Math 341, Jeffrey Adams Final, May 14, 2011 SOLUTIONS

The average on the final was 170/200 (85%). There were two perfect scores.

(1) [20 points] True or false. Briefly justify your answers. Here R is an open, connected region in \mathbb{R}^3 , **F** is vector field on R, f is a scalar valued function on R, and **F** and f are twice differentiable. In each case mark the assertion true only if it is true for all **F** and f.

- (a) True (easy computation)
- (b) False: $\nabla \cdot (\nabla f) = \nabla^2(f) = \sum_{1}^{3} \frac{\partial^2 f}{x_i^2}$
- (c) True (easy computation)
- (d) False; it is true if R is simply connected by the Main Theorem

(2) [30] (a) Since $f_x = \frac{x}{x^2+y^2}$, $f = \int \frac{x}{x^2+y^2} dx$ Let $u = x^2 + y^2$, du = 2xdx to give $f(x,y) = \frac{1}{2}\ln(x^2+y^2) + C(y)$. Now $f_y = \frac{y}{x^2+y^2} + C'(y)$, and setting this equal to $\frac{y+x^2+y^2}{x^2+y^2}$ gives $C'(y) = \frac{x^2+y^2}{x^2+y^2} = 1$, i.e. C(y) = y + D. So $f(x,y) = \frac{1}{2}\ln(x^2+y^2) + y + D$

(b) This is an application of Green's Theorem. The area is $\int_R 1 dA$. By Green's Theorem this equals $\int_{\gamma} \mathbf{F} \cdot \mathbf{dx}$ provided $\nabla \times \mathbf{F} = 1$. Write $\mathbf{F} = (P, Q)$, so we need $Q_x - P_y = 1$. Take $Q(x, y) = \frac{1}{2}x$ and $P(x, y) = -\frac{1}{2}y$. Then $Q_x - P_y = \frac{1}{2} - (-\frac{1}{2}) = 1$. Then

$$\int_{\gamma} \mathbf{F} \cdot \mathbf{dx} = \int_{\gamma} P dx + Q dy = \int_{\gamma} -\frac{1}{2} y dx + \frac{1}{2} x dy = \frac{1}{2} \int x dy - y dx$$

(3) [30]

(a) This is separable: $y^2 dy = -x^2 dx$, so $\frac{1}{3}y^3 = -\frac{1}{3}x^3 + c$, or $y^3 = -x^3 + c$, or $y = \sqrt[3]{-x^3 + c}$.

(b) Plugging in x = 1, y = 0 gives $0 = \sqrt[3]{-1+c}$ or c = 1, so $y = \sqrt[3]{1-x^3}$ (4) (a) This is linear nonhomogeneous. Write it as $y' - 3y = e^x + 2$. The homogeneous equation has solution $y = e^{3x}$. Multiply both sides by e^{-3x} to give

$$e^{-3x}y' - 3e^{-3x}y = e^{-3x}(e^x + 2)$$

or

$$(e^{-3x}y)' = e^{-3x}(e^x + 2)$$

which gives

$$y = e^{3x} \int e^{-3x} (e^x + 2) \, dx$$

The integral is

$$\int e^{-2x} + 2e^{-3x} \, dx = -\frac{1}{2}e^{-2x} - \frac{2}{3}e^{-3x}$$

so the solution is

$$e^{3x}(-\frac{1}{-}e^{-2x}-\frac{2}{-}e^{-3x}) = -\frac{1}{-}e^{x}-\frac{2}{-}e^{-3x}$$

Therefore the general solution is

$$y = ce^{3x} - \frac{1}{2}e^x - \frac{2}{3}$$

(b) The initial condition x = 0, y = 2 gives $2 = c - \frac{1}{2} - \frac{2}{3} = c - \frac{7}{6}$, so $c = 2 + \frac{7}{6} = \frac{19}{6}$. (5) [30] Find the general solution of

$$y'' + 3y' + 2y = 1 + e^x + e^{2x} \tag{1}$$

First solve the homogeneous equation. The characteristic equation is $\lambda^2 + 3\lambda + 2 = 0$, i.e. $(\lambda + 1)(\lambda + 2) = 0$, so $\lambda = -1, -2$. The homogeneous solutions are e^{-x} , e^{-2x} .

Use variation of parameters. Set $y = ue^{-x}$. Then

$$y = e^{-x}$$

$$y' = u'e^{-x} - ue^{-x}$$

$$y'' = u''e^{-x} - 2u'e^{-x} + ue^{-x}$$

and plugging this in gives

$$e^{-x}[(u'' - 2u' + u) + 3(u' - u) + 2u] = 1 + e^x + e^{2x}$$

The terms involving u (not u', u'') cancel, to give

$$e^{-x}[u'' - 2u' + 3u'] = 1 + e^x + e^{2x}$$

or

$$u'' + u' = e^x (1 + e^x + e^{2x})$$

Let v = u', so

$$v' + v = e^x + e^{2x} + e^{3x}$$

The homogeneous equation is v' + v = 0, or $v = e^{-x}$, so multiply both sides by e^{x} :

$$e^x v' + e^x v = e^{2x} + e^{3x} + e^{4x}$$

or

$$(e^x v)' = e^{2x} + e^{3x} + e^{4x}$$

 So

$$v = e^{-x} \int e^{2x} + e^{3x} + e^{4x} dx$$

= $e^{-x} [\frac{1}{2}e^{2x} + \frac{1}{3}e^{3x} + \frac{1}{4}e^{4x}]$
= $\frac{1}{2}e^x + \frac{1}{3}e^{2x} + \frac{1}{4}e^{3x}]$

(you can ignore the +c. Then

$$u = \int v dx = \frac{1}{2}e^x + \frac{1}{6}e^{2x} + \frac{1}{12}e^{3x}$$

and finally

$$y = ue^{-x} = \frac{1}{2} + \frac{1}{6}e^x + \frac{1}{12}e^{2x}$$

The general solution is therefore

$$y = c_1 e^{-x} + c_2 e^{-2x} + \frac{1}{2} + \frac{1}{6} e^x + \frac{1}{12} e^{2x}$$

You can also do this by undetermined coefficients: guess $y = a + be^x + ce^{2x}$ and solve for a, b, c.

(6) [30] The equilibrium points where where H' = P' = 0, i.e. H = P = 0,

or $(H, P) = (\frac{2}{3}, \frac{1}{2}).$ Write F = (1 - 2P)H, G = (3H - 2)P. Then $F_H = 1 - 2P$, $F_P = -2H$, $G_H = 3P, G_P = 3H - 2$, so the Jacobian is

$$\begin{pmatrix} 1-2P & -2H \\ 3P & 3H-2. \end{pmatrix}$$

At (0,0) the Jacobian is

$$\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

which gives an unstable saddle point.

At $\left(\frac{2}{3}, \frac{1}{2}\right)$ the Jacobian is

$$\begin{pmatrix} 0 & -\frac{4}{3} \\ \frac{3}{2} & 0 \end{pmatrix}$$

The eigenvalues are the roots of $\lambda^2 - (-\frac{4}{3})(\frac{3}{2}) = \lambda^2 + 2$, i.e. $\lambda = \pm 2i$. This is a stable point, with periodic orbits (ellipses).

At (0,0) the nonlinear system is unstable, since there is a positive eigenvalue. At $(\frac{2}{3}, \frac{1}{2})$ you cannot determine stability from the linearization Theorem, since the eigenvalues have 0 real part. (In fact, from the discussion in class, they are stable, with periodic orbits).

Note: Although you can write

$$\begin{pmatrix} H \\ P \end{pmatrix}' = \begin{pmatrix} 1 & -2H \\ 3P & -2 \end{pmatrix} \begin{pmatrix} H \\ P \end{pmatrix}$$

this doesn't help you to compute the Jacobian, which you need to do; the Jacobian is *not* just some sort of derivative of this matrix.

(7) [30] Solve the Euler equation (for x > 0):

$$x^{2}y'' + 3xy' + y = 0, \quad y(1) = 2, \ y'(1) = 1.$$

Plug in x^r : $x^2r(r-1)x^r + 3rx^r + x^r = 0$, i.e. r(r-1) + 3r + 1 = 0, or $r^2 + 2r + 1 = 0$, or $(r+1)^2 = 0$. This has only one root r = -1. So $y = x^{-1}$ is a solution.

The other solution? It is $\ln(x)x^{-1}$. So

$$y = c_1 x^{-1} + c_2 x^{-1} \ln(x)$$

For the initial conditions, x = 1, y = 2 gives $c_1 = 2$. Compute

$$y' = -c_1 x^{-2} + c_2 \left[-x^{-2} \ln(x) + \frac{1}{x^2} \right]$$

and plug in x = 1, y' = 1 to get $1 = -c_1 + c_2 = -2 + c_2$ so $c_2 = 3$. The solution is

$$\frac{2}{x} + \frac{3\ln(x)}{x}$$