Math 744, Fall 2014
Jeffrey Adams
Homework IV SOLUTIONS

(1) Find an explicit two-to-one map SL(2,C) — SO(3,C).

Solution: The adjoint representation. The kernel is £1.
(2) Find an explicit two-to-one map SL(4,C) — SO(6,C).

Solution: We need a 6-dimensional representation of G = SL(4,C). A
natural guess is W = A*(V) where V = C* is the standard (tautological)
module. The group G acts naturally on W: 7(g)(v A w) = (gv) A (gw). This
gives a map from G to GL(6,C). Does it preserve a symmetric bilinear form?

In general, if V = C2?™ there is a natural bilinear form on A" (V). Fix an
isomorphism ¢ : A*™ (V) — C, and define

(@.8)=dlanp) (a,Be V).

It is easy to see (, ) is bilinear and symmetric if m is even, or skew-symmetric
if m is odd.

Applying this to W gives a symmetric bilinear form, which is easily seen to
be preserved by G. The kernel is 1.

(3) Find an explicit two-to-one map Sp(4,C) — SO(5,C).

Solution: We need a 5-dimensional representation of G = Sp(4,C). Start
with W = /\Z(V) where V' = C* is the standard module, equipped with a
symplectic form. Then dim(W) = 6.

Suppose V = C", with a symplectic form (,). Then there is a natural map
é: N"(V) = N¥(V*) = A¥(V)* (where V* is the dual). This is given by

A1 A= Avg)(wr A=+ Awg) = det({(vi, w;) }i )

(determinant of this n x n matrix). This defines a form

which is symplectic if & is odd, and symmetric if & is even.

Applying this, we have a map Sp(4,C) — SO(6,C). But we want SO(5,C)
instead.

Back to V = C", fix a symplectic basis {e1, ..., en, f1,..., fo} of V: (e;,e;) =
<f7l7fj> =0 and <6i, f7,> = (;i,j' Define

n
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Using the fact that

n

v=> [(v, fi)e; — (v,e:) fi]

i=1



it is easy to see that
(v,wy=(vAw,7) (vyweV)

It follows that Sp(4) fixes 7 € W, and therefore its orthogonal complement,
which has dimension 5. The kernel is +1.
(4) Prove the following result. Suppose V is a vector space and R C V is a finite
subset which spans V. If a # 0 € R there exists at most one pseudo-reflection
s such that sv = —v and s(R) = R. (Recall a pseudo-reflection is any linear
map satisfying sv = v for all v in a subspace of codimension 1, and sw = —w
for some w).

Hint: Suppose s, s’ both satisfy the condition, so if ¢ = ss’ then ta = a and
tv =v+ f(v)a for some f € V*. Consider powers of ¢.

This Lemma says that a root system can be defined without use of a bilinear
form: the map R 3 a — «¥ € V* is uniquely determined.

Solution: Suppose s, s’ both satisfying the condition, and let ¢ = ss’. Then
t(a) = . Also for any v, s(v) — v € C{a), and similarly s’. Therefore

t(v) =v+ f(v)a

for some f : V — C. Since t is linear it is clear that f is linear. It is easy to see
that by induction we have

t"(v) = v +nf(v)

for all n > 0.
Since ¢ is an automorphism of the finite set R, it has some finite order m.
Taking n = m we have
t"(w)=v+mf(v)=v

for all v. Therefore f(v) =0 for all v, t(v) = v and s = §'.
(5) If R is an irreducible root system, and IT = {ay,...,a,} is a set of simple
roots, then R has a unique maximal root 3 (i.e. @ > 0 implies 5+ o &€ R).

Set g = —f3, and define integers a; by ap = 1 and

n
E a; 0 = 0.
=0

Let II = {ag,a1,...,a,}. Define the extended Dynkin diagram in the same
way as the ordinary Dynkin diagram, applied to II. Label each node 0 < <n
of the extended diagram with a;.

(a) Draw the extended Dynkin diagrams for the classical groups, including
the labels.



(b) Suppose R is simply laced. Show that a; is one-half the sum of the labels
on all adjacent nodes.

Solution: Using > a;a; = 0, compute, for any j:
n
<Z apd;, VOéj> = 0
i=0

The term k = i on the left gives 2, and all terms adjacent to the k** node
give —1, 80 2 = a, where the sum runs over the adjacent nodes.

(¢) The extended Dynkin diagram of type Fg has g adjacent only to the end
of the long arm (with bond 1). Use (b) to compute the labels. Show that
Z:‘L:O a; = 30.

Solution: 1 +2+4+34+4+5+6+3+4+2 = 30.

(d) For a classical group show that the number of nodes of the extended
diagram labelled 1 is the order of the center of the simply connected group.

Solution: See (a).

(6) The root system of type D4 has an outer automorphism of order 3 which pre-
serves a set of positive roots (corresponding to an automorphism of the Dynkin
diagram). Write down this automorphism explicitly.

Solution: The automorphism cyclically permutes {e; — e, e3 — e4,€3 + €4}
and fixes eo — e3. A little linear algebra says that, in the usual coordinates

e1,...,eq, this is given by the matrix
1 1 1 1
O T
A=11 A 2 2
BT S S
2 2 2 2

For example A(1,-1,0,0)* = (0,0,1,—1)* and A(0,1,—-1,0)* = (0,1, —1,0)".
Note that A(3,2,1,0)=(3,2,1,0). This is because (3,2,1,0) = p, one-half

the sum of the positive roots, and A permutes the positive roots.

(7) Consider the following game on a simply laced Dynkin diagram. Color each

node black or white. If a node is black, you can toggle the colors of all adjacent

nodes. Two colorings are said to be equivalent if you can relate them by a series

of such operations.

(a) Show that in type A, every coloring (with at least one black node) is
equivalent to one with exactly 1 black node.

(b) Show that in type Fg there are exactly three equivalence classes of color-
ings, one with all white nodes, and the others with one black node.

Solution: Left up to you. Search for sigma game on non-degenerate graphs
on google.



