Character Tables for GL(2), SL(2), PGL(2) and PSL(2) over a finite field Jeffrey Adams University of Maryland April 2, 2002 #### 1 Introduction Let $\mathbb{F} = \mathbb{F}_q$ be the finite field with q elements. We compute the character tables for the groups $GL(2,\mathbb{F})$, $SL(2,\mathbb{F})$, $PGL(2,\mathbb{F})$ and $PSL(2,\mathbb{F})$, including the case q even. The results are well known. A basic references for the representation theory of finite groups and character tables is [4]. For the groups under consideration see [1], [5], [2]. #### 1.1 Notation Let $GL(2, \mathbb{F})$ be the two—by–two matrices over \mathbb{F} with non–zero determinant. Let $Z = \{ diag(x, x) \mid x \in \mathbb{F}^* \}$ be the center of $GL(2, \mathbb{F})$ and $$SL(2, \mathbb{F}) = \{g \in GL(2, \mathbb{F}) \mid det(g) = 1\}$$ $$PGL(2, \mathbb{F}) = GL(2, \mathbb{F})/Z$$ $$PSL(2, \mathbb{F}) = SL(2, \mathbb{F})/Z \cap SL(2, \mathbb{F})$$ The order of $GL(2, \mathbb{F})$ is $(q+1)q(q-1)^2$. Both $PGL(2, \mathbb{F})$ and $SL(2, \mathbb{F})$ have order (q+1)q(q-1). The order of $PSL(2, \mathbb{F})$ is (q+1)q(q-1)/2 if q is odd, and (q+1)q(q-1) if q is even. If q is odd these groups are all distinct. If q is even then $PGL(2, \mathbb{F}) = PSL(2, \mathbb{F}) = PSL(2, \mathbb{F})$, and if q = 2 then also $GL(2, \mathbb{F}) = PGL(2, \mathbb{F})$. For any finite group G write \hat{G} for the set of equivalence classes of irreducible finite-dimensional complex representations of G. For any finite-dimensional representation π of G write Θ_{π} for its character. Let $\mathbb{E} = \mathbb{F}_{q^2}$, the unique quadratic extension of \mathbb{F} . If q is odd choose $\Delta \in \mathbb{F}^* - \mathbb{F}^{*2}$ and write $\mathbb{E} = \mathbb{F}(\delta) = \mathbb{F}(\sqrt{\Delta})$. For $z \in \mathbb{E}^*$ let $\overline{z} = z^q$; this is the action of the non-trivial element Galois group of \mathbb{E} over \mathbb{F} . The norm map $N : \mathbb{E}^* \to \mathbb{F}^*$ is $N(z) = z\overline{z} = z^{q+1} \in \mathbb{F}$. For $\chi \in \hat{\mathbb{E}}$ write $\overline{\chi}(z) = \chi(\overline{z})$. Let $$B = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \}, T = \{ diag(x,y) \} \simeq \mathbb{F}^* \times \mathbb{F}^*.$$ For $\mu \in \hat{T}$ write $\mu = \mu(\alpha, \beta)$, with $\alpha, \beta \in \widehat{\mathbb{F}}^*$. We also write B, T for the corresponding sugroups of the other groups under consideration. For $\mu \in \widehat{T}$ write μ for the one-dimensional representation of B whose restriction to T is equal to μ . We will write representatives of the conjugacy classes. To say two elements are equal is to say their conjugacy classes are equal. One can tell whether a finite group G is simple from its character table: G is not simple if and only if there exists a non-trivial element $g \in G$ and a non-trivial representation $\pi \in \hat{G}$ such that $\Theta_{\pi}(g) = \Theta_{\pi}(1)$. It follows from the tables that $PSL(2, \mathbb{F}_q)$ is simple if and only if $q \geq 4$. #### 1.2 Coincidences For small values of q these groups are isomorphic to some other familiar groups: - 1. $PSL(2, \mathbb{F}_2) = PGL(2, \mathbb{F}_2) = SL(2, \mathbb{F}_2) = GL(2, \mathbb{F}_2) \simeq S_3$, - 2. $PGL(2, \mathbb{F}_3) \simeq S_4$, $PSL(2, \mathbb{F}_3) \simeq A_4$, $SL(2, \mathbb{F}_3) \simeq$ binary tetrahedral group - 3. $PSL(2, \mathbb{F}_4) = PGL(2, \mathbb{F}_4) = SL(2, \mathbb{F}_4) = GL(2, \mathbb{F}_4) \simeq A_5$, - 4. $PGL(2, \mathbb{F}_5) \simeq S_5$, $PSL(2, \mathbb{F}_5) \simeq A_5$, $SL(2, \mathbb{F}_5) \simeq$ the binary icosahedral group - 5. $PSL(2,9) \simeq A_6$ # **2** $GL(2,\mathbb{F})$ #### 2.1 Conjugacy Classes: 1. $$c_1(x) = \begin{pmatrix} x \\ x \end{pmatrix} (x \in \mathbb{F}^*),$$ 2. $$c_2(x) = \begin{pmatrix} x & 1 \\ & x \end{pmatrix} (x \in \mathbb{F}^*),$$ 3. $$c_3(x,y) = \begin{pmatrix} x \\ y \end{pmatrix} (x \neq y \in \mathbb{F}^*); c_3(x,y) = c_3(y,x),$$ 4. $$c_4(z) = \begin{pmatrix} x & \Delta y \\ y & x \end{pmatrix} \ (z = x + \delta y \in \mathbb{E} - \mathbb{F}); \ c_4(z) = c_4(\overline{z})$$ Here and elsewhere $c_3(x, y) = c_3(y, x)$ means that the conjugacy classes of these two elements agree. #### 2.2 Representations: For $\alpha, \beta \in \widehat{\mathbb{F}^*}$ let $\mu(\alpha, \beta)$ be the corresponding character of $T \simeq \mathbb{F}^* \times \mathbb{F}^*$. For $\mu \in \widehat{T}$ let $$\rho(\mu) = Ind_B^G(\mu)$$ where μ is extended to a one-dimensional representation of B as usual. This is the principal series, of dimension q + 1. For example see [3], [1] or [2]. Let $\mu^w(\alpha, \beta) = (\beta, \alpha)$. Then $\rho(\mu) = \rho(\mu^w)$, and $\rho(\mu)$ is irreducible if and only if $\mu^w \neq \mu$. For $\alpha \in \widehat{\mathbb{F}^*}$ let $\mu = \mu(\alpha, \alpha)$ and write $$\rho(\mu) = \overline{\rho}(\alpha) + \rho'(\alpha)$$ where $\dim(\overline{\rho}(\alpha)) = q$ and $\dim(\rho'(\alpha)) = 1$. Then $\rho'(\alpha)(g) = \alpha(\det(g))$. #### Representations: 1. $$\rho(\mu) \ (\mu^w \neq \mu)$$, 2. $$\overline{\rho}(\alpha) \ (\alpha \in \hat{\mathbb{F}}^*)$$ 3. $$\rho'(\alpha)$$ $(\alpha \in \hat{\mathbb{F}}^*)$, 4. $$\pi(\chi) \ (\chi \in \hat{\mathbb{E}}, \chi \neq \overline{\chi})$$ # $SL(2,\mathbb{F})$ The order of $SL(2,\mathbb{F})$ is (q+1)q(q-1). If q is even then $SL(2,\mathbb{F}) \simeq PGL(2,\mathbb{F}) \simeq PSL(2,\mathbb{F})$, and these tables contain the character tables for $PGL(2,\mathbb{F})$ and $PSL(2,\mathbb{F})$. #### 3.1 Notation Let \mathbb{E}^1 be the kernel of the norm map $N: \mathbb{E}^* \to \mathbb{F}^*$. This has order q+1. If q is odd let ζ be the unique non-trivial character of \mathbb{F}^* with $\zeta^2 = 1$. Then $$\zeta(-1) = (-1)^{\frac{q-1}{2}} = \begin{cases} 1 & q \equiv 1 \mod (4) \\ -1 & q \equiv 3 \mod (4) \end{cases}$$ and $\zeta(-1) = 1$ if and only if $-1 \in \mathbb{F}^{*2}$. #### 3.2 Conjugacy Classes (q odd): $1. \pm I$ 2. $$c_2(\epsilon, \gamma) = \begin{pmatrix} \epsilon & \gamma \\ 0 & \epsilon \end{pmatrix} \quad (\epsilon = \pm 1, \gamma \in \{1, \Delta\})$$ 3. $$c_3(x) = diag(x, x^{-1}) \ (x \neq \pm 1), \ c_3(x) = c_3(x^{-1}),$$ 4. $$c_4(z) = \begin{pmatrix} x & \Delta y \\ y & x \end{pmatrix}$$ $(z = x + \delta y \in \mathbb{E}^1, z \neq \pm 1), c_4(z) = c_4(\overline{z})$ ## 3.3 Representations (q odd): For $\alpha \in \widehat{\mathbb{F}^*}$ let $\rho(\alpha)$ be the restriction of the principal series representation $\rho(\mu(\alpha,1))$ of $GL(2,\mathbb{F})$ to $SL(2,\mathbb{F})$. Define $\overline{\rho}(\alpha)$ and $\rho'(\alpha)$ similarly. Let $\pi(\chi)$ denote the restriction of the cuspidal representation $\pi(\chi)$ of $GL(2,\mathbb{F})$ to $SL(2,\mathbb{F})$. Let χ_0 be the unique non-trivial quadratic character of \mathbb{E}^1 . Write $$\rho(\zeta) = \omega_e^+ + \omega_e^w$$ and $$\pi(\chi_0) = \omega_o^+ + \omega_o^w$$ Then ω_e^{\pm} are of dimension $\frac{q+1}{2}$, and ω_o^{\pm} are of dimension $\frac{q-1}{2}$. These are the four oscillator representations of $SL(2,\mathbb{F})$. - 1. $\rho(\alpha) \ (\alpha \in \widehat{\mathbb{F}^*}, \alpha^2 \neq 1),$ - $2. \overline{\rho}(1)$ - 3. $\rho'(1)$ - 4. $\pi(\chi) \ (\chi \in \widehat{\mathbb{E}^1}, \chi^2 \neq 1)$ - 5. $\omega_e^{\pm}, \omega_o^{\pm}$ Let $\omega^+ = \omega_e^+ \oplus + \omega_o^+$, $\omega^- = \omega_e^- \oplus \omega_o^-$. These are the two oscillator representations, realized on $L^2(\mathbb{F})$, and ω_e^{\pm} (resp. ω_o^{\pm}) consists of the even (resp. odd) functions. ## 3.4 Conjugacy Classes (q even): - 1. *I* - $2. \ N = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ - 3. $c_3(x) = diag(x, x^{-1}), x \neq 1, c_3(x) = c_3(x^{-1}),$ - 4. $c_4(z) = \begin{pmatrix} x & \Delta y \\ y & x \end{pmatrix}$ $(z = x + \delta y \in \mathbb{E}^1, z \neq 1), c_4(z) = c_4(\overline{z})$ ## 3.5 Representations (q even): - 1. $\rho(\alpha)$ $(\alpha \neq 1)$ - $2. \ \overline{\rho}(1)$ - 3. $\rho'(1)$ - 4. $\pi(\chi) \ (\chi \in \widehat{\mathbb{E}^1}, \chi \neq 1)$ # 4 $PGL(2, \mathbb{F})$ Let $G = PGL(2, \mathbb{F}) = GL(2, \mathbb{F})/Z$. We assume q is odd. If q is even $PGL(2, \mathbb{F}) = PSL(2, \mathbb{F}) = SL(2, \mathbb{F})$. See Section 3 for the character table of $SL(2, \mathbb{F})$. The order of $PGL(2, \mathbb{F}_q)$ is (q+1)q(q-1) (if q is odd). #### 4.1 Conjugacy Classes 1. *I* $$2. \ N = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$ 3. $$c_3(x) = diag(x, 1) \ (x \neq \pm 1), \ c_3(x) = c_3(x^{-1}),$$ 4. $$c_3(-1) = diag(-1, 1)$$ 5. $$c_4(z)$$ $(z \in \mathbb{E}^*/\mathbb{F}^* \simeq \mathbb{E}^1, z \neq \pm \delta), c_4(z) = c_4(\overline{z}),$ 6. $$c_4(\delta)$$ ## 4.2 Representations Write $\rho(\alpha)$, $\overline{\rho}(\alpha)$, $\rho'(\alpha)$ and $\pi(\chi)$ for the representations of $PGL(2, \mathbb{F})$ obtained from the corresponding representations of $GL(2, \mathbb{F})$ (which factor to $PGL(2, \mathbb{F})$) and passing to the quotient. 1. $$\rho(\alpha)$$ $(\alpha^2 \neq 1)$, $\rho(\alpha) = \rho(\alpha^{-1})$, 2. $$\overline{\rho}(\alpha)$$ $(\alpha^2 = 1)$ 3. $$\rho'(\alpha) \ (\alpha^2 = 1)$$ 4. $$\pi(\chi)$$ $(\chi^2 \neq 1, \chi \neq \overline{\chi})$ # 5 $PSL(2,\mathbb{F})$ Let $G = PSL(2, \mathbb{F}) = SL(2, \mathbb{F}_q)/Z \cap SL(2, \mathbb{F})$. If q is even $Z \cap SL(2, \mathbb{F}) = I$, and $PSL(2, \mathbb{F}_q) = SL(2, \mathbb{F}_q) = PGL(2, \mathbb{F}_q)$. See Section 3. We assume q is odd. The order of $PSL(2, \mathbb{F}_q)$ is (q+1)q(q-1)/2 (if q is odd). ## 5.1 Conjugacy Classes Some notation is as in Section 3. - 1. *I* - 2. $c_2(\epsilon, \gamma) = \begin{pmatrix} \epsilon & \gamma \\ 0 & \epsilon \end{pmatrix} \quad (\epsilon = \pm 1, \gamma \in \{1, \Delta\})$ - 3. $c_3(x)$ $(x \neq \pm 1)$, $c_3(x) = c_3(-x) = c_3(\frac{1}{x}) = c_3(-\frac{1}{x})$ - 4. $c_4(z)$ $(z \in \mathbb{E}^1, z \neq \pm 1), c_4(z) = c_4(\overline{z}) = c_4(-z) = c_4(-\overline{z})$ #### 5.2 Representations Some notation is as in Section 3. - 1. $\rho(\alpha)$ $(\alpha^2 \neq 1)$, $\rho(\alpha) \simeq \rho(\alpha^{-1})$ - $2. \overline{\rho}(1)$ - 3. $\rho'(1)$ - 4. $\pi(\chi)$ $(\chi^2 \neq 1, \chi \neq \overline{\chi}), \pi(\chi) \simeq \pi(\overline{\chi})$ - 5. ω_e^{\pm} if $\zeta(-1) = 1$ - 6. ω_o^{\pm} if $\zeta(-1) = -1$ # 6 Tables # **6.1** $GL(2,\mathbb{F})$ | $\textbf{Character Table of } GL(2,\mathbb{F}_q)$ | | | | | | | | | | |---------------------------------------------------|-----------|-------------------------|--------------------------|---------------------|-------------------------|---------------------------------|--|--|--| | | | Number: | q-1 | q - 1 | $\frac{1}{2}(q-1)(q-2)$ | $\frac{1}{2}q(q-1)$ | | | | | | | Size: | 1 | $q^2 - 1$ | q(q+1) | q(q-1) | | | | | Rep | Dimension | Number | $c_1(x)$ | $c_2(x)$ | $c_3(x,y)$ | $c_4(z)$ | | | | | $\rho(\mu)$ | q+1 | $\frac{1}{2}(q-1)(q-2)$ | $(q+1)\alpha(x)\beta(x)$ | $\alpha(x)\beta(x)$ | $\mu(g) + \mu^w(g)$ | 0 | | | | | $\overline{ ho}(\alpha)$ | q | q-1 | $q\alpha(x^2)$ | 0 | $\alpha(xy)$ | $-\alpha(Nz)$ | | | | | $\rho'(\alpha)$ | 1 | q-1 | $\alpha(x^2)$ | $\alpha(x^2)$ | $\alpha(xy)$ | $\alpha(Nz)$ | | | | | $\pi(\chi)$ | q-1 | $\frac{1}{2}q(q-1)$ | $(q-1)\chi(x)$ | $-\chi(x)$ | 0 | $-\chi(z) - \chi(\overline{z})$ | | | | # **6.2** $SL(2, \mathbb{F})$ | | Character Table of $SL(2,\mathbb{F}),\ q$ odd | | | | | | | | | | |---------------------|-----------------------------------------------|-----------------|-----------------|---------------------------|-----------------------------------|------------------------------|---------------------------|--|--|--| | | | Number: | 1 | 1 | 4 | $\frac{q-3}{2}$ | $\frac{q-1}{2}$ | | | | | | | Size: | 1 | 1 | $\frac{q^2-1}{2}$ | q(q+1) | q(q-1) | | | | | Rep | Dimension | Number | I | -I | $c_2(\epsilon,\gamma)$ | $c_3(x)$ | $c_4(z)$ | | | | | $\rho(\alpha)$ | q+1 | $\frac{q-3}{2}$ | (q+1) | $(q+1)\alpha(-1)$ | $\alpha(\epsilon)$ | $\alpha(x) + \alpha(x^{-1})$ | 0 | | | | | $\overline{ ho}(1)$ | q | 1 | q | q | 0 | 1 | -1 | | | | | $\rho'(1)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | $\pi(\chi)$ | q-1 | $\frac{q-1}{2}$ | q-1 | $(q-1)\chi(-1)$ | $-\chi(\epsilon)$ | 0 | $-\chi(z) - \chi(z^{-1})$ | | | | | ω_e^{\pm} | $\frac{q+1}{2}$ | 2 | $\frac{q+1}{2}$ | $\frac{q+1}{2}\zeta(-1)$ | $\omega_e^{\pm}(\epsilon,\gamma)$ | $\zeta(x)$ | 0 | | | | | ω_o^\pm | $\frac{q-1}{2}$ | 2 | $\frac{q-1}{2}$ | $-\frac{q-1}{2}\zeta(-1)$ | $\omega_o^{\pm}(\epsilon,\gamma)$ | 0 | $-\chi_0(z)$ | | | | | ω^{\pm} | q | 2 | \overline{q} | $q\zeta(-1)$ | $\kappa_{\pm}(\epsilon,\delta)$ | $\zeta(x)$ | $-\chi_0(z)$ | | | | Notation: $$\zeta \in \widehat{\mathbb{F}^*/\mathbb{F}^{*2}}, \zeta^2 = 1$$ $$\beta = \zeta(-1)$$ $$\tau = \sqrt{\beta q}$$ $$\omega_e^{\pm}(\epsilon, \gamma) = \frac{1}{2}(\zeta(\epsilon) \pm \zeta(\gamma)\tau)$$ $$\omega_o^{\pm}(\epsilon, \gamma) = \epsilon \frac{1}{2}(-\zeta(\epsilon) \pm \zeta(\gamma)\tau)$$ $$\kappa_{\pm}(\epsilon, \gamma) = \begin{cases} \pm \zeta(\gamma)\tau & \epsilon = 1\\ \zeta(-1) & \epsilon = -1 \end{cases}$$ | Character Table of $SL(2,\mathbb{F}),\ q$ even | | | | | | | | | |------------------------------------------------|-----------|-----------------|-------|-----------|------------------------------|---------------------------|--|--| | | | Number: | 1 | 1 | $\frac{q-2}{2}$ | $ rac{q}{2}$ | | | | | | Size: | 1 | $q^2 - 1$ | q(q+1) | q(q-1) | | | | Rep | Dimension | Number | I | N | $c_3(x)$ | $c_4(z)$ | | | | $\rho(\alpha)$ | q+1 | $\frac{q-2}{2}$ | (q+1) | 1 | $\alpha(x) + \alpha(x^{-1})$ | 0 | | | | $\overline{ ho}(1)$ | q | 1 | q | 0 | 1 | -1 | | | | $\rho'(1)$ | 1 | 1 | 1 | 1 | 1 | 1 | | | | $\pi(\chi)$ | q - 1 | $\frac{q}{2}$ | q-1 | -1 | 0 | $-\chi(z) - \chi(z^{-1})$ | | | # 6.3 $PGL(2, \mathbb{F})$ | Character Table of $PGL(2, \mathbb{F}_q)$, q odd | | | | | | | | | | | |---------------------------------------------------|-----------|-----------------|---------|-----------|------------------------------|-------------------|---------------------------|--------------------|--|--| | | | Number: | 1 | 1 | $\frac{q-3}{2}$ | 1 | $\frac{q-1}{2}$ | 1 | | | | | | Size: | 1 | $q^2 - 1$ | q(q+1) | $ rac{q(q+1)}{2}$ | q(q-1) | $\frac{q(q-1)}{2}$ | | | | Rep | Dimension | Number | 1 | N | $c_3(x)$ | $c_3(-1)$ | $c_4(z)$ | $c_4(\delta)$ | | | | $\rho(\alpha)$ | q+1 | $\frac{q-3}{2}$ | (q + 1) | 1 | $\alpha(x) + \alpha(x^{-1})$ | $2\alpha(-1)$ | 0 | 0 | | | | $\overline{ ho}(\alpha)$ | q | 2 | q | 0 | $\alpha(x)$ | $\alpha(-1)$ | $-\alpha(Nz)$ | $\alpha(\Delta)$ | | | | $\rho'(\alpha)$ | 1 | 2 | 1 | 1 | $\alpha(x)$ | $\alpha(-1)$ | $\alpha(Nz)$ | $-\alpha(\Delta)$ | | | | $\pi(\chi)$ | q-1 | $\frac{q-1}{2}$ | (q-1) | -1 | 0 | 0 | $-\chi(z) - \chi(z^{-1})$ | $-2\chi(\delta)$ | | | If q is even then $PGL(2, \mathbb{F}) = SL(2, \mathbb{F})$. # **6.4** $PSL(2, \mathbb{F})$ | | Character Table of $PSL(2, \mathbb{F}_q)$, $q \equiv 1 \mod (4)$ | | | | | | | | | | |---------------------|-------------------------------------------------------------------|-----------------|-----------------|----------------------------|------------------------------|----------------------|---------------------------|--|--|--| | | | Number: | 1 | 2 | $\frac{q-5}{4}$ | 1 | $\frac{q-1}{4}$ | | | | | | | Size: | 1 | $(q^2-1)/2$ | q(q+1) | $ rac{q(q+1)}{2}$ | q(q-1) | | | | | Rep | Dimension | Number | 1 | $c_2(\gamma)$ | $c_3(x)$ | $c_3(\sqrt{-1})$ | $c_4(z)$ | | | | | $\rho(\alpha)$ | q+1 | $\frac{q-5}{4}$ | (q + 1) | 1 | $\alpha(x) + \alpha(x^{-1})$ | $2\alpha(\sqrt{-1})$ | 0 | | | | | $\overline{ ho}(1)$ | q | 1 | q | 0 | 1 | 1 | -1 | | | | | $\rho'(1)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | $\pi(\chi)$ | q-1 | $\frac{q-1}{4}$ | (q-1) | -1 | 0 | 0 | $-\chi(z) - \chi(z^{-1})$ | | | | | ω_e^\pm | $\frac{q+1}{2}$ | 2 | $\frac{q+1}{2}$ | $\omega_e^{\pm}(1,\gamma)$ | $\zeta(x)$ | $\zeta(\sqrt{-1})$ | 0 | | | | | Character Table of $PSL(2, \mathbb{F})$, $q \equiv 3 \mod (4)$ | | | | | | | | | | |-----------------------------------------------------------------|-----------------|-----------------|-----------------|----------------------------|------------------------------|---------------------------|--------------------|--|--| | | | Number: | 1 | 2 | $\frac{q-3}{4}$ | $\frac{q-7}{4}$ | 1 | | | | | | Size: | 1 | $(q^2-1)/2$ | q(q+1) | q(q-1) | $\frac{q(q-1)}{2}$ | | | | Rep | Dimension | Number | 1 | $c_2(\gamma)$ | $c_3(x)$ | $c_4(z)$ | $c_4(\delta)$ | | | | $\rho(\alpha)$ | q+1 | $\frac{q-3}{4}$ | (q + 1) | 1 | $\alpha(x) + \alpha(x^{-1})$ | 0 | 0 | | | | $\overline{ ho}(1)$ | q | 1 | q | 0 | 1 | -1 | 1 | | | | $\rho'(1)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | $\pi(\chi)$ | q-1 | $\frac{q-3}{4}$ | (q-1) | -1 | 0 | $-\chi(z) - \chi(z^{-1})$ | $-2\chi(\delta)$ | | | | ω_o^{\pm} | $\frac{q-1}{2}$ | 2 | $\frac{q-1}{2}$ | $\omega_o^{\pm}(1,\gamma)$ | 0 | $-\chi_0(z)$ | $-\chi_0(\delta)$ | | | If q is even then $PSL(2, \mathbb{F}) = SL(2, \mathbb{F})$. #### 7 Proofs For $GL(2, \mathbb{F})$ see [3], [1], [2]. The character table for $SL(2, \mathbb{F}_q)$ may be found in [5] (q odd) or [6] (q even). (There is a misprint in the table in [5]: the last two columns in the row for diag(-1, 1) should each be multiplied by -1.) Alternatively, once we have $GL(2,\mathbb{F})$ we restrict to $SL(2,\mathbb{F})$; see [2]. For q odd $SL(2,\mathbb{F})Z$ has index 2 in $GL(2,\mathbb{F})$; therefore the the restriction of an irreducible representation π is either irreducible or the direct sum of two irreducible summands of the same dimension. The only hard part is calculating the character of the halves of the oscillator representations ω_e^{\pm} , ω_o^{\pm} . If q is even $GL(2,\mathbb{F}) = SL(2,\mathbb{F})Z$ and all restrictions are irreducible. For $PGL(2, \mathbb{F})$ and $PSL(2, \mathbb{F})$ it is merely a question of taking a subset of the corresponding representations of $GL(2, \mathbb{F})$ and $SL(2, \mathbb{F})$. Similar computations give the conjugacy classes and representations. For example for q odd consider the number of conjugacy classes $diag(x, \frac{1}{x})$ with $x \neq \pm 1$. This is the set $x \neq \pm 1$, modulo $x \to \frac{1}{x}$, -x. If $-1 \notin \mathbb{F}^{*2}$ there are no fixed points of this action, and there are $\frac{q-3}{4}$ such conjugacy classes. If $-1 = i^2$ then $i = -\frac{1}{i}$, so there are $\frac{q-5}{4} + 1$ such conjugacy classes. Also note that the Weyl group element is contained in $Stab(c_3(i))$, and the order of this conjugacy classes is $\frac{q(q+1)}{2}$. Similarly the set of characters α of \mathbb{F}^* which give non–isomorphic irreducible principal series is the set of characters such that $\alpha^2 \neq 1$ and $\alpha(-1) = 1$, modulo $\alpha \to \alpha^{-1}$. There are $\frac{q-1}{2}$ characters of $\mathbb{F}^* / \pm 1$. Suppose $-1 \in \mathbb{F}^{*2}$. The characters of $\mathbb{F}^* / \pm 1$ are $1, \zeta$ and $\frac{q-5}{2}$ others, which consists of $\frac{q-5}{4}$ pairs α, α^{-1} . If $-1 \notin \mathbb{F}^{*2}$ then the $\frac{q-1}{2}$ characters of $\mathbb{F}^* / \pm 1$ consist of the trivial character and $\frac{q-3}{4}$ pairs α, α^{-1} . Note that $SL(2,\mathbb{F})Z = GL(2,\mathbb{F})_+ := \{g \in GL(2,\mathbb{F}) \mid det(g) \in \mathbb{F}^{*2}\}$. If q is even then $\mathbb{F}^{*2} = \mathbb{F}^*$. It follows that $GL(2,\mathbb{F}) = SL(2,\mathbb{F})Z$. Also $PSL(2,\mathbb{F}) = SL(2,\mathbb{F})/\pm I = SL(2,\mathbb{F})$, and $PGL(2,\mathbb{F}) = SL(2,\mathbb{F})Z/Z = SL(2,\mathbb{F})/SL(2,\mathbb{F}) \cap Z = SL(2,\mathbb{F})$. ## References [1] Daniel Bump. Automorphic forms and representations. Cambridge University Press, Cambridge, 1997. - [2] William Fulton and Joe Harris. Representation theory. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics. - [3] Ilya Piatetski-Shapiro. Complex representations of GL(2, K) for finite fields K. American Mathematical Society, Providence, R.I., 1983. - [4] Jean-Pierre Serre. Linear representations of finite groups. Springer-Verlag, New York, 1977. Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42. - [5] S. Tanaka. Representations of $SL(2, \mathbf{F}_q)$. Akad. Kiadó, Budapest, 1985. - [6] A. V. Zelevinskii and G. S. Narkunskaja. Representations of the group $sl(2, F_q)$, where $q = 2^n$. Funkcional. Anal. i Priložen., 8(3):75–76, 1974.