the product over Ψr,
i.e. ǫ(Ψr, wg), giving

(8.10) ǫ(Ψr, wg)
eρ(wg̃)/eρi(wg)

|eρ(wg̃)|/|eρi(wg)|
ΛM(wg).

By Definition 4.1 and (4.4)

ΛM(wg) = (Λe−ρ)(wg)(γ(Ψr)
−1eρr)(wg)eρcx(wg)eρi(wg)
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Using

(Λe−ρ)(wg) = Λ(wg̃)e−ρ(wg̃)

(γ(Ψr)
−1eρr)(wg) = |eρr(wg)|

|eρ(wg̃)|/|eρi(wg)| = |eρr(wg)|eρcx(wg) (since (2.15) holds)

it is easy to see the final two terms of (8.10) are equal to Λ(wg̃). Therefore

(8.11) ΘI(γ)(g) = (−1)qHD(∆+, g̃)−1
∑

w∈W (G(R),H(R))

sgn(w)ǫ(Ψr, wg)Λ(wg̃).

By Lemma 2.12(3) ǫ(Ψr, wg) = sgn(wr)τ(Ψr, w
−1
r )(g)ǫ(Ψr, g). Also (cf. Sec-

tion 2) sgn(w)sgn(wr) = sgn(wi). Inserting these, and replacing w with w−1,
gives (8.4).

This completes the proof provided ∆+ satisfies (2.15), i.e. B(∆+) = 0.
The general case follows from Lemma 6.14. �

Example 8.12 Consider principal series for SL(2, R). We use the notation
of Example 4.11.

Let sα ∈ W be the simple reflection. Then τ(Ψr, sα)(h(x)) = sgn(α(h(x))) =
1, and (8.3) gives

(8.13)

ΘI(γ)(h(x)) =
sgn(1 − 1

x2 )

(1 − 1
x2 )x

(Λ(x) + Λ(x−1))

=
sgn(x − 1

x
)

x − 1
x

sgn(x)(Λ(x) + Λ(x−1))

=
(Λ ⊗ sgn)(x) + (Λ ⊗ sgn)(x−1)

|x − 1
x
|

This is the familiar character formula for Ind
SL(2,R)
B(R) (Λ⊗sgn) (B(R) is a Borel

subgroup). For example if Λ = eρ then eρ(h(x)) = x and (Λ ⊗ sgn)(h(x)) =
|x|, so

(8.14) θI(γ)(h(x)) =
|x| + |x|−1

|x − 1
x
|

This is the character formula of the spherical principal series with infinitesi-
mal character ρ, with the trivial representation as a quotient.
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Example 8.15 Consider PGL(2, R) and use notation of Example 4.12. We
compute

sα(h(x), z) = (h(
1

x
), e−2ρr(h(x))z) = (h(

1

x
),

z

x
) = (h(

1

x
),

1

z
)

and
τ(Ψr, sα)(h(x)) = sgn(α(h(x))) = sgn(x).

Write Λ(h(x), z) = µ(x)z, so (8.3) gives

(8.16)

ΘI(γ)(h(x)) = ΘI(γ)(h(x), z)

=
sgn(1 − 1

x
)

(1 − 1
x
)z

(µ(x)z + µ(x−1)sgn(x)/z)

=
µ(x) + µ(x−1) 1

|x|

|1 − 1
x
|

=
µ(x)|x|

1

2 + µ(x−1)|x|−
1

2

|1 − 1
x
||x|

1

2

This is the formula for Ind
PGL(2,R)
B(R) (µ| |

1

2 ). For example Λ = eρ is given by
µ = 1, and

(8.17) θI(γ)(h(x)) =
|x|

1

2 + |x|−
1

2

|1 − 1
x
||x|

1

2

.

This is the spherical principal series with infinitesimal character ρ, with the
trivial representation as a quotient. Note that θI(γ)(h(x)) = 1 for x < 0.

Example 8.18 This example generalizes (parts of) the previous two. Sup-
pose H(R) is split, and take Λ = eρ. Let π = I(H, Λ). A short calculation
gives

(8.19) ΘI(γ)(g) = |D(∆+, g)|−1
∑

w∈W

|ewρ(g)| (g ∈ H(R)).

This is the character of the spherical principal series representation with
infinitesimal character ρ, with the trivial representation as quotient.
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Corollary 8.20 Fix H, ∆+ and Λ. Let γ be standard limit data based on
H. Then

a(I(γ), ∆+, Λ) =

{
(−1)qH+B(∆+)sgn(w) γ ∼ (H,w∆+

i , ∆+
r , Λ) (w ∈ Wi)

otherwise.

Proof. Write γ = (H, Ψi, Ψr, Γ). Define x ∈ Wi, y ∈ Wr by x∆+
i =

Ψi, y∆+
r = Ψr. Apply Lemma 6.10 or (6.6):

(8.21) a(I(γ), ∆+, Λ) = a(I(γ), xy∆+, yΛ)sgn(x)

and we now have Ψi, Ψr ⊂ xy∆+. By Proposition 8.3 this is non-zero if
and only if yΛ = τ(Ψr, u)uΓ for some u ∈ W (G(R), H(R)), i.e. (using
u−1τ(Ψr, u) = τ(Ψr, u

−1)) Γ = τ(Ψr, u
−1)u−1yΛ. So

(8.22)

γ = (H, Ψi, Ψr, Γ) = (H, Ψi, Ψr, τ(Ψr, u
−1)u−1yΛ)

∼ (H, Ψi, u
−1Ψr, u

−1yΛ) (by Definition 5.7)

∼ (H, uΨi, Ψr, yΛ)

∼ (H, uix∆+
i , ∆+

r , Λ).

If this holds the sign is (−1)qH+B(∆+)sgn(uix), so set w = uix ∈ Wi. �

If dΛ is regular with respect to the imaginary roots this has an important
consequence – a character Λ determines a unique standard module based on
H:

Corollary 8.23 In the setting of the previous Corollary, assume 〈dΛ, α∨〉 6=
0 for all imaginary roots. Then

(8.24) a(I(γ), ∆+, Λ) =

{
(−1)B(∆+)(−1)qH ǫ(Λ, ∆+

i ) γ ∼ (H, ∆+
r , Λ)

0 otherwise.

In particular if γ, γ′ are based on H, and Λ occurs in the character formulas
for both I(γ) and I(γ′), then γ ∼ γ′.

The conclusion of the Corollary does not hold if we drop the assumption
that γ, γ′ are based on H. For example let G = SL(2, R) and consider the
principal series representations (cf. Example 8.12). The only principal series
representation with the term Λ(h(x)) = x−1 is the spherical one. However
this also occurs in the character formula for both of the discrete series repre-
sentations (with trivial infinitesimal character), based on the compact Cartan
subgroup. We will see in the next section that such a result does hold for
certain characters. See Section 14, Example 1.
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9 Computation of a(π, ∆+, Λ) for leading terms

If Λ satisfies a certain positivity condition with respect to ∆+ then the con-
clusion of Corollary holds 8.20 without assuming γ is based on H:

Proposition 9.1 Fix H, ∆+ and a genuine character Λ of H(R)ρ. Assume

(a) 〈dΛ, α∨〉 6= 0 for all α ∈ ∆,

(b) Re〈dΛ, α∨〉 ≥ 0 for all α ∈ ∆+
r .

Suppose γ is standard limit data. Then

(9.2) a(I(γ), ∆+, Λ) =

{
(−1)qH+B(∆+)ǫ(Λ, ∆+

i ) γ ∼ (H, ∆+
r , Λ)

0 otherwise.

The key point is that a(I(γ), ∆+, Λ) = 0 if γ is not based on H. If I(γ) is a
(relative) discrete series representation this follows from the fact that I(γ) is
tempered, and growth conditions on matrix coefficients [7]. For example see
[12, 3.3] or [15, 13.26]. The general case follows from this and the induced
character formula. See [10, Section 3]. It also follows from the theory of
D-modules.

Using this we see that for certain Λ, computing a(π, ∆+, Λ) is equivalent
to computing the multiplicity of a standard module in the character formula
for π:

Corollary 9.3 Let π be a virtual representation with regular infinitesimal
character. Fix H,∆+, and Λ such that Re〈dΛ, α∨〉 ≥ 0 for all α ∈ ∆+

r . Then

(9.4) a(π, ∆+, Λ) = (−1)qH+B(∆+)ǫ(Λ, ∆+
i )M(I(H, ∆+

r , Λ), π).

10 The Zuckerman Character formula for the

Trivial Representation

Recall

(10.1) C =
∑

γ

M(I(γ), C)I(γ)
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for certain integers M(I(γ), C). These are computed by the Kazhdan-Lusztig-
Vogan (KLV) polynomials, but in this case this goes back to a result of
Zuckerman [21, Proposition 9.4.16]. We give an elementary proof here.
Since we are working at regular integral infinitesimal character we may write
γ = (H, Λ) for a regular character and I(H, Λ) for the corresponding stan-
dard module (cf. Section 4).

Fix H and consider a standard module I(H, Λ) with Λ ∈ P(H, C) (cf.
(6.3)). Let

(10.2) ∆+ = ∆+(Λ) = {α | 〈dΛ, α∨〉 > 0}.

By definition I(H, Λ) = I(H, ∆+
r , Λ) (see (5.6)). Therefore we may apply

Corollary 9.3 to conclude

(10.3) M(I(H, Λ), C) = a(C, ∆+(Λ), Λ)(−1)qH+B(∆+(Λ))

(using ǫ(Λ, ∆+(Λ)i) = 1). On the other hand by Corollary 7.3

(10.4) a(C, ∆+(Λ), Λ) =

{
1 Λ ∈ Phol(H, C)

0 else.

Therefore

(10.5) M(I(H, Λ), C) =

{
(−1)qH+B(∆+(Λ)) Λ ∈ Phol(H, C)

0 else.

In other words:

Lemma 10.6 There is an identity in the Grothendieck group

(10.7) C =
∑

H

∑

Λ∈Phol(H,C)

(−1)qH+B(∆+(Λ))I(H, Λ).

(the first sum is over G(R)-conjugacy classes of Cartan subgroups defined
over R).

Subtracting (a) and (c) in [21, Lemma 9.4.15] shows that

(10.8) (−1)qH+B(∆+(Λ)) = (−1)ℓ(γ0)−ℓ(γ)

where ℓ is the length function of [21, Definition 8.1.4] and γ0, γ are the pa-
rameters for the trivial representation and I(H, Λ), respectively. Thus the
Lemma is a version of Zuckerman’s character formula for the trivial repre-
sentation [21, Proposition 9.4.16]. A nice feature of these parameters is that
it is precisely the holomorphic characters which appear.
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11 Coherent Continuation

We give the definition of coherent continuation [10, (3.38)], [21, Definitions
7.2.5, 7.2.28] in our terms.

Fix a Cartan subgroup H, with Weyl group W , and λ ∈ h∗. Let X∗(H)
be the algebraic (holomorphic) characters of H. If F is a finite dimensional
representation of G(C) write ∆(F ) ⊂ X∗(H) for its weights.

We say a family {π[λ+µ] |µ ∈ X∗(H)} of virtual Harish-Chandra modules
is a coherent family if for all µ ∈ X∗(H):

(1) π[λ + µ] has infinitesimal character λ + µ,
(2) If F is any finite dimensional representation of G(C) then

π[λ + µ] ⊗ F =
∑

µ′∈∆(F )

π[λ + µ + µ′]

where ∆(F ) is the set of weights of F .
We consider only finite dimensional representations of G(C) rather than

of G(R) as in [21, Chapter 7] – this is sufficient for our purposes.
This has a direct interpretation in terms of characters. Fix ∆+ and drop it

from the notation, so write a(π[λ+µ], Λ) for the coefficients in the character
formula for π[λ + µ].

Lemma 11.1 (a) Suppose π is a virtual character with regular infinitesimal
character λ. There is a unique coherent family {π[λ + µ] |µ ∈ X∗(H)]} such
that π[λ] = π.
(b) Suppose {π[λ + µ]} is a coherent family. Assume dΛ = wλ for some
w ∈ W , and µ ∈ X∗(H). Then

(11.2) a(π[λ + µ], Λ ⊗ wµ) = a(π[λ], Λ).

For (a) see [10, Lemma 3.39] or [21, Theorem 7.2.7 and Corollary 7.2.27]. Part
(b) is the first statement of [10, Lemma 3.44] carried over to our setting. This
can be made into a necessary condition by considering all Cartan subgroups,
but we won’t need this.

Lemma 11.3 Suppose {π[λ + µ]} is a coherent family, and fix w ∈ W (λ).
Suppose dΛ ∈ Wλ, and write dΛ = ywλ for y ∈ W . Then

(11.4) a(π[wλ], Λ) = a(π[λ], (yw−1y−1) × Λ).
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Proof. This is a simple change of variables. Let µ = wλ − λ and consider
Λ⊗(−yµ). Then d(Λ⊗(−yµ)) = ywλ−yµ = y(wλ−µ) = yλ. Apply (11.2):

(11.5)
a(π[wλ], Λ) = a(π[λ + µ], (Λ ⊗ (−yµ)) ⊗ yµ)

= a(π[λ], Λ ⊗ (−yµ)).

It is enough to show (yw−1y−1)×Λ = Λ−yµ, i.e. (yw−1y−1)dΛ−dΛ = −yµ.
This follows from dΛ = ywλ and λ − wλ = −µ. �

Fix once and for all an abstract Cartan subalgebra ha, a choice of positive
roots ∆+

a of ha, and let Wa be the abstract Weyl group, as in [22, 2.6]. If h

is any Cartan subalgebra, and λ ∈ h∗, there is a unique λa ∈ h∗
a, dominant

for ∆+
a , and a unique inner isomorphism φλ taking λa to λ. This induces an

isomorphism φλ : Wa → W . We need an identity describing the dependence
on λ, which is immediate:

(11.6) φyλ(wa) = yφλ(wa)y
−1 (y ∈ W,wa ∈ Wa).

Definition 11.7 Suppose π is a virtual character, with regular infinitesimal
character λa ∈ h∗

a (dominant for ∆+
a ), and wa ∈ Wa(λa). Fix a Cartan

subgroup H and λ ∈ h∗ conjugate to λa. Let {π[λ + γ]} be the coherent
family with π = π[λ].

For wa ∈ Wa(λa) define

(11.8) wa · π = π[φλ(w
−1
a )λ].

This is independent of the choice of H and λ.

This is the coherent continuation action on virtual characters, due to Zuck-
erman. See [21, Definition 7.2.28].

Here is the formulation in terms of characters. We first define the cross
action of the abstract Weyl group on genuine characters (cf. (11.9)). For
wa ∈ W (λa), and Λ such that dΛ is conjugate to λa, define

(11.9) wa × Λ = φdΛ(w−1
a ) × Λ.

Note that the differential of the right hand side is d(w−1
a × Λ) = φdΛ(waλa),

and this implies d(wa ×Λ)− dΛ = φdΛ(w−1
a λa − λa), which is a sum of roots

since wa ∈ W (λa), so the cross action is well defined. It is straightforward
to check that (xaya) × Λ = xa × (ya × Λ).
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Proposition 11.10 Suppose π is a virtual character, with regular infinites-
imal character λa ∈ h∗

a (dominant for ∆+
a ), and wa ∈ Wa(λa). Suppose H

is a Cartan subgroup, defined over R, and Λ is a genuine character of H̃(R)
with dΛ conjugate to λa. Then

(11.11) a(wa · π, Λ) = a(π,w−1
a × Λ).

Proof. This is a straightforward unwinding of the definitions. First of all
choose λ ∈ h∗ conjugate to λa. Let {π[λ + µ]} be the coherent family with
π[λ] = π. Then

a(wa · π, Λ) = a(wa · π[λ], Λ)

= a(π[φλ(w
−1
a )λ], Λ) (by Definition 11.7)

= a(π, (yφλ(wa)y
−1) × Λ) (by (11.4)),

where y ∈ W satisfies yφλ(w
−1
a )λ = dΛ.

On the other hand

a(π,w−1
a × Λ) = a(π, φdΛ(wa) × Λ)

= a(π, φyφλ(w−1
a )λ(wa) × Λ

= a(π, (yφλ(w
−1
a )φλ(wa)φλ(wa)y

−1) × Λ) ( by (11.6))

= a(π, (yφλ(wa)y
−1) × Λ)

�

Remark 11.12 Note that for wa ∈ Wa, wa × Λ = w × Λ for some w ∈ W
depending on Λ, so some care is needed when using this formula when Λ
varies. Fix Λ0, and let w0 = φdΛ0

(w−1
a ) ∈ W , so

w−1
a × Λ = w−1

0 × Λ (if dΛ0 = dΛ).

Then

(11.13) w−1
a × Λ = (yw−1

0 y−1) × Λ (if ydΛ0 = dΛ).

Example 11.14 Consider the trivial representation C:

(11.15) wa · C = sgn(wa)C (wa ∈ Wa).

This is immediate from (7.5) and (11.11).
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12 Computation of general a(π, ∆+, Λ)

As in the previous section fix ha, Wa, and define the cross action of Wa

accordingly. We use coherent continuation to give a formula for a(π, ∆+, Λ)
for arbitrary Λ.

Proposition 12.1 Let π be a virtual representation with regular infinitesi-
mal character λa ∈ h∗

a. Fix H, ∆+ and a genuine character Λ of H(R)ρ with
dΛ conjugate to λa. Suppose wa ∈ Wa(λa) satisfies

(12.2) Re〈d(wa × Λ), α∨〉 ≥ 0 for all α ∈ ∆+
r .

Then

a(π, ∆+, Λ) = (−1)qH+B(∆+)ǫ(wa × Λ, ∆+
i )M(I(H, ∆+

r , wa × Λ), wa · π).

Proof. By Proposition 11.10 and Corollary 9.3

a(π, ∆+, Λ) = a(wa · π, ∆+, wa × Λ)

= (−1)qH+B(∆+)ǫ(wa × Λ, ∆+
i )M(I(H, ∆+

r , wa × Λ), wa · π).

�

If λa is integral we can always find wa ∈ Wa(λa) = Wa satisfying the
conditions, so this determines all coefficients. In fact there is some flexibility
in choosing wa. If λa is not integral a little more work is required to determine
all coefficients.

Here is one convenient reformulation in the integral case.

Corollary 12.3 Assume λa is regular and integral. Suppose π is a virtual
character with infinitesimal character λa, and having a central character.
Choose ∆+ so that (2.15) holds, and let λ be ∆+-dominant and conjugate to

λa. Let Λ1, . . . , Λn be the genuine characters of H̃(R) such that dΛi = λ, and
such that Λie

−ρ and π have the same restriction to the center of G(R).
Then for any wa ∈ Wa and i ≤ n:

(12.4) a(π, ∆+, w−1
a × Λi) = (−1)qHM(I(H, Λi), wa · π).

Every nonzero a(π, ∆+, Λ) is of this form.
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We now sketch how to use this to compute a(π, ∆+, Γ) using the atlas

software, which is freely available from www.liegroups.org/software. We
assume the infinitesimal character is regular and integral.

First assume I(γ) is a standard module and H is an arbitrary (θ-stable)
Cartan subgroup. With ∆+ and Λi as in Corollary 12.3 we conclude

(12.5) a(I(γ), ∆+, w−1
a × Λi) = (−1)qHM(I(H, Λi), wa · I(γ)).

The list of parameters with regular integral infinitesimal character is given
by the output of the block command in the atlas software. First identify
the modules I(H, Λi) for 1 ≤ i ≤ n in the output of block.

Next compute wa · I(γ) for all wa ∈ Wa in the basis of standard modules.
This is elementary; it requires only the output of the block command, and
not the KLV polynomials. In particular if sα is a simple reflection then
sα · I(γ) is a single standard module unless α is noncompact imaginary, in
which case it is given by a Hecht-Schmid identity with 2 or 3 terms. See
[9], [21, Corollary 8.4.6] or [23]. The application coherentContinuation,
available at www.liegroups.org/software/helpers, is useful for computing
coherent continuation. See [2].

Then (12.5) gives all nonzero terms a(I(γ), ∆+, Λ). To vary ∆+ use
Lemma 6.10. This can be used to compute the character of a discrete series
representation on an arbitrary Cartan subgroup.

For example for the split real form of E8, it take about 14 seconds on a
small computer to compute the block command, which produces a list of
452, 690 standard modules. The output of this command takes up about 165
megabytes of disk space.

Now suppose π is an irreducible representation. There are at least two
ways to compute a(π, ∆+, Λ). First of all use the KLV polynomials to write
π as a sum of standard modules

(12.6) π =
∑

γ

M(I(γ), π)I(γ).

Then

(12.7) a(π, ∆+, Λ) =
∑

γ

M(I(γ), π)a(I(γ), ∆+, Λ),

and a(I(γ), ∆+, Λ) are computed as above. The KLV polynomials, and hence
M(I(γ), π), are provided by the klbasis command of atlas. These are
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readily available for groups of rank ≤ 7. However, in contrast with the
block command, these are difficult to compute in higher rank. For example
to compute the KLV polynomials for the split real form of E8 takes about
5.5 hours on a very large machine, and storing them takes 60 gigabytes of
disk space.

Alternatively, the wgraph command of atlas computes the coherent con-
tinuation action in the basis of irreducible modules. Note, however, that
computing the wgraph command is the same order of difficulty as computing
klbasis. In any event one can compute

(12.8) a(π, ∆+, w−1
a × Λi) = (−1)qHM(I(H, Λi), wa · π)

directly, although this uses the KLV polynomials twice, once to compute
wa · π, and again to compute M(I(H, Λi), wa · π).

13 Alternative version

While the parametrization of Section 5 using the ρ-cover of H has many ad-
vantages, the extra choice of Ψr is unappealing. For this reason it worthwhile
to write Langlands parameters in terms of the ρi cover of H. This is done in
[1]. It is useful to give the translation between the two versions.

Definition 13.1 ρi-standard limit data is a triple (H, Ψi, Γ) where H is a
Cartan subgroup (defined over R as usual), Ψi is a set of positive imaginary
roots, and Γ is a genuine character of H(R)ρi

(where ρi is defined by ∆+
i ).

We assume these satisfy

〈dΓ, α∨〉 ≥ 0 (α ∈ Ψi)(13.2)

〈dΓ, α∨〉 6= 0 (α ∈ Ψi simple and compact)(13.3)

We define equivalence by conjugation by G(R).

See [1, Theorem 6.1].

Lemma 13.4 Suppose (H, Ψi, Ψr, Λ) is standard limit data. Define ρi-standard
limit data (H, Ψi, Λ ⊗ γ(Ψr)

−1) (see Section 4).
Conversely suppose (H, Ψi, Γ) is ρi-standard limit data. Choose a set of

positive roots Ψr, and define standard limit data (H, Ψi, Ψr, Γ ⊗ γ(Ψr)).
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These define a bijection between equivalence classes of standard limit data
and ρi-standard limit data.

The proof is immediate (using (4.5)).
To write a character formula using ρi-standard limit data we need a ver-

sion of the Weyl denominator defined on H(R)ρi
.

Definition 13.5 Fix a set ∆+ of positive roots, and define ρi, ρr and ρcx

as usual. Recall (end of Section 2) eρcx is well defined on H(R). Define a
genuine character eρ′ of H(R)ρi

:

(13.6) eρ′(g) = eρcx(g)|eρr(g)|eρi(g) (g ∈ H(R)ρi
)

where g is the image of g in H(R), and

(13.7) D′(∆+, g) =
∏

α∈∆+

(1 − e−α(g))eρ′(g).

We then define constants a′(π, ∆+, Λ) for Λ a genuine character of H(R)ρi

by analogy with (6.5), using D′ in place of D.
It follows easily from Definition (4.1) that

(13.8) eρ′ = eρ ⊗ γ(∆+
r )−1

Suppose Λ is a genuine character of H(R)ρ. It follows immediately from this
and Definition (4.4) that

(13.9) (Λe−ρ)(g) = (ΛMe−ρ′)(g).

Also an elementary calculation gives

(13.10) (wΛ)M = τ(Ψr, w)ΛM (w ∈ W (G(R), H(R)).

The character formula of Proposition 8.3 takes the following form.

Proposition 13.11 Suppose γ = (H, Ψi, Λ) is ρi-standard limit data. Choose
positive roots ∆+ containing Ψi, and let Ψr = ∆+

r . Let δ = (−1)qH+B(∆+).
Then for g ∈ H(R)reg

ΘI(γ)(g) = δ
ǫ(Ψr, g)

D′(∆+, g)

∑

w∈W (G(R),H(R))

sgni(w)(wΛ)(g).
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where g is an inverse image of g in H(R)ρi
. In other words for Γ a genuine

character of H(R)ρi
:

a′(I(γ), ∆+, Γ) =

{
δsgni(w) Γ = wΛ (w ∈ W (G(R), H(R))

0 otherwise.

The remaining results, including Proposition 12.1, hold with minor changes.

14 Examples

We compute some character formulas for SL(2, R), PGL(2, R) and Sp(4, R),
using Corollary (12.3).

14.1 Example 1: SL(2, R)

Here is the character table for SL(2, R) at infinitesimal character ρ. See
Examples 4.11 and 8.12.

Since ρ exponentiates to H we may ignore the ρ-cover. Identify compact
and split Cartan subgroup with R∗, S1 respectively. Choose ∆+ = {α} for
R∗ with α(x) = x2, and for S1 with α(eiθ) = e2iθ.

With the obvious notation there are 4 standard modules:

(14.1)

DS+ = I(S1, eiθ) : holomorphic discrete series

DS− = I(S1, e−iθ) : anti-holomorphic discrete series

PS+ = I(R∗, x) : reducible principal series with even K-types

PS− = I(R∗, |x|) : irreducible principal series with odd K-types

The only reducible standard module is PS+; in the Grothendieck group

(14.2) PS+ = DS+ + DS− + C.

Since ∆+ is fixed we drop it from the notation. The coefficients a(I(γ), Λ)
and a(π, Λ) are given by the following table.
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SL(2, R)
R∗ S1

x |x| 1
x

1
|x|

eiθ e−iθ

DS+ 0 0 1 0 -1 0
DS− 0 0 1 0 0 1
PS+ 1 0 1 0 0 0
PS− 0 1 0 1 0 0

C 1 0 -1 0 1 -1

We show how to compute some of these coefficients. The main coherent
continuation identity we need is the basic Hecht-Schmid identity:

(14.3)(a) sα · DS± = PS+ − DS∓

and we’ll also use

(14.3)(b) sα · PS± = PS±

which follows from (a) and (14.2).
First we consider the easy character formulas for PS+ on H = R∗. Using

(12.4), with qH = 0 = B(∆+) = 0, we have:

a(PS+, x) = M(I(H, x), PS+) = M(PS+, PS+) = 1

a(PS+, |x|) = M(I(H, |x|), PS+) = M(PS−, PS+) = 0

a(PS+, x−1) = a(PS+, sα × x) = M(I(H, x), sα · PS+) = M(PS+, PS+) = 1

a(PS+, |x|−1) = a(PS+, sα × |x|) = M(I(H, |x|), sα · PS+) = M(PS−, PS+) = 0

The formulas for the characters of the principal series are given in Example
8.12.

Next, here are the elementary character formulas for DS± on H = S1.
In this case qH = 1 and B(∆+) = 0. Using I(H, eiθ) = DS+ and (12.4) we
compute:

a(DS+, eiθ) = −M(DS+, DS+) = −1

a(DS+, e−iθ) = a(DS+, sα × eiθ) = −M(DS+, sα · DS+)

= −M(DS+, PS − DS−) = 0

a(DS−, eiθ) = −M(DS+, DS−) = 0

a(DS−, e−iθ) = a(DS−, sα × eiθ) = −M(DS+, sα · DS−)

= −M(DS+, PS − DS+) = 1
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These give the well known formulas (and special cases of (3.3)):

(14.4)
θDS+

(eiθ) =
−eiθ

eiθ − e−iθ

θDS−
(eiθ) =

e−iθ

eiθ − e−iθ

Finally the most interesting case, the discrete series characters on R∗:

a(DS±, x) = M(I(R∗, x), DS±) = M(PS+, DS±) = 0

a(DS±, |x|) = M(I(R∗, |x|), DS±) = M(PS−, DS±) = 0

a(DS±,
1

x
) = a(DS±, sα × x) = M(I(R∗, x), sα · DS±)

= M(PS+, PS+ − DS∓) = 1

a(DS±,
1

|x|
) = a(DS±, sα × |x|) = M(I(R∗, |x|), sα · DS±)

= M(PS−, PS+ − DS∓) = 0

Therefore

(14.5) θDS±
(x) =

x−1

x − 1
x

(|x| > 1).

This implies

(14.6) θDS±
(x) =

−x

x − 1
x

(|x| < 1).

14.2 Example 2: PGL(2, R)

We now give the character table for PGL(2, R) at infinitesimal character ρ.
We cannot ignore the ρ-cover in this case. See Examples 4.12 and 8.15.

Again identify compact and split Cartan subgroupos with R∗, S1 respec-
tively. Choose ∆+ = {α} for R∗ with α(x) = x, and for S1 with α(eiθ) = eiθ.

Now the cover of R∗ is {(x, z) | z2 = x}, and eρ(x, z) = z. Similarly the
cover of S1 is {(w, z) | |w| = |z| = 1, z2 = w}, and eρ(w, z) = z.

There are 3 standard modules at infinitesimal character ρ:

(14.7)

DS = I(S1, eρ) : discrete series

PSC = I(R∗, eρ) : reducible spherical principal series

PSsgn = I(R∗, sgn eρ) : reducible non-spherical principal series
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Both standard modules are reducible; in the Grothendieck group

PSC = DS + C(14.8)(a)

PSsgn = DS + sgn(14.8)(b)

There is no irreducible principal series representation at infinitesimal char-
acter ρ (there are two irreducible principal series at infinitesimal character
2ρ, which we don’t consider).

The coefficients a(I(γ), Λ) and a(π, Λ) are given by the following table.

PGL(2, R)
R∗ S1

eρ sgn eρ e−ρ sgn e−ρ eρ e−ρ

DS 0 0 1 1 -1 1
PSC 1 0 0 1 0 0
PSsgn 0 1 1 0 0 0

C 1 0 -1 0 1 -1
sgn 0 1 0 -1 1 -1

In this case the relevant Hecht-Schmid identity is:

(14.9)(a) sα · DS = PSC + PSsgn − DS

We also use that fact that

(14.9)(b) sα · PSC = PSsgn

which follows from (a), (14.8)(a) and Example 11.14.

Here is the easy character formula for PSC on H = R∗. In this case
qH = 1 and B(∆+) = 0.

a(PSC, eρ) = M(I(H, eρ), PSC) = M(PSC, PSC) = 1

a(PSC, sgn eρ) = M(I(H, eρsgn), PSC) = M(PSsgn, PSC) = 0

a(PSC, e−ρ) = a(PSC, sα × eρ) = M(I(H, eρ), sα · PSC)

= M(PSC, PSsgn) = 0

a(PSC, sgn e−ρ) = a(PSC, sα × sgn eρ) = M(I(H, sgn eρ), sα · PSC)

= M(PSsgn, PSsgn) = 1

a(PSC, sgn e−ρ) = M(I(H, sα × sgn eρ), PSC) = M(PSsgn, PSsgn) = 1
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The formulas for the characters of the principal series are given in Example
8.15.

Next consider the elementary character formula for the discrete series
representation on H = S1, with qH = 1, B(∆+) = 0, and I(H, eρ) = DS:

a(DS, eρ) = −M(DS,DS) = −1

a(DS, e−ρ) = −M(DS, sα · DS) = −M(DS,PSC + PSsgn − DS) = 1.

So:

(14.10) θDS(eiθ) =
−eiθ + eiθ

eiθ − e−iθ
= −1.

Note that θDS(eiθ) = −θC(eiθ), which follows from (14.8)(a).
The most interesting case is the discrete series on H = R∗, with qH =

B(∆+) = 0, I(R∗, eρ) = PSC, I(R∗, sgn eρ) = PS−:

a(DS, eρ) = M(I(R∗, eρ), DS) = M(PSC, DS) = 0

a(DS, sgn eρ) = M(I(R∗, sgn eρ), DS) = M(PSsgn, DS) = 0

a(DS, e−ρ) = a(DS, sα × eρ) = M(I(R∗, eρ), sα · DS)

= M(PSC, PSC + PSsgn − DS) = 1

a(DS, sgn e−ρ) = a(DS, sαsgn e−ρ) = M(I(R∗, sgn eρ), sα · DS)

= M(PSsgn, PSC + PSsgn − DS) = 1

Therefore for |x| > 1 we have:

θDS(x) =
z−1 + sgn(x)z−1

(1 − 1
x
)z

(where z2 = x)

=
|x|−

1

2 + sgn(x)|x|−
1

2

|x|
1

2 − |x|−
1

2

=





2x−
1
2

|x|
1
2 −|x|−

1
2

x > 1

0 x < −1.

Another way to write this is

θDS(x) =
1 + sgn(x)

x − 1
(|x| > 1).
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Also note that

(14.11) θDS(x) =
−|x|

1

2 − sgn(x)|x|
1

2

|x|
1

2 − |x|−
1

2

(|x| < 1).

14.3 Discrete series representations of Sp(4, R)

We now calculate the characters of the discrete series representations of
Sp(4, R). We make some use of the atlas software; see [2] for an intro-
duction. The formulas we obtain can be readily shown to agree with those
of [13, 6.2], and (with a little more work) with [15, page 499] and [12, (4.9)].

There are 4 discrete series representations of Sp(4, R) with infinitesimal
character ρ. Two of these are holomorphic/anti-holomorphic (in chambers
with a compact simple root), and the other two are large (in a chamber in
which both simple roots are noncompact). The only representations we need
to consider are in the block of these representations, since this is preserved by
the coherent continuation action. This block is the span in the Grothendieck
group of 12 standard representations, or the corresponding irreducible repre-
sentations. These can be read off from the output of the block command in
atlas, and are numbered 0 to 11. Representations 0 − 3 are in the discrete
series; 0, 1 are large, and 2, 3 are holomorphic/anti-holomorphic. For more
information on blocks, and the atlas software see [2, Example 10.3].

Here is the output of the block command:

0( 0,6): 0 [i1,i1] 1 2 ( 4, *) ( 5, *) 0 e

1( 1,6): 0 [i1,i1] 0 3 ( 4, *) ( 6, *) 0 e

2( 2,6): 0 [ic,i1] 2 0 ( *, *) ( 5, *) 0 e

3( 3,6): 0 [ic,i1] 3 1 ( *, *) ( 6, *) 0 e

4( 4,5): 1 [r1,C+] 4 9 ( 0, 1) ( *, *) 1 1

5( 5,4): 1 [C+,r1] 7 5 ( *, *) ( 0, 2) 2 2

6( 6,4): 1 [C+,r1] 8 6 ( *, *) ( 1, 3) 2 2

7( 7,3): 2 [C-,i1] 5 8 ( *, *) (10, *) 2 1,2,1

8( 8,3): 2 [C-,i1] 6 7 ( *, *) (10, *) 2 1,2,1

9( 9,2): 2 [i2,C-] 9 4 (10,11) ( *, *) 1 2,1,2

10(10,0): 3 [r2,r1] 11 10 ( 9, *) ( 7, 8) 3 2,1,2,1

11(10,1): 3 [r2,rn] 10 11 ( 9, *) ( *, *) 3 2,1,2,1
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Write I(k) and π(k) for the standard and irreducible modules with num-
ber 0 ≤ k ≤ 11 from the table.

This block has 2 principal series representations, numbers 10 and 11.
Standard representation I(10) is the spherical principal series representation.
Its irreducible quotient π(10) is the trivial representation. Standard module
I(11) is the unique nonspherical principal series representation with trivial
infinitesimal and central characters. This is reducible, and π(11) is infinite
dimensional.

(There are 6 other standard representations of Sp(4, R) with infinitesimal
character ρ. These are not in the previous block, have nontrivial central
character, and include two minimal principle series representations, one of
which is irreducible.)

14.3.1 Split Cartan subgroup

Let H(R) be a split Cartan subgroup. Identify H(R) with R∗2 such that the
roots are (x, y) → x±2, y±2, x±1y±1. Write (a, b) for the character (x, y) →
xayb. Choose simple roots α = (1,−1) and β = (0, 2), which define ∆+, and
give ρ = (2, 1). Write D for the Weyl denominator defined by ∆+. Since ρ
exponentiates we may ignore the cover. Finally let χ(x, y) = sgn(xy).

In the setting of Corollary (12.4) and the subsequent discussion we only
need to consider Λ = eρ or χeρ. In this terminology

(14.12)
I(H, eρ) = I(10)

I(H,χeρ) = I(11).

First we take π to be the large discrete series representation π(0) = I(0).
With a little care we may ignore the difference between Wa and W . Using
(14.12) and (12.4) we have

a(π, ew−1ρ) = M(I(10), w · π)(14.13)

a(π, χew−1ρ) = M(I(11), w · π)(14.14)

The first column of the next table gives w ∈ W as a product of simple
reflections sα, sβ, which we label 1, 2, respectively. The second column gives
w−1ρ. There is a subtlety here: because of (2.2), if you view the first column
as an element w′ of W (not Wa), then the second column is w′ρ (not w−1ρ).

We compute w · π, as a sum of standard modules, using the output of
the block command. The application coherentContinuation, available at
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www.liegroups.org/software/helpers is very useful for expediting this
calculation. We omit the details how to do this, but the result is listed in
column 3 of the next table. For example the second row indicates sα · π =
−I(1) + I(4) (the coefficients are all ±1).

By (14.13) a(π, ew−1ρ) (respectively a(π, χew−1ρ)) is computed as the mul-
tiplicity of I(10) (respectively I(11)) in column 3, which is given in columns
4 and 5.

w w−1ρ w · π a(π, ew−1ρ) a(π, χew−1ρ)
e (2, 1) 0 0 0
1 (1, 2) −1 + 4 0 0
2 (2,−1) −2 + 5 0 0
12 (−1, 2) 2 + 7 0 0
21 (1,−2) 3 − 6 + 9 0 0
121 (−2, 1) −3 − 8 − 9 + 10 + 11 1 1
212 (−1,−2) −0 + 5 − 8 + 10 1 0
1212 (−2,−1) 1 − 4 − 6 + 7 + 11 0 1

Let

(14.15) H(R)+ = {(x, y) | |x| > |y| > 1}.

From the table we conclude that on H(R)+ we have

(14.16) (Dθπ)(x, y)) = x−2y + sgn(xy)x−2y + x−1y−2 + sgn(xy)x−2y−1

Perhaps a more familiar way to write this is as follows. Let t = (ǫ1, ǫ2)
(ǫi = ±1). Write (a, b) for the differential of the character (a, b) of H. Sup-
pose X ∈ h0, and assume eX ∈ H(R)+. Let H(R)0 identity component of
H(R). Then the character formula on H(R)0 ∩ H(R)+ is

(14.17)(a) (Dθπ)(exp(X)) = 2e(−2,1)X + e(−1,−2)X + e(−2,−1)X .

It is worth pointing out that all nonzero KLV polynomials are 1, in spite
of the 2 appearing in this formula (but this is explained by the fact that
1 + 1 = 2). We also see, as is evident from the central character and the fact
that eρ(−1,−1) = −1, that

(Dθπ)(− exp(X)) = −(Dθπ)(exp X).
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On the other hand if t = (ǫ,−ǫ) (ǫ = ±1) then on tH(R)0 ∩ H(R)+ we
have:

(14.17)(b) (Dθπ)(t exp(X)) = ǫ(e(−1,−2)X + e(−2,−1)X).

Formula (14.16) has the advantage that it holds on all of H(R)+.

More succinctly, here are character formulas for the other discrete series
representations π(1) (large) and π(2), π(3) (holomorphic/antiholomorphic).
In the column w · π(i) we only list the terms 10, 11 which occur.

In this table the entry in column 6, 7, 8 in the multiplicity of I(10) in
column 3, 4, 5, respectively. The entry in column 9, 10, 11 is the multiplicity
of I(11) in column 3, 4, 5, respectively.

w · π(i) a(π(i), ew−1ρ) a(π(i), χew−1ρ)

w w−1ρ π(1) π(2) π(3) π(1) π(2) π(3) π(1) π(2) π(3)

121 (−2, 1) 10 + 11 ∗ ∗ 1 0 0 1 0 0

212 (−1,−2) 10 10 10 1 1 1 0 0 0

1212 (−2,−1) 11 −10 −10 0 −1 −1 1 0 0

We conclude that the characters of π(0) and π(1) are equal on H(R).
Moreover (still on H(R)+) we have

(14.18)(a) (Dθπ(k))(x, y) = x−1y−2 − x−2y−1 (k = 2, 3).

Alternatively, with t = (ǫ1, ǫ2):

(14.18)(b) (Dθπ(k)(t exp(X)) = ǫ1e
(−1,−2)X − ǫ2e

(−2,−1)X

14.3.2 Cartan #2: H(R) ≃ R∗ × S1

We briefly consider a Cartan subgroup with H(R) ≃ R∗ × S1; this is Cartan
#2 in atlas. Identify H(R) with R∗ × S1, and choose simple roots α, β
so that α(x, eiθ) = xe−iθ, β(x, eiθ) = e2iθ. Write (a, b) for the character
(x, eiθ) → xaeibθ, so eρ = (2, 1).

In this case qH = 1, B(∆+) = 0, and ǫ(∆+
i , eρ) = 1. We can check that

I(H, eρ) = I(8), and conclude

(14.19) a(π(i), ew−1ρ) = −M(I(8), w · π(i)).

Using atlas we compute the following table, showing only the occurences of
8:
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w · π(i) a(π(i), ew−1ρ)
w w−1ρ π(0) π(1) π(2) π(3) π(0) π(1) π(2) π(3)
12 (−1, 2) ∗ 8 ∗ 8 0 −1 0 −1
121 (−2, 1) −8 ∗ ∗ −8 1 0 0 1
212 (−1,−2) −8 ∗ −8 ∗ 1 0 1 0
1212 (−2,−1) ∗ 8 8 ∗ 0 −1 −1 0

Therefore on
H(R)+ = {(x, eiθ) | |x| > 1}

we have formulas

(Dθπ(0))(xeiθ) = x−1e−2iθ + x−2eiθ(14.20)(a)

(Dθπ(1))(xeiθ) = −x−1e2iθ − x−2e−iθ(14.20)(b)

(Dθπ(2))(xeiθ) = x−1e−2iθ − x−2e−iθ(14.20)(c)

(Dθπ(3))(xeiθ) = −x−1e2iθ + x−2eiθ.(14.20)(d)

14.3.3 Cartan #1: H(R) ≃ C∗

Finally suppose H(R) ≃ C∗ (Cartan #3 in atlas). Choose the isomorphism,
and simple roots α, β, so that

α(z) = z/z, β(z) = z2.

Write (a, b) for the character z → zazb, i.e. ex+iy → e(a+b)x+(a−b)iy. In
particular eρ = (2, 1), and eρ(ex+iy) = e3x+iy.

In this case I(H, eρ) = I(9), qH = 1, ǫ(∆+
i , eρ) = 1, B(∆+) = 0, and

(14.21) a(π(i), ew−1ρ) = −M(I(9), w · π(i)).

Using atlas we compute this table, showing only the occurences of 9:

w · π(i) a(π(i), ew−1ρ)
w w−1ρ π(0) π(1) π(2) π(3) π(0) π(1) π(2) π(3)
21 (1,−2) 9 9 ∗ ∗ 1 1 0 0
121 (−2, 1) −9 −9 ∗ ∗ −1 −1 0 0
212 (−1,−2) ∗ ∗ −9 −9 0 0 −1 −1
1212 (−2,−1) ∗ ∗ 9 9 0 0 1 1

39



Therefore on
H(R)+ = {ex+iy |x > 0}

we have

(14.22) (Dθπ(i))(e
x+iy) =

{
−e−x+3iy + e−x−3iy i = 0, 1

e−3x+iy − e−3x−iy i = 1, 2.

14.4 Character Table for Sp(4, R) at ρ

Without giving any more details of the calculations, here is complete infor-
mation about the characters of the irreducible representations of Sp(4, R) in
the block of the trivial representation.

We use notation for the four Cartan subgroups S1×S1, C∗, R∗×S1, R∗×R∗

as in Section 14.3.1, 14.3.2 and 14.3.3. (We haven’t considered the compact
Cartan subgroup yet; the notation is obvious here, and we choose ∆+ so
that ρ = (2, 1) as usual.) For each Cartan subgroup we have fixed a choice
of ∆+, and D is the corresponding Weyl denominator. The characters Λ
of H(R) with dΛ ∈ Wρ are parametrized in each case by {(±a,±b)} with
(a, b) = (2, 1) or (1, 2). In the case of the split Cartan subgroup there are
two characters (a, b) and χ(a, b) (see Section 14.3.1).

As discussed in Section 14.3 the block of the trivial representation consists
of 12 standard modules I(i), and their corresponding irreducible represen-
tations π(i), with 0 ≤ i ≤ 11. The character formulas for the irreducible
representations, in terms of standard modules are as follows. This was com-
puted using the klbasis command; and may also be found in [23].
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π(0) = I(0)

π(1) = I(1)

π(2) = I(2)

π(3) = I(3)

π(4) = −I(0) − I(1) + I(4)

π(5) = −I(0) − I(2) + I(5)

π(6) = −I(1) − I(3) + I(6)

π(7) = I(0) + I(1) + I(2) − I(4) − I(5)) + I(7)

π(8) = I(0) + I(1) + I(3) − I(4) − I(6) + I(8)

π(9) = I(0) + I(1) + I(2) + I(3) − I(4) − I(5) − I(6) + I(9)

π(10) = −I(0) − I(1) − I(2) − I(3) + I(4) + I(5) + I(6)

− I(7) − I(8) − I(9) + I(10)

π(11) = −I(2) − I(3) − I(9) + I(11)

Each row in the following tables gives the character formula for a single
standard or irreducible module, on the given Cartan subgroup.

For example the first row in the first table below says the formula for
the large discrete series representation I(0) = π(0) on the compact Cartan
subgroup is:

(DθI(0))(e
iθ1 , eiθ2) = −e2iθ1−iθ2 + e−iθ1+2iθ2

The last entry in the second table gives

(Dθπ(11))(e
iθ1 , eiθ2) = −e2iθ1+iθ2 + eiθ1+2iθ2 + e−iθ1−2iθ2 − e−2iθ1−iθ2

Compact Cartan subgroup

(a, b) : (eiθ1 , eiθ2) → eaiθ1+biθ2

H(R)+ = H(R)

S1 × S1: Standard Modules
I (2,1) (1, 2) (2,−1) (−1, 2) (1,−2) (−2, 1) (−1,−2) (−2,−1)

I(0) -1 1
I(1) 1 -1
I(2) 1 -1
I(3) -1 1
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S1 × S1: Irreducible Modules
π (2,1) (1, 2) (2,−1) (−1, 2) (1,−2) (−2, 1) (−1,−2) (−2,−1)

π(0) -1 1
π(1) 1 -1
π(2) 1 -1
π(3) -1 1
π(4) 1 -1 -1 1
π(5) -1 1 1 -1
π(6) -1 1 1 -1
π(7) 1 -1 -1 1 1 -1
π(8) -1 1 1 -1 -1 1
π(9) 1 -1 -1 1 1 -1 -1 1
π(10) -1 1 1 -1 -1 1 1 -1
π(11) -1 1 1 -1

The identity (6.6)(b) is clear in the table, for w the short simple reflection,
which is in W (G(R), H(R)) ⊂ Wi = W .
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Cartan #2: R∗ × S1

(a, b) : (x, eiθ) → xaebiθ

H(R)+ = {(x, eiθ) | |x| > 1}

See Section 14.3.2.

R∗ × S1: Standard Modules
I (2,1) (1, 2) (2,−1) (−1, 2) (1,−2) (−2, 1) (−1,−2) (−2,−1)

I(0) 1 1
I(1) -1 -1
I(2) 1 -1
I(3) -1 1
I(5) 1 1
I(6) -1 -1
I(7) 1 1
I(8) -1 -1

R∗ × S1: Irreducible Modules
π (2,1) (1, 2) (2,−1) (−1, 2) (1,−2) (−2, 1) (−1,−2) (−2,−1)

π(0) 1 1
π(1) -1 -1
π(2) 1 -1
π(3) -1 1
π(4) 1 -1 -1 1
π(5) 1 -1 -1 1
π(6) -1 1 -1 1
π(7) 1 -1 -1 1 1 -1
π(8) -1 1 -1 1 1 -1
π(9) 1 -1 -1 2 1 -2
π(10) 1 -1 -1 1 1 -1 -1 1
π(11) 1 0 -1 -1 1

The first four lines of the tables are equivalent to (14.20)(a-d).
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Cartan #1: C∗

(a, b) : ex+iy → e(a+b)x+(a−b)iy

H(R)+ = {(ex+iy |x > 0}

See Section 14.3.3.

C∗: Standard Modules
I (2,1) (1, 2) (2,−1) (−1, 2) (1,−2) (−2, 1) (−1,−2) (−2,−1)

I(0) -1 1
I(1) -1 1
I(2) 1 -1
I(3) 1 -1
I(4) -1 1 -1 1
I(9) -1 1 -1 1

C∗: Irreducible Modules
π (2,1) (1, 2) (2,−1) (−1, 2) (1,−2) (−2, 1) (−1,−2) (−2,−1)

π(0) -1 1
π(1) -1 1
π(2) 1 -1
π(3) 1 -1
π(4) -1 1 1 -1
π(5) 1 -1 -1 1
π(6) 1 -1 -1 1
π(7) 1 -1 -1 1 1 -1
π(8) 1 -1 -1 1 1 -1
π(9) -1 1 1 -1 -1 1 1 -1
π(10) 1 -1 -1 1 1 -1 -1 1
π(11) 1 -1 -1 1

The first four lines of the tables are equivalent to (14.22).
As in the case of the compact Cartan subgroup the identity (6.6)(b) is

clear; the short simple reflection is in W (G(R), H(R)) ∩ Wi.

Split Cartan subgroup

In the next two tables the two entries in an ordered pair in a column
labelled (a, b) gives the multipicity of the characters

(a, b) : (x, y) → xayb, (x, y) → sgn(xy)xayb
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respectively. For example the last entry in the row for π(4) is 1,−1 in
a column labelled (−2,−1); this means the function (x, y) → x−2y−1 −
sgn(xy)x−2y−1. Also

H(R)+ = {(x, y) | |x| > |y| > 0}.

See Section 14.3.3.

R∗ × R∗: Standard Modules
I (2,1) (1, 2) (2,−1) (−1, 2) (1,−2) (−2, 1) (−1,−2) (−2,−1)

I(0) 1, 1 1, 0 0, 1
I(1) 1, 1 1, 0 0, 1
I(2) 1, 0 −1, 0
I(3) 1, 0 −1, 0
I(4) 1, 1 1, 1 1, 1 1, 1
I(5) 1, 0 0, 1 1, 0 0, 1
I(6) 1, 0 0, 1 1, 0 0, 1
I(7) 1, 0 0, 1 0, 1 1, 0
I(8) 1, 0 0, 1 0, 1 1, 0
I(9) 1, 1 1, 1 1, 1 1, 1
I(10) 1, 0 0, 1 1, 0 0, 1 0, 1 1, 0 0, 1 1, 0
I(11) 0, 1 1, 0 0, 1 1, 0 1, 0 0, 1 1, 0 0, 1

R∗ × R∗: Irreducible Modules
π (2,1) (1, 2) (2,−1) (−1, 2) (1,−2) (−2, 1) (−1,−2) (−2,−1)

π(0) 1, 1 1, 0 0, 1
π(1) 1, 1 1, 0 0, 1
π(2) 1, 0 −1, 0
π(3) 1, 0 −1, 0
π(4) 1,1 -1,-1 -1,1 1,-1
π(5) 1,0 -1,0 -1,0 1,0
π(6) 1,0 -1,0 -1,0 1,0
π(7) 1,0 -1,0 -1,0 1,0 1,0 -1,0
π(8) 1,0 -1,0 -1,0 1,0 1,0 -1,0
π(9) 1,1 -1,-1 -1,1 2,0 1,-1 -2,0
π(10) 1,0 -1,0 -1,0 1,0 1,0 -1,0 -1,0 1,0
π(11) 0,1 0,-1 0,1 1,0 0,-1 -1,0 -1,0 1,0

The first four lines of the tables are equivalent to (14.16) and (14.18).
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[22] David A. Vogan, Jr. Irreducible characters of semisimple Lie groups IV.
character-multiplicity duality. Duke Math. J., 49, No. 4:943–1073, 1982.

[23] David A. Vogan, Jr. The Kazhdan-Lusztig conjecture for real reductive
groups. In Representation theory of reductive groups (Park City, Utah,
1982), volume 40 of Progr. Math., pages 223–264. Birkhäuser Boston,
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