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Jeffrey Adams

Homework IV SOLUTIONS

(1) Find an explicit two-to-one map SL(2,C)→ SO(3,C).

Solution: The adjoint representation. The kernel is ±I.

(2) Find an explicit two-to-one map SL(4,C)→ SO(6,C).

Solution: We need a 6-dimensional representation of G = SL(4,C). A

natural guess is W =
∧2

(V ) where V = C4 is the standard (tautological)

module. The group G acts naturally on W : π(g)(v ∧ w) = (gv) ∧ (gw). This

gives a map from G to GL(6,C). Does it preserve a symmetric bilinear form?

In general, if V = C2m there is a natural bilinear form on
∧m

(V ). Fix an

isomorphism φ :
∧2m

(V )→ C, and define

(α, β) = φ(α ∧ β) (α, β ∈
m∧

(V )).

It is easy to see ( , ) is bilinear and symmetric if m is even, or skew-symmetric

if m is odd.

Applying this to W gives a symmetric bilinear form, which is easily seen to

be preserved by G. The kernel is ±I.

(3) Find an explicit two-to-one map Sp(4,C)→ SO(5,C).

Solution: We need a 5-dimensional representation of G = Sp(4,C). Start

with W =
∧2

(V ) where V = C4 is the standard module, equipped with a

symplectic form. Then dim(W ) = 6.

Suppose V = Cn, with a symplectic form 〈 , 〉. Then there is a natural map

φ :
∧k

(V )→
∧k

(V ∗) =
∧k

(V )∗ (where V ∗ is the dual). This is given by

φ(v1 ∧ · · · ∧ vk)(w1 ∧ · · · ∧ wk) = det({〈vi, wj〉}i,j)

(determinant of this n× n matrix). This defines a form

(α, β) = φ(α)(β)

which is symplectic if k is odd, and symmetric if k is even.

Applying this, we have a map Sp(4,C)→ SO(6,C). But we want SO(5,C)

instead.

Back to V = Cn, fix a symplectic basis {e1, . . . , en, f1, . . . , f2} of V : 〈ei, ej〉 =

〈fi, fj〉 = 0 and 〈ei, fi〉 = δi,j . Define

τ =

n∑
i=1

ei ∧ fi

Using the fact that

v =

n∑
i=1

[〈v, fi〉ei − 〈v, ei〉fi]



it is easy to see that

〈v, w〉 = (v ∧ w, τ) (v, w ∈ V )

It follows that Sp(4) fixes τ ∈ W , and therefore its orthogonal complement,

which has dimension 5. The kernel is ±I.

(4) Prove the following result. Suppose V is a vector space and R ⊂ V is a finite

subset which spans V . If α 6= 0 ∈ R there exists at most one pseudo-reflection

s such that sv = −v and s(R) = R. (Recall a pseudo-reflection is any linear

map satisfying sv = v for all v in a subspace of codimension 1, and sw = −w
for some w).

Hint: Suppose s, s′ both satisfy the condition, so if t = ss′ then tα = α and

tv = v + f(v)α for some f ∈ V ∗. Consider powers of t.

This Lemma says that a root system can be defined without use of a bilinear

form: the map R 3 α→ α∨ ∈ V ∗ is uniquely determined.

Solution: Suppose s, s′ both satisfying the condition, and let t = ss′. Then

t(α) = α. Also for any v, s(v)− v ∈ C〈α〉, and similarly s′. Therefore

t(v) = v + f(v)α

for some f : V → C. Since t is linear it is clear that f is linear. It is easy to see

that by induction we have

tn(v) = v + nf(v)

for all n ≥ 0.

Since t is an automorphism of the finite set R, it has some finite order m.

Taking n = m we have

tm(v) = v +mf(v) = v

for all v. Therefore f(v) = 0 for all v, t(v) = v and s = s′.

(5) If R is an irreducible root system, and Π = {α1, . . . , αn} is a set of simple

roots, then R has a unique maximal root β (i.e. α > 0 implies β + α 6∈ R).

Set α0 = −β, and define integers ai by a0 = 1 and

n∑
i=0

aiαi = 0.

Let Π̂ = {α0, α1, . . . , αn}. Define the extended Dynkin diagram in the same

way as the ordinary Dynkin diagram, applied to Π̂. Label each node 0 ≤ i ≤ n
of the extended diagram with ai.

(a) Draw the extended Dynkin diagrams for the classical groups, including

the labels.



(b) Suppose R is simply laced. Show that ai is one-half the sum of the labels

on all adjacent nodes.

Solution: Using
∑n

i=0 aiαi = 0, compute, for any j:

〈
n∑

i=0

akαi,
∨αj〉 = 0

The term k = i on the left gives 2, and all terms adjacent to the kth node

give −1, so 2 =
∑
ar where the sum runs over the adjacent nodes.

(c) The extended Dynkin diagram of type E8 has α0 adjacent only to the end

of the long arm (with bond 1). Use (b) to compute the labels. Show that∑n
i=0 ai = 30.

Solution: 1 + 2 + 3 + 4 + 5 + 6 + 3 + 4 + 2 = 30.

(d) For a classical group show that the number of nodes of the extended

diagram labelled 1 is the order of the center of the simply connected group.

Solution: See (a).

(6) The root system of type D4 has an outer automorphism of order 3 which pre-

serves a set of positive roots (corresponding to an automorphism of the Dynkin

diagram). Write down this automorphism explicitly.

Solution: The automorphism cyclically permutes {e1 − e2, e3 − e4, e3 + e4}
and fixes e2 − e3. A little linear algebra says that, in the usual coordinates

e1, . . . , e4, this is given by the matrix

A =


1
2

1
2

1
2

1
2

1
2

1
2 − 1

2
1
2

1
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1
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2


For example A(1,−1, 0, 0)t = (0, 0, 1,−1)t and A(0, 1,−1, 0)t = (0, 1,−1, 0)t.

Note that A(3, 2, 1, 0)=(3, 2, 1, 0). This is because (3, 2, 1, 0) = ρ, one-half

the sum of the positive roots, and A permutes the positive roots.

(7) Consider the following game on a simply laced Dynkin diagram. Color each

node black or white. If a node is black, you can toggle the colors of all adjacent

nodes. Two colorings are said to be equivalent if you can relate them by a series

of such operations.

(a) Show that in type An every coloring (with at least one black node) is

equivalent to one with exactly 1 black node.

(b) Show that in type E8 there are exactly three equivalence classes of color-

ings, one with all white nodes, and the others with one black node.

Solution: Left up to you. Search for sigma game on non-degenerate graphs

on google.


