Math 341, Jeffrey Adams

Test I, March 18, 2011 SOLUTIONS Each problem is worth 20 points

(1)

(a) This is an easy calculation. $\nabla(f) = (f_x, f_y, f_z)$ and $\operatorname{curl}(\nabla f) = \operatorname{curl}(f_x, f_y, f_z) = (f_{zy} - f_{yz}, -f_{zx} + f_{xz}, f_{yx} - f_{xy}) = (0, 0, 0).$

(b) No. This is the main theorem, and the statement is true if S is simply connected, but not necessarily otherwise. The point is you would like to define $f(\mathbf{x}) = \int_{\gamma} \mathbf{F} \cdot \mathbf{d}\mathbf{x}$ where γ is a path from a fixed point to \mathbf{x} . If this is well defined then $\nabla f = \mathbf{F}$. If the region is simply connected then this *is* well defined: any closed path δ is the boundary of a region B, and $\int_{\delta} \mathbf{F} \cdot \mathbf{d}\mathbf{x} = \int_{B} \text{curl} \mathbf{F} \cdot dS = 0$.

For example take $\mathbf{F} = (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}, 0)$ in $\mathbb{R}^3 - (0, 0, 0)$.

(2) Suppose $\alpha > 0$ is a constant, and

$$\mathbf{F}_{\alpha}(x,y) = \left(\frac{-y}{(x^2 + y^2)^{\alpha}}, \frac{x}{(x^2 + y^2)^{\alpha}}\right)$$

Let $(x(t), y(t)) = (R\cos(t), R\sin(t))$, so $x'(t) = -R\sin(t), y'(t) = R\cos(t)$. (a) Note that on the circle $(x^2 + y^2)^{\alpha} = R^{2\alpha}$. The integral is:

$$\int_{0}^{2\pi} \left(\frac{-R\sin(t)}{R^{2\alpha}}, \frac{R\cos(t)}{R^{2\alpha}}\right) \cdot \left(-R\sin(t), R\cos(t)\right) dt$$

=
$$\int_{0}^{2\pi} \frac{R^2}{R^{2\alpha}} (\sin^2(t) + \cos^2(t)) dt$$

=
$$R^{2-2\alpha} \int_{0}^{2\pi} dt = 2\pi R^{2-2\alpha}.$$

(b)

$$\operatorname{curl}(\mathbf{F}_{\alpha}) = \partial_{x} \left(\frac{x}{(x^{2}+y^{2})^{\alpha}}\right) - \partial_{y} \left(\frac{-y}{(x^{2}+y^{2})^{\alpha}}\right)$$

$$= \frac{(x^{2}+y^{2})^{\alpha} - x\alpha(x^{2}+y^{2})^{\alpha-1}(2x)}{(x^{2}+y^{2})^{2\alpha}} - \frac{-(x^{2}+y^{2})^{\alpha} + y\alpha(x^{2}+y^{2})^{\alpha-1}(2y)}{(x^{2}+y^{2})^{2\alpha}}$$

$$= \frac{2(x^{2}+y^{2})^{\alpha} - 2\alpha(x+y)(x^{2}+y^{2})^{\alpha-1}}{(x^{2}+y^{2})^{2\alpha}}$$

$$= \frac{(2-2\alpha)(x^{2}+y^{2})^{\alpha}}{(x^{2}+y^{2})^{2\alpha}}$$

$$= 2\frac{(1-\alpha)}{(x^{2}+y^{2})^{\alpha}}.$$

(c) If $R < \sqrt{x_0^2 + y_0^2}$ then the circle doesn't contain the origin. The curl is 0 on the interior of the circle, which is simply connected, so by the main theorem the integral is 0.

If $R > \sqrt{x_0^2 + y_0^2}$ then the circle goes around the origin once, counterclockwise. By independence of path, we can replace the path with a circle (of any radius) centered at the origin. By part (b) the answer is 2π (note that $\alpha = 1$ gives $2\pi R^{2-\alpha} = 2\pi$, independent of R).

Take $\alpha = 1$. Let γ be the circle, centered at a point (x_0, y_0) , with radius $R \neq \sqrt{x_0^2 + y_0^2}$, traced counter-clockwise. What is $\int_{\gamma} \mathbf{F}_{\alpha} \cdot \mathbf{dx}$? Your answer will depend on (x_0, y_0) and R. Justify your answer.

(3) The characteristic equation is $r^2 - 2r + 10 = 0$ which has roots $r = (2 \pm \sqrt{4-40}/2) = (2 \pm \sqrt{-6})/2 = (2 \pm 6i)/2 = 1 \pm 3i$. Since these are complex, the general real solution is

$$e^x(c_1\cos(3x) + c_2\sin(3x))$$

The particular solution is found as follows.

y(0) = 2 implies $2 = e^0(c_1 + 0) = c_1$, so $c_1 = 2$. On the other hand

$$y'(x) = e^x(c_1\cos(3x) + c_2\sin(3x)) + e^x(-3c_1\sin(3c) + 3c_2\cos(3x))$$

and plugging in y'(0) = 3 gives

$$3 = e^{0}(c_{1}) + e^{0}(3c_{2}) = c_{1} + 3c_{2} = 2 + 3c_{2}$$

so $3c_2 = 1$ or $c_2 = \frac{1}{3}$. The solution is

$$e^{x}(\frac{1}{3}\cos(3x) + 2\sin(3x))$$

As $x \to \infty$ this oscillates betwee ∞ and $-\infty$.

(4) First solve the homogenous equation, This has characteristic equation $r^2 - 5r + 4 = 0$, or (r - 1)(r - 4) = 0, so the roots are 1, 4. The solutions are $y_1 = e^x$, $y_2 = e^{4x}$.

Now use variation of parameters. The Wronskian is $e^{x}(4e^{4x}) - e^{x}e^{4x} = 3e^{5x}$. Write $y = u_1y_1 + u - 2y_2$ where

$$u'_{1} = -e^{4x}e^{x}/3e^{5x} = -\frac{1}{3}$$
$$u'_{2} = e^{x}e^{x}/3e^{5x} = \frac{1}{3}e^{3x}$$

Therefore $u_1 = -\frac{1}{3}x$ and $u_2 = \frac{1}{9}e^{-3x}$, and

$$u_1 = -\frac{1}{3}x, \ u_2 = -\frac{1}{9}e^x$$

So

$$y_p = -\frac{1}{3}xe^x - \frac{1}{9}e^{-3x}e^{4x} = -\frac{1}{3}xe^x - \frac{1}{9}e^x$$

The general solution is

$$-\frac{1}{3}xe^{x} - \frac{1}{9}e^{x} + c_{1}e^{x} + c_{2}e^{4x} = -\frac{1}{3}xe^{x} + c_{1}e^{x} + c_{2}e^{4x}$$

You can also solve this by setting $y = ue^x$ and solving for u, or by writing $(D-1)(D-4)y = e^x$, let v = (D-4)y, and then $(D-1)v = e^x$, so $(D-1)^2v = 0$ etc.

(5) This is separable. Write $\frac{dy}{dx} = -\sin(3x)y^2$, or $y^{-2}dy = -\sin(3x)dx$. So $-y^{-1} = \frac{1}{3}\cos(3x) + c$. Write this as $y^{-1} = -\frac{1}{3}\cos(3x) + c$, or

$$y = \frac{1}{-\frac{1}{3}\cos(3x) + c}$$

Modifying c this is the same as

$$y = \frac{3}{-\cos(3x) + c}$$

The initial condition gives $1 = \frac{3}{-1+c}$ so c = 4, and

$$y = \frac{3}{-\cos(3x) + 4}$$

Finally, $y(\pi) = \frac{3}{-\cos(3\pi)+4} = \frac{3}{5}$