Math 744, Fall 2014 Jeffrey Adams Homework II

(1) Let M be a smooth manifold. Prove the Jacobi identity for derivations of $C^{\infty}(M, \mathbb{R})$.

(2) Consider the exponential map from $M_n(\mathbb{C})$ to $GL(n,\mathbb{C})$.

(a) Show that det(exp(X)) = exp(Tr(X))

(b) A matrix is nilpotent if $X^n = 0$ for some n, and unipotent if X - I is nilpotent. Prove that exp is a bijection from nilpotent to unipotent matrices.

(c) A matrix is semisimple if it is diagonalizable. Show that if X is semisimple then $\exp(X)$ is semisimple. What about the converse?

(d) Show that the exponential map from $M_n(\mathbb{C})$ to $GL(n, \mathbb{C})$ is surjective.

(e) Show that the exponential map from $M_n(\mathbb{R})$ to $GL(n, \mathbb{R})$ is not surjective. Describe its image.

(3) Let G = SO(n), the set of $n \times n$ real matrices satisfying $gg^t = I$ and det(G) = 1.

(a) Show that the Lie algebra of G is $\mathfrak{g} = \{X \in M_n(\mathbb{R}) \mid X + X^t = 0\}.$

(b) Show that the exponential map from \mathfrak{g} to G is surjective.

(4) Compute the Lie algebras of the classical groups $SL(n, \mathbb{R}), SO(p, q)$, and

SU(p,q). What are their dimensions?

(5) Let G = SU(2), and let \mathfrak{g} be its Lie algebra, $\mathfrak{g} = \{X \in M_2(\mathbb{C}) \mid X + \overline{X}^t = 0, \operatorname{Tr}(X) = 0\}.$

(a) Show that \mathfrak{g} is a three dimensional real vector space, and $(X, Y) = \text{Tr}(X\overline{Y}^t)$ is a positive definite symmetric bilinear form on \mathfrak{g} .

(b) Let G act on \mathfrak{g} by $g: X \to gXg^{-1}$. Show that this preserves the form (,), so defines a map $\phi: SU(2) \to SO(3)$.

(c) Show that ϕ is surejective, and identify its kernel.