MATH 340 EXAM 1 OCTOBER 6, 2009

1.(25) True/false. Justify by a short reason or counterexample.

- a) Any 3 non-zero, distinct vectors in \mathbb{R}^3 are linearly independent.
- b) Every non-zero $n \times n$ matrix A is invertible.
- c) If A and B are square matrices, $\det(A + B) = \det A + \det B$.
- d) If A is an $n \times m$ matrix and $\mathbf{0} \neq \mathbf{b} \in \mathbb{R}^n$ then the set of solutions of the equation $A\mathbf{x} = \mathbf{b}$ is a subspace of \mathbb{R}^m .
- e) If V is a vector space and $W \subseteq V$ is a subspace with dim $W = \dim V < \infty$, then W = V.

2.(15) Consider the plane \mathcal{P}_1 in \mathbb{R}^3 given by x + y + z = 0 and the plane \mathcal{P}_2 given g(s,t) = s(1,1,2) + t(0,1,1). Find the (cosine) of the acute angle between the planes and the equation of the line of intersection.

3.(10) Let $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$. Consider the linear map $L_A : \mathbb{R}^4 \to \mathbb{R}^3$

with $L_A(\mathbf{v}) = A\mathbf{v}$. Find bases for the image and the null space of L_A .

4.(10) Let $A = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix}$. Show there is a unique line ax + by = 0 in \mathbb{R}^2 so that for every vector **v** on the line, A**v** is perpendicular to **v**.

5.(15) Consider the vector $\mathbf{v} = (1, 1, 1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \in \mathbb{R}^3$ and let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the map defined by $T(\mathbf{u}) = \mathbf{v} \times \mathbf{u}$, the cross product of \mathbf{v} and \mathbf{u} .

a) Explain why T is a linear map.

b) What is the 3×3 matrix A (with respect to the standard basis of \mathbb{R}^3) that corresponds to T? (Recall $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$.) c) Is the matrix A invertible? (Hint: Think about T.)

6.(10) Let $f, g: \mathbb{R} \to \mathbb{R}^3$ be differentiable. Show $\frac{d}{dt}(f \cdot g) = \frac{df}{dt} \cdot g + f \cdot \frac{dg}{dt}$. 7.(15) a) Let $h(x, y) = \sin(xy)$. Compute $2h_{xy} + h_{yx}$.

b) If $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$, $(x,y) \neq (0,0)$; f(0,0) = 0. Does the partial derivative of f with respect to x exist at (x,y) = (0,0)? Explain.

c) Let $f(u,v) = (u+v, u^2+v^2, uv)$. For what (u,v) do the vectors $\frac{\partial f}{\partial u}(u,v)$ and $\frac{\partial f}{\partial v}(u,v)$ span a plane in \mathbb{R}^3 ?