Math 744, Fall 2014 Jeffrey Adams Homework III

(1) Let \mathbb{F}_q be the field with q elements.

(a) Show that $GL(2, \mathbb{F}_q)$ acts transitively on the projective space of lines in \mathbb{F}_q^2 . Use this to compute the order of $GL(2, \mathbb{F}_q)$.

(b) Compute the order of $PGL(2,\mathbb{F}_q)$ = $GL(2,\mathbb{F}_q)/\{xI\},\ SL(2,\mathbb{F}_q)$ = $\{g$ \in

 $GL(2,\mathbb{F}_q)|\mid \det(g)=1\}, \, \text{and} \, PSL(2,\mathbb{F}_q)=SL(2,\mathbb{F}_q)/\pm I.$

(c) Show that $PSL(2,2) \simeq S_3$, $PSL(2,3) \simeq A_4$, and $PSL(2,5) \simeq A_5$.

(2) Suppose \mathfrak{g} is a semisimple Lie algebra, let (,) be the Killing form, let $\{X_i\}$ be a basis of \mathfrak{g} , and let $\{Y_i\}$ be the dual basis with respect to (,) (i.e. $(X_i, Y_j) = \delta_{i,j}$. Finally let (π, V) be a representation of \mathfrak{g} , and let

$$C = \sum_{i} \pi(X_i) \pi(Y_i) \in \operatorname{End}(V)$$

(a) Show that C is independent of the choice of basis $\{X_i\}$.

(b) Show that $C\pi(X) = \pi(X)C$ for all $X \in \mathfrak{g}$.

C is called the Casimir element of π .

(4) Show that the only three-dimensional simple complex Lie algebra is $\mathfrak{sl}(2,\mathbb{C})$ (up to isomorphism).

(5) Compute the root system of $\mathfrak{sO}(2n+1,\mathbb{C})$. Describe a choice of a set of positive roots. What is the order of the Weyl group?

(6) Do the same for $\mathfrak{sp}(2n, \mathbb{C})$.

(7) We defined a root system to have the property: if $\alpha \in R$, then $-\alpha \in R$, and no other multiple of α is in R. (This is actually a *reduced* root system). Assume only that $\alpha \in R$ implies $-\alpha \in R$. Show that if $\alpha \in R$ at there are at most 4 multiples of α contained in R. Give an example of a root system where this holds.

(8) Calculate the Cartan matrices in types A_n, B_n, C_n, D_n . By induction, calculate their determinants.