Second In-Class Exam Math 246, Professor David Levermore Tuesday, 19 October 2017

	Your	Name:		
	$\mathbf{U}\mathbf{N}$	ID SID:		
Discussion In	structor (circle on ime (circle one):	e): Yan 7	Гау Jing Z 9:00	Zhou 10:00
answer a probl	em then use the bac part of every problem	ck of one of thes n is located. You	e pages. Clearly r reasoning mu	need more space to indicate where your st be given for full essed out. Good luck!
-	onor Pledge: I pleassistance on this exam		that I have not	given or received any
	Sig	gnature:		
Problem 1:	/4	Problem 2:	/12	
Problem 3:	/4	Problem 4:	/12	
Problem 5:	/8	Problem 6:	/8	
Problem 7:	/8	Problem 8:	/8	
Problem 9:	/10	Problem 10:	/8	
Problem 11:	/10	Problem 12:	/8	
		Total Score:	/100	Grade:

TA 1	-				
1	2	r	n	^	٠
1 1	а			\mathbf{r}	•

(1) [4] Give the interval of definition for the solution of the initial-value problem

$$u''' - \frac{\sin(3t)}{4+t}u'' + \frac{5+t}{5-t}u = \frac{e^{-t}}{7+t}, \qquad u(2) = u'(2) = u''(2) = -3.$$

- (2) [12] Let L be a linear ordinary differential operator with constant coefficients. Suppose that all the roots of its characteristic polynomial (listed with their multiplicities) are -2 + i5, -2 + i5, -2 i5, -2 i5, i7, -i7, -3, -3, 4, 0, 0, 0.
 - (a) [2] Give the order of L.
 - (b) [10] Give a real general solution of the homogeneous equation Ly = 0.

(3) [4] Suppose that $V_1(t)$, $V_2(t)$, and $V_3(t)$ are solutions of the differential equation $v'''-2v''-\cos(4t)v'+(1+t^2)v=0\,,$

Suppose we know that $Wr[V_1, V_2, V_3](0) = 3$. Find $Wr[V_1, V_2, V_3](t)$.

76. T					
1	2	r	n	^	٠
1 1	~			┖	•

- (4) [12] The functions $\cos(4t)$ and $\sin(4t)$ are a fundamental set of solutions to $\ddot{x}+16x=0$.
 - (a) [9] Solve the general initial-value problem

$$\ddot{x} + 16x = 0$$
, $x(0) = x_0$, $\dot{x}(0) = x_1$.

(b) [3] Find the associated natural fundamental set of solutions to $\ddot{x} + 16x = 0$.

(5) [8] What answer will be produced by the following Matlab commands?

$$>> ode = 'D2y - 6*Dy + 18*y = 18*exp(3*t)';$$

 $>> dsolve(ode, 't')$

ans =

(6) [8] Compute the Green function g(t) associated with the differential operator

$$D^2 + 6D + 10 \,, \qquad \text{where} \quad D = \frac{d}{dt} \,. \label{eq:D2}$$

(7) [8] Solve the initial-value problem

$$q'' + 6q' + 10q = \frac{4e^{-3t}}{\cos(t)}, \qquad q(0) = q'(0) = 0.$$

(8) [8] Find a particular solution $u_P(t)$ of the equation $u'' - u = 8e^t$.

Name:

(9) [10] The functions 1+2t and e^{2t} are solutions of the homogeneous equation

$$tx'' - (1+2t)x' + 2x = 0$$
 over $t > 0$.

(You do not have to check that this is true!)

- (a) [3] Show that these functions are linearly independent.
- (b) [7] Give a general solution of the nonhomogeneous equation

$$ty'' - (1+2t)y' + 2y = \frac{8t^2}{1+2t}$$
 over $t > 0$.

(10) [8] Give a real general solution of the equation

$$D^2v - 5Dv + 4v = 10\cos(3t)$$
, where $D = \frac{d}{dt}$.

Name:

(11) [10] The vertical displacement of a spring-mass system is governed by the equation $\ddot{}$

$$\ddot{h} + 10\dot{h} + 169h = a\cos(\omega t - \phi),$$

where a > 0, $\omega > 0$, and $0 \le \phi < 2\pi$.

- (a) [2] Give the natural frequency and period of the system.
- (b) [4] Show the system is under damped and give its damped frequency and period.
- (c) [4] Find the steady state of the system and give its phasor.

- (12) [8] When a 10 gram mass is hung vertically from a spring, at rest it stretches the spring 20 cm. (Gravitational acceleration is $g = 980 \text{ cm/sec}^2$.) A dashpot imparts a damping force of 280 dynes (1 dyne = 1 gram cm/sec²) when the speed of the mass is 2 cm/sec. Assume that the spring force is proportional to displacement, that the damping force is proportional to velocity, and that there are no other forces. At t = 0 the mass is displaced 5 cm below its rest position and is released with a upward velocity of 4 cm/sec.
 - (a) [6] Formulate an initial-value problem that governs the motion of the mass for t > 0. (DO NOT solve this initial-value problem, just write it down!)
 - (b) [2] Is this system undamped, under damped, critically damped, or over damped? (Give your reasoning!)