Math 744, Fall 2014
Jeffrey Adams
Homework ITT SOLUTIONS

(1) Let F, be the field with ¢ elements.
(a) Show that GL(2,F,) acts transitively on the projective space of lines in Fg.
Use this to compute the order of GL(2,F,).
(b) Compute the order of PGL(2,F,) = GL(2,F,)/{zI}, SL(2,F,) = {g €
GL(2,F,)| | det(g9) = 1}, and PSL(2,F,) = SL(2,F,)/ £ I.
(c) Show that PSL(2,2) ~ Ss, PSL(2,3) ~ A4, and PSL(2,5) ~ As.
Solution:
(a) It is easy to see GL(n, F) acts transitively on F™ — {0} for any field and any

n. So GL(2,F,) clearly acts transitively on lines in Fi. The stabilizer of the line

through (1,0), ie. {(,0) | z € By}, is P = <g

as a set to Fy x (F7)?, and has order ¢(¢ — 1)®. So G/P is isomorphic to the

b . - .
o) This group is isomorphic

projective space X of lines, which has order ¢ + 1. So |G|/|P| = ¢+ 1, and
|GL(2,F,)| = (q+1)q(q — 1),
(b) There is an exact sequence
1 —F, = GL(2,F,) = PGL(2,F;) — 1,
which implies
|PGL(2,F,)| = (¢ +1)glg — 1)*/(¢—1) = (¢ + Dalg — 1)

On the other hand SL(2,F,) is the kernel of the determinant map, which is

surjective onto F7. So this time the exact sequence is
1 — SL(2,Fy)* — GL(2,F;) — F, — 1.
This gives the same order:

ISL(2,Fy)| = (¢ +1)q(g — 1)



Finally there is an exact sequence
1—+I— SL(2,F;) - PSL(2,F,) — 1

which gives
\PSL(2,F,)| = {(q+ Dalg=1)/2 q#2"
(@+1glg—1) q=2"
(©)

G = PSL(2,2) acts on X of order 3. The map G — Aut(X) is injective, so
G — S3. Since |G| =3(2)1 =6 G ~ Ss.

G = PSL(2,3) acts on X of order 4. The map G — Aut(X) is injecgtive, so
G < S4. The order of G is 4 * 3% 2/2 = 12. The only subgroup of S; of order
12 is A4 (why is this?), so G ~ Ay.

G = PSL(2,5) acts on X of order 6. The map G — Aut(X) ~ Sg is
injective, and G has order 6 x5 x 4/2 = 60. Why is it isomorphic to As?

As I mentioned in class, this is related to a famous result about symmet-
ric groups: the outer automorphism group of S, (i.e. Aut(S,)/Sp) is triv-
ial, unless n = 6, in which case it is Z/2Z. Let H be the stabilizer of 6 in
Se = Aut{1,2,3,4,5,6}, so H ~ S5. If 7 is an outer automorphism of Sg then
T(H) gives a copy of S5 which does not fix any of {1,2,3,4,5,6}. This can be
visualized in various ways, including using the icosahedron. In any event, our
copy of A5 is 7 of A5 C H.

Alternatively, As is given by generators and relations
A5 = (z,y|2® =y* =1, (2y)° = 1).

So we just need to find elements of PGL(2,5) satisfying these conditions.
. (1 a (0 1
It is easy to find elements of order 5: (O 1). Also order 2: (il 0>
(remember we're in PSL(2) so —I = I). Also conjugates of these, of course.

For order 3, embed F5 in GL(2) as
at+ V2 (2 b,
26 a)’

some of these elements have order 6 in GL(2), or 3 in PGL(2).



After some trial and error here is a set of generators satisfying the given

(30 (2 2 (11
T=\1 2) Y=\ 2) W= \o 1

(2) Suppose g is a semisimple Lie algebra, let (, ) be the Killing form, let

relations:

{X.;} be a basis of g, and let {Y;} be the dual basis with respect to (,) (i.e.
(X;,Y;) =6, ;. Finally let (7, V) be a representation of g, and let

C= Z?T(Xi)ﬂ'(Y;) € End(V)

(a) Show that C' is independent of the choice of basis {X;}.

Solution:

This comes down to the following fact. Suppose V' is a vector space equipped
with a symmetric bilinear form. Then the element ), v; ® w;, where {v;} is a
basis and {w;} is the dual basis with respect to the form, is independent of the
choice of basis.

To see this, use the canonical isomorphism
V ®V* ~Hom(V,V)

given by v ® A — f, , where f, x(w) = A(w)v. Then the identity element of
Hom(V, V') corresponds to a canonical element of V' ® V*. Identifying V' with
its dual using the form gives the element ). v; ® w;, which being canonical is
independent of the choice of basis.
(b) Show that Cn(X) = n(X)C for all X € g.

C is called the Casimir element of 7.

This is a standard calculation. See any of the basic references, for example
Humphreys.
(4) Show that the only three-dimensional simple complex Lie algebra is sl(2, C)
(up to isomorphism).

Solution: As I mentioned in class this is easy if you assume too much. A
reasonable place to start is to use the Killing form (, ). The radical is an ideal, so

it must be nondegenerate. Then the adjoint representation takes g to so(g, (,)).



Since so(g, (,)) is three dimensional this is an isomorphism. Over C there is

only one symmetric bilinear form up to equivalence.

(5) Compute the root system of sO(2n + 1,C). Describe a choice of a set of
positive roots. What is the order of the Weyl group?

0 I, 7
Solution: Take the form tobe [ I, 0 0. Then
0 0 O
h =diag(z1, ..., 2n, —21,--., —2n,0),
write this as (z1,...,2,). Then the roots are +e; + e; (coming from SO(2n))

and te; (the root vectors are entries in the last row and column.

The Weyl group is all permutations and sign changes: W ~ S™ x Z/27™.

(6) Do the same for sp(2n, C).
Solution With the usual form the Cartan subalgebra is diag(z1, ..., 2n, =21, .., —2n)-
Write this as (21, . . ., 2,). Coming from math frakgl(n) embedded as diag(A, —*A)

we find the roots e; —e;. For any symmetric A the matrix is in g, this

0 A
0 0
gives the roots e; + e; and 2e; (from A diagonal). The lower left hand-corner
gives the negatives of these. So the roots are: +e; & ¢; and £2e;.

The Weyl group is isomorphic to S™ x Z/2Z™ just as in Problem 5.

(7) We defined a root system to have the property: if & € R, then —a € R,
and no other multiple of « is in R. (This is actually a reduced root system).
Assume only that a € R implies —a € R. Show that if a € R at there are at
most 4 multiples of a contained in R. Give an example of a root system where
this holds.

Suppose a and ca are roots. Then 2(«, ca)/(ca, ca)) has to be an integer.
This is equal to 2¢(a, a)/c?(a, ) = 2/c. So ¢ = £1,42.

The only irreducible, non-reduced root system is type BC,,. This is B,, UC,,.
The roots are e; & e;,+e; and £e;. A degenerate case is BC; = {+e;, +2e;}.

(8) Calculate the Cartan matrices in types A, By, Cy, D,. By induction, cal-

culate their determinants.



See any standard reference. The determinants are:

1. A,:n+1

2. B,,Cy: 2

3. D,: 4

4. FEg: 3

5. B 2

6. Fg, Fy,Go: 1

As I mentioned in class, these are the orders of the centers of the corre-
sponding simply connected complex groups. Also they are the orders of P/R
or PY/RY in each case. In particular Eg, Fy and G5 are both simply connected

and adjoint.



