Math 744, Fall 2014 Jeffrey Adams Homework I

(1) Consider the action of SO(n+1) acting on $S^n \subset \mathbb{R}^{n+1}$.

(a) Show this action is transitive.

(b) Compute $\text{Stab}_{G}(v)$ where v = (1, 0, ..., 0).

(c) Show there is an isomorphism $SO(n+1)/SO(n) \simeq S^n$ (it is enough to give the bijection).

(2)

(a) Show that $\{(z, w) \in \mathbb{C}^2 \mid z^2 + w^2 = 1\} \simeq \mathbb{C}^*$

(b) Show that $SO(2, \mathbb{C}) \simeq \mathbb{C}^*$

(c) Show that $SO(2, \mathbb{R}) \simeq S^1$

(d) Show that $SO(1,1) \simeq \mathbb{R}^*$. Recall SO(1,1) is the group preserving a symmetric bilinear form on \mathbb{R}^2 of signature (1,1).

(e) Show that O(2) contains SO(2) as a subgroup of index 2, that O(2) is no abelian, and the elements of O(2) - SO(2) constitute a single conjugacy class. (3) Show that the proper algebraic subsets of the one dimensional vector space \mathbb{C} are the finite sets.

(4) Show that the Euclidean topology on \mathbb{C}^n is finer than the Zariski topology.

(5) Show that $\operatorname{Hom}_{\operatorname{alg}}(G_m, G_m) \simeq \mathbb{Z}$; the left hand side is the set of morphisms from G_m to G_m (as algebraic varieties) which are also group homomorphisms.

(6) Recall an action of an algebraic group G on an algebraic variety X is a morphism of varieties $G \times X \to X$, $(g, x) \to g \cdot x$, satisfying $g \cdot (h \cdot x) = (gh) \cdot x$, and $e \cdot x = x$.

(a) Consider the action of GL(n, K) on K^n (K is any field). Determine the orbits of GL(n, K) and SL(n, K) on K^n .

(b) Show that GL(2, K) acts transitively on P^1 , the set of lines through the origin in K^2 . Compute the stabilizer of a point. Compute the orbits of GL(2, K) on $P^1 \times P^1$.