Math 341, Jeffrey Adams

Test I, March 18, 2011 For complete credit you must show all work Each problem is worth 20 points

(1)

(a) Suppose f(x, y, z) is a twice differentiable function. Show that $\operatorname{curl}(\nabla f) = 0$.

(b) Suppose $\mathbf{F}(x, y, z)$ is a (continuously differentiable) vector field defined in an open set S in \mathbb{R}^3 , and $\operatorname{curl}(\mathbf{F}) = 0$. Is there necessarily a function f(x, y, z) such that $\nabla f = \mathbf{F}$ in S? Justify your answer.

(2) Suppose $\alpha > 0$ is a constant, and

$$\mathbf{F}_{\alpha}(x,y) = \left(\frac{-y}{(x^2 + y^2)^{\alpha}}, \frac{x}{(x^2 + y^2)^{\alpha}}\right)$$

(a) Compute $\int_{\gamma} \mathbf{F}_{\alpha} \cdot \mathbf{dx}$ where γ is the circle of radius R, centered at the origin, traced counterclockwise.

(b) Compute the scalar curl of **F**, and show that it is 0 if and only if $\alpha = 1$. (c) Take $\alpha = 1$. Let γ be the circle, centered at a point (x_0, y_0) , with radius $R \neq \sqrt{x_0^2 + y_0^2}$, traced counter-clockwise. What is $\int_{\gamma} \mathbf{F}_{\alpha} \cdot \mathbf{dx}$? Your answer will depend on (x_0, y_0) and R. Justify your answer.

(3) Find the general (real) solution of

$$y'' - 2y' + 10y = 0, \quad y(0) = 2, \ y'(0) = 3$$

What happens to the solution as $x \to \infty$?

(4) Find the general (real) solution of

$$y'' - 5y' + 4y = e^x$$

(5) Solve

$$y' + \sin(3x)y^2 = 0, \quad y(0) = 1$$

What is $y(\pi)$?