
Math 475: Stirling Numbers

April 17, 2012

1 Stirling Numbers

For n a positive integer let

xn = x(x− 1) . . . (x− n+ 1)

Also set x0 = 1, so xn is a polynomial of degree n in the indeterminate x, with
top order term xn. For example x2 = x(x− 1) = x2 − x, x3 = x3 − 3x2 + 2x.

Lemma 1.1 Suppose f(x) = a0+a1x+ . . . anx
n =

∑n

i=0 aix
i is a polynomial

of degree n with ai ∈ Z. Then

f(x) =
n

∑

i=0

bix
i

for some unique integers bj.

Let V the real vector space of polynomials of degree less than or equal to
n. This is just a formal way of saying

V = {a0 + a1xa2x
2 + . . . anx

n} (ai ∈ R)

with the usual addition of polynomials, multiplication of polynomials by a
scalar. This vector space is obviously n-dimensional: it has a basis {1, x, x2, . . . , xn}.
This means every polynomial is uniquely a sum of these monomials (which
is obvious).

Lemma 1.2 The polynomials {x0, x1, x2, . . . , xn} are also a basis of V .
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Proof. Every xk is a sum of the xℓ. We have to show the converse: you
can write xk as a sum of terms xℓ. (This shows the xk span, and there are
exactly n+ 1 of them, so they are a basis.)

Consider the matrix of
{n

k

}

:

































{0
0

} {0
1

} {0
2

} {0
3

} {0
4

}

. . .

{1
0

} {1
1

} {1
2

} {1
3

} {1
4

}

. . .

{2
0

} {2
1

} {2
2

} {2
3

} {2
4

}

. . .

{3
0

} {3
1

} {3
2

} {3
3

} {3
4

}

. . .

{4
0

} {4
1

} {4
2

} {4
3

} {4
4

}

. . .

































=













1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 3 1 0
0 1 7 6 1













The fact that
{n

k

}

= 0 for k > n says this is lower triangular, an d
{n

n

}

= 1

says it has ones on the diagonal. The determinant of this matrix (of whatever
size n) is 1. Therefore the matrix is invertible. This is precisely what is
necessary. �

In fact we’ve shown more:

Lemma 1.3 For each n there is a formula

xn = b0x
0 + b1x

1 + . . . bnx
n

where the bi are integers.

This is because the formula for the (i, j) entry of the inverse of a matrix A

is (−1)i−jAj,i det(A)
−1 where Aj,i is a determinant of a sub-matrix of A. If

all entries of A are integers, and the determinant is one, these are integers.
Furthermore the inverse is lower diagonal.

Definition 1.4 The Stirling numbers of the first and second kind are defined
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as follows. For n ≥ 1, k ≥ 0:

xn =
n

∑

i=0

{n

i

}

xi

xn =
n

∑

i=0

(−1)n−i
[n

i

]

xi

In particular
{n

k

}

=
[n

k

]

= 0 for k > n. Also

{0
0

}

=
[0
0

]

= 1

{0
k

}

=
[0
k

]

= 0 (k > 0)

From the Definition it is immediate that:

n
∑

k=0

{n

k

}[n

k

]

(−1)n−k = δm,n

n
∑

k=0

[n

k

]{n

k

}

(−1)n−k = δm,n

where δm,n = 1 if m = n, and 0 otherwise.
There are Pascal-style recurrence relations for these.

Lemma 1.5
[n+ 1

m

]

= n
[n

m

]

+
[ n

m− 1

]

{n+ 1
m

}

= m
{n

m

}

+
{ n

m− 1

}

Proof. For the first one, note that

(x− n)xn = x(x− 1) . . . (x− n+ 1)(x− n) = xn+1

So

(x− n)
∑

[n

k

]

(−1)n−kxk =
∑

[n+ 1
k

]

(−1)n+1−kxk
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and multiplying in the first term gives

∑

[n

k

]

(−1)n−kxk+1 −
∑

n
[n

k

]

(−1)n−kxk =
∑

[n+ 1
k

]

(−1)n+1−kxk

Look at the coefficient of xm on both sides; in the first term take k+1 = m,
and take k = m in the others.

[ n

m− 1

]

(−1)n−(m−1) −
[n

m

]

(−1)(n−m) =
[n+ 1

m

]

(−1)n+1−m)

and cancelling signs gives

[ n

m− 1

]

+
[n

m

]

=
[n+ 1

m

]

For the second identity, use x ∗ xn = xn+1, so

x
∑

{n

k

}

xk =
∑

{n+ 1
k

}

xk

Now write xxk = (x− k + k)xk = xk+1 + kxk, so

∑

{n

k

}

xk+1 +
∑

{n

k

}

kxk =
∑

{n+ 1
k

}

xk

and equating the coefficient of xm gives

{ n

m− 1

}

+m
{n

m

}

=
{n+ 1

m

}

�

Here is a combinatorial interpretation of the Stirling numbers of the sec-
ond kind.

Consider the ways of distributing n distinct balls into k identical boxes,
with at least one ball in each box. We haven’t considered identical boxes
before; this means you can permute the boxes at will. See the 12-fold way
notes on the class web site.

Example 1: For 4 balls a, b, c, d into 4 boxes: only 1, you put one ball in each
box, and the order of the boxes doesn’t matter.
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Example 2: 4 balls into 3 boxes: ([a], [b], [c, d]) or ([a], [c], [b, d]) or ([b], [c], [a, d]),
a total of 3.

Example 3: 4 balls into 2 boxes: ([a], [b, c, d]),([b], [a, c, d]), ([c], [a, b, d]),
([d], [a, b, c]). Also ([a, b], [c, d]), ([a, c], [b, d]), or ([a, d], [b, c]). The total is
7.

Let B(n, k) be the number of ways of doing this.
Obvioiusly B(n, 0) = 0, B(n, 1) = 1, and B(n, n) = 1. Also B(n, k) = 0

if k > n.

I claim these numbers satisfy the same recurrence relation as the
{n

k

}

:

B(n+ 1,m) = mB(n,m) + B(n,m− 1)

Why? How many ways are there of putting n + 1 balls into m boxes?
Well, you could put ball 1 in a box by itself. There are B(n,m− 1) ways of
doing the rest. On the other hand, suppose ball 1 is not in a box by itself.
Then, you can remove ball 1 from its box, and still have at least one ball in
each box. There are B(n,m) ways of putting the n balls in the m boxes. But
you also have to choose which box ball 1 came out of. This gives mB(n,m).
Voila!

Since these numbers satisfy the same recurrence relation as the
{n

k

}

, and

agree for k = 0, 1, we conclude:

Lemma 1.6
{n

k

}

is the number of ways of distributing n distinct balls into

k identical boxes, with at least 1 ball in each box.

Equivalently:
{n

k

}

is the number of ways of partitioning an n-set into k

disjoint (non-empty) subsets.

Here is a combinatorial interpretation of the Stirling numbers
[n

k

]

of the

first kind.
First, here is a standard way to write a permutation of n in terms of

cycles. For example, (1, 2, 3), in cycle notation, denotes the permutation
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1 → 2 → 3 → 1. More examples:

(1, 2, 3)(4) : 1 → 2 → 3 → 4; 4 goes to itself

(1, 2)(3, 4) : 1 ↔ 2; 3 ↔ 4

(1)(2)...(n) : the identity (trivial) permutation

(1, 2, ..., n) : the n-cycle 1 → 2 → · · · → n → 1

Note that there are (n−1)! n-cycles: (1, 2, . . . , n) = (2, 3, . . . n, 1) = (3, 4, . . . , n, 1, 2),
so assume 1 is first, and there are (n− 1)! distinct other ones.

For example
[3
2

]

= 3: (1, 2)(3); (1, 3)(2) or (2, 3)(1)

[4
2

]

= 11: (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3); also (1)(2, 3, 4); (1)(2, 4, 3),

. . . (8 of these), for a total of 11.

Lemma 1.7
[n

k

]

is the number of permutations of n with k cycles.

Proof. let B(n, k) be the number of permutations of an n-set with k cycles.
Then B(n, 0) = 0 and B(n, 1) = (n− 1)!.

By induction. To compute B(n, k) consider the position of 1. If it is in a
cycle by itself, (1), this leaves B(n − 1, k − 1) others. Otherwise, there are
B(n − 1, k) permutations of n − 1 with k cycles. Now you can put in the 1
to the left of any j: there are n− 1 ways to do this. So

B(n, k) = B(n− 1, k − 1) + (n− 1)B(n− 1, k)

This is the same as the recurrence in Lemma 1.5. �

2 Generalized Stirling Numbers

Recall the Stirling numbers of the second kind
{n

k

}

satisfy

(2.1)(a)
{n+ 1

k

}

= k
{n

k

}

+
{ n

k − 1

}

provided n, k ≥ 0. If we assume

(2.1)(b)
{n

0

}

= δn,0,
{0
k

}

= δ0,k
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Then (a) and (b) together determine
{n

k

}

for all k, n ≥ 0.

Now: use (a) and (b) to define
{n

k

}

for all integers n and k. It is easy to

see they uniquely determine
{n

k

}

.

Do the same thing to define
[n

k

]

for all n, k.

Then something remarkable happens. If you fill out the upper left hand

corner of the triangle of the
{n

k

}

, for n, k < 0, you see you get the
[m

ℓ

]

for

m, ℓ > 0.

Lemma 2.2 For all integers n, k:

{n

k

}

=
[−k

−n

]

Proof. It is enough to show that the numbers
[−k

−n

]

satisfy the correct

recurrence relation. That is,
{n

k

}

are determined by

(2.4)
{n+ 1

k

}

= k
{n

k

}

+
{ n

k − 1

}

(n, k ≥ 0)

Replace each
{a

b

}

with
[−b

−a

]

:

(2.5)
[ −k

−n− 1

]

− k
[−k

−n

]

+
[−k + 1

−n

]

We don’t know this is true, but if we can prove it, then
[n

k

]

satisfy the same

recurrence relation as
{−k

−n

}

, proving the result. Set ℓ = −k,m = −n− 1, so

(b) gives

(2.6)
[ ℓ

m

]

= −ℓ
[ ℓ

m+ 1

]

+
[ ℓ+ 1
m+ 1

]
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or

(2.7)
[ ℓ

m

]

+ ℓ
[ ℓ

m+ 1

]

=
[ ℓ+ 1
m+ 1

]

which is (1.5). �

There is also a connection with polynomials.
Consider the recurrence relation

(2.8) (x− n)xn = xn+1 (n ≥ 0).

Write this in the form

(2.9) xn =
xn+1

x− n
(n ≥ 0)

Even though the right hand side has x − n in the denominator, this is an
equality of polynomials (of degree n) in x.

Use (2.9), inductively, to define xn for n ≤ −1. That is

x−1 =
x0

x− (−1)
=

1

x+ 1

x−2 =
x−1

x− (−2)
=

1

(x+ 1)(x+ 2)
. . .

x−n =
1

(x+ 1)(x+ 2) . . . (x+ n)
(n ≥ 1).

Alternatively,

xn =
1

(x− n)(x− n− 1) . . . (x+ 1)
(n ≤ −1)

Note that xn is a polynomial of degree n if n ≥ 0, or 1 over a polynomial of
degree −n if n ≤ −1.

Then the exact same recurrence relation (2.8) holds for all n.
Furthermore, the defining relations now hold for all n, k, as formal power

series:

xn =
n

∑

i=0

{n

i

}

xi

xn =
n

∑

i=0

(−1)n−i
[n

i

]

xi
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Stirling numbers S(n, k) =
{n

k

}

of the second kind

n/k -5 -4 -3 -2 -1 0 1 2 3 4 5
-5 1
-4 10 1
-3 35 6 1
-2 50 11 3 1
-1 24 6 2 1 1
0 1
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1

Stirling numbers s(n, k) =
[n

k

]

of the second kind

n/k -5 -4 -3 -2 -1 0 1 2 3 4 5
-5 1
-4 10 1
-3 25 6 1
-2 15 7 3 1
-1 1 1 1 1 1
0 1
1 1
2 1 1
3 2 3 1
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1

9


