Math 475: Stirling Numbers

April 17, 2012

1 Stirling Numbers
For n a positive integer let
t=xz(zx—-1)...(x—n+1)

Also set 22 = 1, so 2™ is a polynomial of degree n in the indeterminate x, with

top order term z". For example 22 = x(z — 1) = 2% — x, 2% = 23 — 32? + 22.

Lemma 1.1 Suppose f(z) = ap+a1z+...a,2" =Y . a;x" is a polynomial
of degree n with a; € Z. Then

flx) = Z bixt

for some unique integers b;.

Let V' the real vector space of polynomials of degree less than or equal to
n. This is just a formal way of saying

V = {ap + ayvaz® + ... a,2"} (a; € R)

with the usual addition of polynomials, multiplication of polynomials by a
scalar. This vector space is obviously n-dimensional: it has a basis {1, z,z?, ..., 2"}.
This means every polynomial is uniquely a sum of these monomials (which

is obvious).

Lemma 1.2 The polynomials {22, 21, 22, ... 22} are also a basis of V.
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Proof. Every z% is a sum of the 2°. We have to show the converse: you
can write z* £

as a sum of terms x¢. (This shows the 2% span, and there are
exactly n + 1 of them, so they are a basis.)

Consider the matrix of {Z}
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The fact that {Z} = 0 for k > n says this is lower triangular, an d {Z} =1

says it has ones on the diagonal. The determinant of this matrix (of whatever
size n) is 1. Therefore the matrix is invertible. This is precisely what is
necessary. 0

In fact we’ve shown more:
Lemma 1.3 For each n there is a formula
" = boxl + byt + .. by

where the b; are integers.

This is because the formula for the (i, j) entry of the inverse of a matrix A
is (—1)"77A;; det(A)~! where A;; is a determinant of a sub-matrix of A. If
all entries of A are integers, and the determinant is one, these are integers.
Furthermore the inverse is lower diagonal.

Definition 1.4 The Stirling numbers of the first and second kind are defined



as follows. Forn > 1,k > 0:
n - n %
r= Z {Z }I7
i=0
o — Z(_l)n—i [7;} 7

1=0

In particular {Z} = [Z} =0 for k >n. Also

HEINES!
(=[=0 (>0

From the Definition it is immediate that:

> (D = b

S LD = 0

k=0
where 9,,, = 1 if m = n, and 0 otherwise.
There are Pascal-style recurrence relations for these.

Lemma 1.5
n+1 n n
U, 1=l )+, ]
n+1 n n
O b=m{ 4,2 1)
Proof. For the first one, note that
(x—n)at=a(r—1)...(x —n+1)(z —n) = 271

So
(=) 3" [0tk = 30 [Pyt



and multiplying in the first term gives

Z [Z] (_1)n_k$k+1 - ZH[Z]( l)n k;pk = Z [n _]L— 1} (_1>n+1—k$k

Look at the coefficient of ™ on both sides; in the first term take k+1 =m

and take £ = m in the others.

[ n

N (1) (m=1) _ [:1} (—1)rm) — [n;; 1} (1)

and cancelling signs gives

LI+ =0

For the second identity, use z * 2" = 2", so

e ek = S

Now write zzk = (x — k + k)2k = 25+ + kak so

STk S Mkt = 3

and equating the coefficient of ™ gives

0 yem{My ="

Here is a combinatorial interpretation of the Stirling numbers of the sec-

ond kind.

Consider the ways of distributing n distinct balls into & identical boxes,
with at least one ball in each box. We haven’t considered identical boxes
before; this means you can permute the boxes at will. See the 12-fold way

notes on the class web site.

Example 1: For 4 balls a, b, ¢, d into 4 boxes: only 1, you put one ball in each

box, and the order of the boxes doesn’t matter.



Example 2: 4 balls into 3 boxes: ([a], [b], [¢, d]) or ([a], [¢], [b, d]) or ([b], [c], |a, d]),
a total of 3.

Example 3: 4 balls into 2 boxes: ([a],[b,c,d)),([0],[a,c,d]), ([d],]a,b,d]),
g[d], [a,b,c]). Also ([a,b],[c,d]), ([a,c],[b,d]), or ([a,d],[b,c]). The total is

Let B(n, k) be the number of ways of doing this.
Obvioiusly B(n,0) =0, B(n,1) =1, and B(n,n) = 1. Also B(n,k) =0
if £ > n.

I claim these numbers satisfy the same recurrence relation as the {Z}

B(n+1,m)=mB(n,m)+ B(n,m — 1)

Why? How many ways are there of putting n + 1 balls into m boxes?
Well, you could put ball 1 in a box by itself. There are B(n, m — 1) ways of
doing the rest. On the other hand, suppose ball 1 is not in a box by itself.
Then, you can remove ball 1 from its box, and still have at least one ball in
each box. There are B(n, m) ways of putting the n balls in the m boxes. But
you also have to choose which box ball 1 came out of. This gives mB(n,m).
Voila!

Since these numbers satisfy the same recurrence relation as the {Z}, and

agree for k = 0,1, we conclude:

Lemma 1.6 {Z} 1s the number of ways of distributing n distinct balls into

k identical boxes, with at least 1 ball in each boz.

Equivalently: {Z} is the number of ways of partitioning an n-set into k

disjoint (non-empty) subsets.
n

k} of the

Here is a combinatorial interpretation of the Stirling numbers [

first kind.
First, here is a standard way to write a permutation of n in terms of
cycles. For example, (1,2,3), in cycle notation, denotes the permutation



1 —2— 3 — 1. More examples:
(1,2,3)(4) : 1 — 2 — 3 — 4;4 goes to itself

(1,2)(3,4) 1 1 <> 2,3 <> 4
(1)(2)...(n) : the identity (trivial) permutation
(1,2,..,n): then-cyclel -2 —--- 5> n—1

Note that there are (n—1)! n-cycles: (1,2,...,n) =(2,3,...n,1) = (3,4,...,n,1,2),
so assume 1 is first, and there are (n — 1)! distinct other ones.

For example [2] = 3: (1,2)(3); (1,3)(2) or (2,3)(1)

]
2
[;1} = 11: (1,2)(3,4); (1,3)(2,4); (1,4)(2,3); also (1)(2,3,4);(1)(2,4,3),
... (8 of these), for a total of 11.

Lemma 1.7 [Z} 15 the number of permutations of n with k cycles.

Proof. let B(n, k) be the number of permutations of an n-set with k cycles.
Then B(n,0) =0 and B(n,1) = (n — 1)L

By induction. To compute B(n, k) consider the position of 1. If it is in a
cycle by itself, (1), this leaves B(n — 1,k — 1) others. Otherwise, there are
B(n — 1, k) permutations of n — 1 with & cycles. Now you can put in the 1
to the left of any j: there are n — 1 ways to do this. So

B(n,k)=B(n—1,k—1)+ (n—1)B(n— 1,k)

This is the same as the recurrence in Lemma 1.5. O

2 Generalized Stirling Numbers

Recall the Stirling numbers of the second kind {Z} satisfy

n+1 n n
(2.1)(a) { k }:k{k}+{k—1}
provided n, k > 0. If we assume
n 0
(21)(b) {1 = G0 {0} = bun
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Then (a) and (b) together determine {Z} for all k,n > 0.
Now: use (a) and (b) to define {Z} for all integers n and k. It is easy to

see they uniquely determine {Z}

n
k
Then something remarkable happens. If you fill out the upper left hand

m} for

14

Do the same thing to define [ } for all n, k.

corner of the triangle of the {Z}, for n, k < 0, you see you get the [
m,{ > 0.

Lemma 2.2 For all integers n, k:

. —k .
Proof. It is enough to show that the numbers [—n] satisfy the correct

recurrence relation. That is, {Z} are determined by

{n—i—l

(2.4) L =R ) k>0

Replace each {Z} with [:2}

—k —k —k+1
(2.5) Y e I I B
We don’t know this is true, but if we can prove it, then [Z} satisfy the same
recurrence relation as {:fz}’ proving the result. Set { = —k,m = —n —1, so
(b) gives

ty l (41
(2:6) [m] N _E[m + 1} + [m + 1]
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or

(2.7) [i} + 0]

o
m+ 1
which is (1.5). O]

There is also a connection with polynomials.
Consider the recurrence relation

(+1
[m—i—l}

(2.8) (x —n)z™ =241 (n >0).
Write this in the form

xLH
2.9 L — >0
(29) =

Even though the right hand side has  — n in the denominator, this is an
equality of polynomials (of degree n) in x.
Use (2.9), inductively, to define z for n < —1. That is

. Y 1
Tt = =

r—(-1) x+1
2 e=t 1

r—(-2) (z+1)(xz+2)

1
—n _ >1).
S T et @ 2Y
Alternatively,
1
= (n < -—1)

(x—n)(zx—n—-1)...(x+1)
Note that 2™ is a polynomial of degree n if n > 0, or 1 over a polynomial of
degree —n if n < —1.
Then the ezact same recurrence relation (2.8) holds for all n.
Furthermore, the defining relations now hold for all n, k, as formal power

series: .
v =3 (e
i=0



Stirling numbers S(n, k) = {Z} of the second kind

nk 5 4 -3 -2 -1 012 3 4 5
-5 1

4 10 1
3 35 6 1

2 50 11 3 1

10246 2 1 1

0 1

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1
6 1 31 90 65 15 1

n

k} of the second kind

Stirling numbers s(n, k) = [

n/k -5 4 -3 -2 -1 0 1 2 3 4 5
-5 1

4 10 1

3025 6 1

2 15 7 3 1

11 1 1 1 1

0 1

1 1

2 1 1

3 2 3 1

4 6 11 6 1

5 24 50 35 10 1
6 120 274 225 85 15 1



