Math 341, Jeffrey Adams

Review Test I, March 14, 2011

- 1. Chapter 9: Vector Field Theory
 - (a) Green's Theorem, independence of path, closed paths
 - (b) Green's Theorem=Stokes's theorem in the plane
 - (c) Gauss's Theorem in \mathbb{R}^2
 - (d) Gauss's Theorem = Divergence Theorem in the plane
 - (e) Conservative vector fields
 - (f) Gradient vector fields
 - (g) Simply connected regions
 - (h) The main theorem in \mathbb{R}^2 (see below)
 - (i) Surface integrals in \mathbb{R}^3 , normal vectors, surface area
 - (j) Oriented surfaces
 - (k) Gauss's theorem in \mathbb{R}^3
 - (1) Stoke's theorem in \mathbb{R}^3
 - (m) $\nabla, \nabla \cdot$, curl: formal properties
- 2. Chapter 10: First Order Differential Equations
 - (a) Basics of first order differential equations; existence and uniqueness theorem
 - (b) Separation of variables
 - (c) Linear first order equations, exponential integrating factor
 - (d) Applications ("word problems")
- 3. Chapter 11: Second Order Differential Equations
 - (a) Constant coefficient, linear, homogeneous
 - (b) distinct roots, complex roots, repeated roots
 - (c) Higher order linear equations
 - (d) Linear, nonhomogeneous equations, $y = y_p + y_h$
 - (e) Undetermined coefficients
 - (f) Variation of parameters
 - (g) Oscillations

The main theorem of Chapter 9 is:

Theorem: Suppose **F** is a continuously differentiable vector field, defined in an open set B in \mathbb{R}^2 or \mathbb{R}^3 . Consider the conditions:

- 1. **F** has independence of path;
- 2. $\int_{\gamma} \mathbf{F} \cdot \mathbf{dx} = \mathbf{0}$ for any closed path γ ;
- 3. $\mathbf{F} = \nabla \mathbf{f}$ for some f
- 4. $\operatorname{curl}(\mathbf{F}) = \mathbf{0}$ in B

Then $1 \Leftrightarrow 2 \Leftrightarrow 3 \Rightarrow 4$, and $4 \Rightarrow 1$ if B is simply connected.