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ABSTRACT 
Blind people often need to identify objects around them, from 
packages of food to items of clothing. Automatic object recog­
nition continues to provide limited assistance in such tasks 
because models tend to be trained on images taken by sighted 
people with different background clutter, scale, viewpoints, 
occlusion, and image quality than in photos taken by blind 
users. We explore personal object recognizers, where visually 
impaired people train a mobile application with a few snap­
shots of objects of interest and provide custom labels. We 
adopt transfer learning with a deep learning system for user-
defined multi-label k-instance classification. Experiments with 
blind participants demonstrate the feasibility of our approach, 
which reaches accuracies over 90% for some participants. We 
analyze user data and feedback to explore effects of sample 
size, photo-quality variance, and object shape; and contrast 
models trained on photos by blind participants to those by 
sighted participants and generic recognizers. 
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INTRODUCTION 
Blind people have been quick to adopt assistive technologies 
for identifying objects such as text readers, barcode readers, 
color readers, and crowd-powered object recognition applica­
tions. However, there are still many limitations that hold back 
their use for more independent living. For example, a barcode 
reader, e.g., i.d. mate [9], may cost up to a few thousand dol­
lars, and requires a readable barcode and an updated product 
database. Text readers, such as KNFBReader [15], work best 
on flat surfaces and printed materials and are thus not applica­
ble for many object recognition tasks. Color readers such as 
Color Teller [22] typically used to help with outfit matching, 
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Figure 1. Object instances that participants in our study chose to train 
their personal object recognizers on. Can you tell which two objects 
were trained by the same participant? (4,2) (2,2) .rewsnA 

can be very sensitive to lighting conditions, forcing the user to 
memorize color mappings to distinguish between clothes un­
der different illumination. Applications that use the crowd to 
identify an object, such as BeMyEyes [3], BeSpecular [4] and 
TapTapSee [21], can obtain high recognition rates but often 
come with a per demand cost, require an Internet connection, 
raise privacy concerns [1], and assume crowd availability. 

On the other hand, the development of assistive technolo­
gies that make use of a commodity smartphone’s camera and 
on-board processing overcome many of the challenges listed 
above. Smartphones have been adopted by many people with 
visual impairments. Cameras can be used to capture both flat 
and 3D objects. By doing all processing on the device, the 
technology is not dependent on an Internet connection and 
naturally ensures privacy. Based on these observations, we 
are interested in examining the feasibility (and challenges) 
of a self-contained image-based object recognition algorithm 
trained specifically for and by people with visual impairments. 

Benefits of Personalization. One of the key conditions for 
developing a robust real world assistive computer vision sys­
tem, is to significantly constrain the imaging conditions of 
the recognition task. One such successful example for people 
with visual impairment are money readers, which work for a 
small number of object classes, e.g., bills of different denomi­
nations. Conversely, building a super object classifier which 
can recognize all the possible object instances of interest for 
all visually impaired people, is not possible with current object 
recognition technology. 
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http:978-1-4503-4655-9/17/05..$15.00
mailto:Permissions@acm.org
mailto:chiekoa@cs.cmu.edu
mailto:jbigham@cs.cmu.edu
mailto:kkitani@cs.cmu.edu
mailto:hkacorri@cmu.edu


Assuming that we cannot train on all the possible object in­
stances of interest to all visually impaired people, we sug­
gest constraining the recognition task through personalization. 
We adopt the concept of a personal object recognizer, where 
people with visual impairment collect (sequentially) a small 
sample of photos from their object of interest and provide cus­
tom labels to train their personalized application. By limiting 
the recognition task to a single user, we not only constrain 
the number of object classes but also reduce the variability 
between training and testing images. This is natural since 
such an application would be trained and tested by the same 
person under similar conditions and subjected similarly to any 
idiosyncratic characteristics, as shown in Fig. 1. 

Feasibility Study. While many blind people use Braille labels 
to annotate their objects, or some ad hoc organizing system, 
they might not be familiar with the concept of training a per­
sonal recognizer though photo taking. As Phase 1 of our study, 
we provid participants with a description of how our technol­
ogy works along with some basic photo taking instructions. 
We solicit suggestions from users on how such technology 
might be used and ask them to photograph a few snapshots of 
objects in their homes over a one-week period. 

Data collected in Phase 1 are analyzed to estimate the instance 
distribution for objects of interest, and confirm our intuition 
that object classes in our problem best fit within the scenario of 
finer grained sets of labels. We use observations from results 
in Phase 1 to compile a set of training instructions and invite 
the participants to our lab for a round of simulated training 
and testing under controlled conditions. 

Experiments from Phase 2 demonstrate the potential of our 
approach, which reaches accuracies over 90% for some par­
ticipants. Our error analysis, combined with observations 
from images and video recordings from Phase 2, uncovers 
user factors that can degrade the performance of a personal 
object recognizer and should be prioritized for robustness of a 
real world application. We also contrast our personal object 
recognizer with different approaches using recognizers trained 
by sighted people and a generic object recognizer to confirm 
the feasibility of our approach. 

Contributions. We develop a framework for allowing people 
with visual impairments to train an image-based personalized 
object recognition algorithm and show that one can achieve 
high accuracy by constraining the task through personaliza­
tion. Our feasibility study shows that personalization through 
fine-grained object recognition is in fact, a necessity for many 
people with visual impairments. Furthermore, our experi­
ments with blind participants show that personalized object 
recognition algorithms have superior performance over generic 
state-of-the-art object recognition models. 

RELATED WORK 
Prior work in object recognition for people with visual impair­
ment mainly spans two areas, crowd-powered and automatic 
object recognition. There are few cases in each area where 
image classifiers are trained on images captured by blind users. 
TapTapSee [21], a crowd-powered application, tries to auto­
mate the objection recognition process by training models on 

previously seen images with matching crowdsourced labels, 
while preserving a human-backed image recognition approach. 
Aipoly [2], a generic image recognition application, obtains 
“image–label” pairs from blind users by asking them to teach 
the application with image and description pairs. In both cases, 
training is neither immediate nor personalized. Images pro­
vided by one user may adversely affect the performance of the 
model for any other user. 

The closest application to our work is LookTel Recog­
nizer [16]. This application allows users to recognize objects 
given a library of training images. It requires “high-quality, 
well-framed images with ample lighting” captured with the as­
sistance of sighted people. To our knowledge, our work is the 
first study of the feasibility of blind people training their own 
object recognizers. To understand differences due to photos 
taken by sighted people, we also compare models trained by 
blind versus sighted participants in our study. 

Another line of research involves obtaining higher quality 
photos from blind users. Crowd-powered applications directly 
solicits camera positioning guidance from a crowd-worker 
until a good quality image is obtained. Researchers, e.g., [25], 
have also investigated automated approaches for extracting 
good quality information-rich frames from continuous camera 
video streams. In both cases, a good quality photo is implicitly 
defined as one that is either interpreted properly by a sighted 
person or as one that maximizes the recognition from a model 
trained on images taken by sighted people. 

We suspect that a high quality personal object recognizer can 
work with a looser notion of quality. For our approach, both 
training and testing images are provided by the same person, 
under similar conditions and for a bounded number of object 
classes. As a consequence, the image may not contain the en­
tire object. Instead, an image is considered of good quality if 
there is enough consistency across training and testing images 
for any given object class, and there are sufficient discrimina­
tive characteristics to limit confusion between classes. 

PERSONAL OBJECT RECOGNIZER 
State-of-the-art image recognition trains machine learning 
models that achieve performance comparable to, or even 
exceeding, human recognition, with performance reported 
against ImageNet [19], an established benchmark for object 
classification with millions of images. Typically, thousands 
of examples are needed to train an image classifier. How­
ever, we can use transfer learning by leveraging fully trained 
recognition models, and adapting them to new image classifi­
cation tasks using only a few samples. Transfer learning [13] 
applies knowledge from one model to solve a different but 
related problem. Here, the labels differ while the marginal 
distributions of data are related [14]. 

Baseline. As our baseline object recognizer, we use Inception­
v3 network [20] (hereafter, ‘’Inception"), a state-of-the-art 
model from Google which achieves a 3.46% top-5 error rate1 

on ImageNet when classifying images into 1000 classes. 

1Top-5 error rate indicates how often the model fails to give the 
correct answer in the top 5 guesses. 



Figure 2. Term co-occurrence network for user questions in VizWiz dataset with sample images for the co-occurring terms ‘soda’ and ‘kind’. 

Our classifier. Google released a pre-trained Inception al­
lowing researchers to build higher level machine learning 
layers. With transfer learning, an Inception model trained 
on ImageNet can be retrained or ’fine-tuned’ for new image 
classes. The intuition is that lower layers in Inception’s pre­
trained model have learned generic low-level representations 
for distinguishing objects. Thus, these generic features can be 
re-purposed for other recognition tasks. To build a personal 
object recognizer, we load the pre-trained Inception, replace 
the top layer with a new (softmax) layer trained on the new 
user-defined classes. The new layer yields probabilities for 
each class. We take the class with the highest probability to 
be the network’s classification for a given image. While our 
experiments process examples in batch mode, in a realistic 
scenario, photos for a new class would be processed one class 
at a time by adding a new node to the final layer. 

A key challenge to our problem is that the sample size for train­
ing has to be limited to a practical small number. Our problem 
is an instance of N-way k-shot learning, where k is a small 
number of samples, e.g., 1-20, and N is the number of object 
classes. Our approach follows recent research using a pre­
trained Inception on ImageNet for k-shot learning tasks. For 
example, Vinyals et al. (2016) [24] showed that a pre-trained 
Inception on ImageNet is a competitive baseline for N-way 
k-shot learning, outperforming proposed state-of-the-art meth­
ods when the label distribution is fine grained. Similarly, prior 
work in fine-grained image classification, such as the Life-
CLEF challenge [7], also used a trained GoogLeNet CNN (a 
prior version of Inception) on ImageNet and replaced its top 
layers as in our approach, achieving high performance. There­
fore, transferring knowledge using a pre-trained Inception on 
ImageNet for N-way k-shot classification of a fine-grained 
dataset is a competitive approach. 

We do not know a priori potential biases in object categories 
of interest for people with visual impairment. However, we 
hypothesize that object classes in our problem will better fit 
the scenario of fine grained sets of labels as in the previous 
works [24, 7]. Our intuition is that people with visual im­
pairment are interested in distinguishing between objects with 

similar shape and texture, difficult to tell by touch. We exam­
ine this further in the following sections. 

PRELIMINARY INSIGHTS FROM VIZWIZ DATASET 
To gain better insights on our recognition task, we analyzed the 
publicly available VizWiz dataset2, which includes questions 
and images from people with visual impairment accompanied 
by human-backed image recognition and answers provided 
by a sighted crowd. While an initial analysis classified these 
questions into identification, description, and reading cate­
gories [5], the focus of our analysis is to identify the types of 
object categories and characteristics being asked as well as 
their relationships. 

Specifically, we apply VOSViewer text mining [23] to VizWiz 
users’ questions, a total of 33,543 transcribed questions. We 
extract the most relevant terms and create a term co-occurrence 
network, as shown in Figure 2. There are a total of 163 terms 
occurring at least in 20 questions. Each term is visualized 
as a node and co-occurring terms are linked with an edge. 
Term occurrence and co-occurrence is denoted by node size 
and edge thickness. Terms with high relevance are grouped 
together into clusters, and each cluster may be seen as a topic 
governing the question. 

The co-occurence network in Figure 2 allows us to make the 
observation that blind users often know the general object cat­
egory such as shirt, bottle, can, soup, soda, coffee, medication 
but are interested in specific characteristics of those objects 
such as color, kind, flavor, label, brand, and name. This high­
lights the need of an instance object recognizer over generic 
image classification. 

Zooming into one of the nodes in Figure 2 and examining the 
photos taken by blind users, we observe large variability not 
only in the instances of soda cans but also in the background 
clutter, scale, viewpoints, occlusion, and image quality. The 
diversity of the images indicates that it may be quite difficult 
to learn an image classifier that can be robust to such extreme 
intra-class variance. 
2http://vizwiz.org/data/ 



STUDY AND DATA COLLECTION 
The VizWiz dataset is rich with images taken by people with 
visual impairment but does not contain sequential photos of 
the same object taken by a given user. Thus, we are unable 
to use VizWiz to assess the feasibility of our approach. To 
understand the potential of learning with few examples given 
by blind people, we designed a two phase study. We recruited 8 
blind participants (P1-P8) from the local community who were 
familiar with smartphones and asked them3 to take photos of 
objects in their homes (Phase 1) and in our lab (Phase 2). 

Table 1 shows participants’ demographic information and pe­
riod of smartphone usage. Fig. 3 reports their media and 
technology usage, and attitudes potentially affecting our task, 
based on the Rosen et al. questionnaire [17]. In open-end ques­
tions, P1 and P8 reported on home appliances using Braille 
labels, and P3-P7 reported on objects that are: easy to con­
fusing, frequently used, big enough to accommodate labels, 
or in new visiting environments. Participants indicated that 
making Braille labels is time consuming and requires a lot 
of discipline. When possible, they use alternative strategies 
for distinguishing between similar objects based on touch (e.g. 
shape and size), sound (e.g., shaking a jar), smell, weight, 
order (cans stacked based on flavors), and location (different 
cabinets). When these strategies failed, users would turn to 
technology, with the following applications and devices men­
tioned across 8 participants: BeMyEyes [3], BeSpecular [4], 
CamFind [6], Color Teller [22], Facetime (to ask family mem­
bers and friends), i.d. mate Galaxy [9], KNFB Reader [15], 
Opticon [12], Talking Goggles [8], and TapTapSee [21]. 

ID Gender Age Blind (since) Handedness Smartphone 

P1 F 42 birth right 2014 
P2 
P3 
P4 
P5 
P6 
P7 
P8 

M 40 birth (light) right 2015 
F 68 birth right 2008 

M 63 birth left 2009 
F 46 birth right 2016 

M 43 birth right 2006 
F 61 birth (light) right 2010 
F 58 10 months right 2011 

Table 1. Participants’ demographics and smartphone use period. 
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Figure 4. Distribution of object instances chosen by the participants. 

Phase 1: In Situ 
Over a week period, participants were asked to take photos of 
up to 50 objects of their choice, spending no more than 2 hours 
overall. Participants were asked to imagine that they are build­
ing a personalized phone application which uses the camera to 
recognize objects in their home. We further explained that the 
application is personalized in that it will work well only for 
the small number of objects on which it will be trained. Thus, 
they would have to choose the top 50 objects they would like 
their personalized application to recognize. Participants were 
instructed to label and take at least 5 photos for each of these 
objects on top of an empty table without surrounding objects. 
We suggested positioning the phone 8 to 12 inches from the 
object to ensure that it was within the scope of phone camera. 
Additional instructions on accessible photo taking were also 
included in the task description. 

The goal of this phase was to allow participants time to process 
what a personal object recognizer entails before reporting their 
feedback about this technology, provide an estimate of the 
target domain with class distribution per classifier, and inform 
the characteristics and challenges of this task. 

Observations and Findings in Phase 1 
We received photos of 23 to 50 (average 35.12) distinct objects 
per participant with a total of 1,543 photos across participants. 
Figure 4 illustrates the distribution of the object instances 
that participants chose for training a personal recognizer. We 
observe that this distribution shares similarities with the term 
graph extracted from VizWiz users in Figure 2. 

Drilling down within object groups, we observe that partici­
pants choose object instances typically falling under the same 
category such as “dove body wash winter” and “summer body 
wash dove”; and, “seasoned breadcrumbs” and “unseasoned 
breadcrumbs”. Also of interest, we notice that for one of the 
participants, P8, all objects of interest are t-shirts with dif­
ferent patterns. This confirms our intuition that the classes 
of objects in our problem best fit within the scenario of finer 
grained sets of labels. 

In our analysis of the user-defined labels for the selected ob­
jects, we observed: 

Preference for personalized metadata. Beyond knowing 
brand, label, name, color, scent, flavor, as in the VizWiz 
data in Figure 2, participants would also like to record when 
and where they obtained the objects, washing instructions, 
cost, etc.. For example, one of the participants labeled 
some objects as “.... medals: Id race and year”, “T-shirts: 
color, washing, where from and year”. 



Challenges in assigning labels to objects. Participants had 
a difficult time assigning labels to objects in their homes. 
This highlights the limitations of a personal object recog­
nizer, which assumes that during training participants will 
have knowledge of object labels. For example, participant 
would label some of their objects as “box of cereal”, “an­
other box of cereal”, “K cup, unknown flavor”, “Pasta sauce, 
not sure what kind”. 

At the end of this study phase, we asked the participants to 
indicate some of their reasoning for choosing their objects. 
We believe that their responses, shown below, highlight user 
expectations from this technology: 

“things I did not wanted to wait for a response”, 
“things that take more time to figure out the other ways, 
time-based”, “things that I thought would be interesting 
e.g., seasoned breadcrumbs versus non seasoned bread­
crumbs”, “things that I want to distinguish from others 
(brand and flavor). e.g., cookies, all of their boxes look 
similar and I don’t want to open before”, “things that I 
lost track of what they are”, “cans and bottles that look 
similar”, “things based on pretty much what I was doing 
those days (spice, cans, food) and a lot of those things are 
marked in Braille”, “things that I would pull out of the 
draw and ask a family member or use the color identifier 
but it doesn’t work. It was one of the things it would get 
mixed up easily”. 

There are no previous datasets of sequential photos of objects 
taken by blind people for the purpose of training a classifier. 
Thus, we examined the collected images to identify interesting 
patterns and user behaviors that could be informative for the 
task at hand to drive Phase 2 of our study. We observed: 

Distinct and consistent training strategies. Participants 
tend to develop distinct training strategies. Figure 1 
illustrates photos of 8 products selected by 7 participants 
to train their personal object recognizer. Two products, 
rows 2 and 4 in the second column, are taken by the same 
participant. While not instructed to do so, participants tried 
to introduce some variation across the 5 images per object. 
And their perception of how to produce such variation 
for training also varied: different viewpoints, distances 
from the object, rotation, and visible side. However, it is 
interesting that each participant tended to be consistent 
given an object shape. If this consistency continues in the 
testing mode of a personally trained application it could 
lead to higher recognition rates. 

Exaggerated or non-discriminative viewpoints. Some of 
the training images in the sequence of 5 include exaggerated 
viewpoints and scale in an attempt to provide a holistic view 
of the object rather than capture discriminative characteris­
tics, e.g., last photos of cylindrical objects tend to be from 
the top of the lid with no texture or visual characteristics. 
This could be an artifact of how training is perceived by 
the participants. We suspect one of the limitations of this 
approach to be the fact that images used for training are 
captured sequentially and in a different mode than testing. 
Typically, successful machine learning models are trained 

on images pulled from a similar distribution as in testing. 
Not only will the training images for a given object have 
limited background and light variation, since they are taken 
sequentially, but it could be that these exaggerated training 
images will not be observed in everyday usage, as noticed 
in the VizWiz dataset. 

Pre-compiled set of instructions. Based on our observations 
from this phase of the study, we compiled a set of instructions 
for blind people to train a personal object recognizer. These 
instructions are used in Phase 2 of the study. 

1.	 Increase consistency across training and testing. When 
taking training photos, imagine how your future self could 
be holding and taking a photo of that object to identify it. 

2.	 Limit background clutter. Lay the object down in a table or 
any other flat surface. If it is a cylindrical shape it is okay 
to hold it to stabilize it, as long as your hand does not cover 
the object. 

3.	 Ensure that the object is in the camera scope: feel where 
the camera is located in the phone and position the camera 
to the center of the object. Move away from the object 
upwards while holding the phone parallel to the desk. 

4.	 Ensure that most of the object is in the camera scope. Dis­
tance the phone from the object relative to the object size 
(closer for smaller far way for larger). 

5.	 Obtain more discriminative photos. Many products tend to 
avoid printing their labels where the seal is. If you can tell 
by touch where the seal, avoid taking photos on that side. 

Phase 2: In Laboratory 
We selected a subset of 15 object instances and asked Phase 
1 participants to train and test a personal object recognizer in 
a lab setting. Object instances, shown in Figure 5, fall under 
the food/drink group which had the highest object occurrence 
across most participants in Phase 1 of the study. This is shown 
in Figure 4 and in agreement with the most relevant terms in 
the VizWiz network in Figure 2. The goal of this study was 
to collect data that will allow us to assess the feasibility of 
our approach and explore effects of photo-quality variance, 
sample size, and object characteristics. Our primary interest 
was understanding performance variation due to inherent dif­
ferences in how blind users conceptualize and perform training 
tasks. We minimized variations in conditions, present in Phase 
1, such as background, discriminative characteristics of ob­
jects, and lighting. We ensured that participants operated with 
a common understanding of how such an application would 

Figure 5. Phase 2 objects: baking soda, cheetos, chewy bars, chicken 
broth, coca cola, diced tomatoes, diet coke, dill, fritos, lacroix apricot, 
lacroix mango, lay’s, oregano, pike place roast, pike place roast decaf. 



Figure 6. Idiosyncratic object and camera manipulation across participants during training. 

Figure 7. Training and testing images from P1 and P5 on “chewy bars” object illustrating distinct training strategies. (Images are uniformly sampled 
from the available 30 training images.) 

work by providing them with the pre-compiled instructions, 
resulting from Phase 1, and feedback in a practice session 
with 3 distinct objects from Figure 5. We also controlled for 
variation in the order and way in which objects are passed 
to the user, e.g. randomized order and randomized up-side 
of objects, to simulate real-world scenarios. This allows us 
to not only compare performance variability across different 
participants but also to contrast models trained on photos by 
blind participants to those by sighted participants and generic 
recognizers. 

Phase 2 has two main modes: training and testing. In the 
simulated training mode, participants were asked to take about 
30 sequential photos of each of the 15 objects. In the simulated 
testing mode, participant were only able to take one photo of 
each given object to try and identify it. To minimize learning 
effects, objects were shuffled consistently across participants, 
in such a way that there were 5 photos for each object and two 
consecutive photos were never of the same object. 

The lab setup was identical in practice, training, and testing 
modes for all participants. To ensure identical lighting condi­
tions, a room without natural light was chosen. To take the 
photos, participants used VoiceOver on an iPhone 6 device 
and were recommended to use the volume buttons as in the 
practice mode. To draw insightful observations, each session 
was recorded on video. 

In this phase, we also collected data from two sighted people. 
The first person (S1) is one of the authors of this paper, who 
is familiar with Inception and the transfer learning approach 
being adopted, serves merely as an upper baseline to the dis­
criminative power of model for the 15 selected object instances 
and the background and lighting settings in this study. The 

strategy here was to collect high quality images, shown in 
Figure 5, with very limited variability, both during training 
and testing, while following the pre-compiled instructions as 
well as visual feedback from the camera. The results from 
S1 can be used to interpret results from other participants 
by excluding effects due to the particular task or experiment 
setting. 

The second person (S2) is a sighted female, age 38, who is not 
familiar with Inception or other image classification tasks and 
machine learning. S2 serves as a second sighted person for an 
upper baseline of good quality images and received the same 
information about this experiment as the participants. Both S1 
and S2 followed the practice, training, and testing modes as 
the blind participants under the same setting. 

Observations and Findings in Phase 2 
We collected a total of 4,120 photos in training mode and 661 
in testing mode from our participants P1-P8. A participant 
spent on average 65 seconds to take about 30 training photos 
for an object (23 − 2454, std: 35.2). 

When looking at the participants’ photos and video recordings 
of the sessions, we observed: 

Presence of user’s hand in training images. To take pho­
tos, participants used one hand (P1, P3, P5, P6, P8), two 
hands (P7), or interchanged between two hands (P2, P4) as 
shown in Figure 6. Excepting P8, all participants tend to 
include one hand in the training photos to either hold an 
object, or simply as a reference point to ensure that the ob­
ject is in the photo. However, for very few participants, this 

4The peek of 245 seconds was observed for the baking soda since 
the package was leaking and needed more care when rotating. 



behavior was mirrored in the testing photos with P1, P2, and 
P6 being the most consistent. We expect these differences 
to be reflected in the performance of the personal object 
recognizer trained by each participant in our experiments. 

Reinforced distinct and consistent training strategies. 
Our observations in Phase 1 about distinct training 
strategies were reinforced in Phase 2. With the option 
of more photos per object, 30 photos compared to 5 in 
Phase 1, participants introduced user-distinct variations 
that focused more on the visible face of the object, up 
side-down rotations, viewpoints, and distances from the 
object. Figure 7 illustrates the difference between the 
visible faces variation and distance variation introduced by 
P1 and P5. 

Variation in training unobserved in testing. The exagger­
ated viewpoints and scale discussed in the observations 
of Phase 1 seem to hold here too. For example, indepen­
dently of how the “chewy bars” box was passed to P1 in 
testing mode, the participant consciously avoided view­
points from the narrow box opening side, while initially 
such a viewpoint was included many times towards the end 
of the training examples. Participants were instructed to in­
crease consistency across training and testing by imagining 
how their future self would be taking the photos. However, 
many of them perceived the number of 30 examples as high 
and often interpreted it as an opportunity for variation and 
covering of edge cases. 

Different training strategies among sighted participants. 
Interestingly, we also observed a big difference between 
sighted people S1 and S2. S1, aware that the highest 
accuracy is achieved with maximal consistency across 
training and testing images, introduced minimal variance in 
the training samples and preserved that consistency during 
testing, e.g., taking photos from the front of the object to 
cover most of the phone screen. On the other hand, S2 
introduced variation in viewpoints, sides, and distance from 
the object hoping to give the application “a more holistic 
view” of the object. We suspect that training strategies 
are affected by the way people perceive machine learning 
concepts, such as training a recognizer, and can thus make 
a difference in the classifier performance. 

We are interested in gauging willingness of blind users to take 
the time of training their application and taking photos for this 
purpose. At the end of the study, we asked the participants 
to indicate whether training a personal object recognizer is 
feasible with responses shown in Figure 8. We also solicited 
comments on possible challenges they faced during simulated 
training and testing in Phase 2 of the study. We found that 
participants agreed with the feasibility of training a personal 

88% 0%12%
Training a personal object recognizer is 

feasible.
100 50 0 50 100

Percentage

strongly agree agree neither agree nor disagree disagree strongly disagree

Figure 8. Subjective responses on the feasibility of our approach. 

object recognizer from the blind user’s perspective. Their main 
concerns were: knowing whether the photos were good, know­
ing the area of a package where the label or distinguishing 
information resides, obtaining feedback from the camera such 
as lighting conditions and number of photos taken, deciding 
on the distance between the object and camera lens. One of 
the participants stated “the most challenging and most fun is 
training the person.” 

EXPERIMENTS AND RESULTS 
To assess the proposed approach, we used data obtained in 
Phase 2 to build personal object recognizers for each partici­
pant (P1-P8 and S1-S2) and report their performance in terms 
of accurately predicting labels for the corresponding testing 
images belonging to 15 object classes in Figure 5. The hyper-
parameters for our models were: 1000 training steps, 0.01 
learning rate, 2048-dimensional feature vector, and 299 x 299 
input image. Training images were always pulled from the 
set of photos collected in training mode in Phase 2. Testing 
images included all images in testing mode, about 75 images 
per participant. Given that the image data were obtained from 
a controlled study, to avoid overfitting to characteristics of 
the data related to task and experiment settings, we did not 
perform any further fine tuning of the model parameters. 

Model Performance 
Figure 9 illustrates results from personal object recognizers 
trained and tested on data from P1-P8 and S1-S2. The number 
of training images obtained in Phase 2 varied slightly across 
objects and participants. For more comparable results, we 
randomly selected 20 images of each object per participant 
across all experiments. To account for randomness in the 
selection process and randomness inherent in the training pro­
cess, we built 10 model attempts per object recognizer and 
controlled for random seeds for reproducibility throughout all 
experiments. 

For blind participants P1-P8, the personal object recognizers 
achieved accuracies ranging from 50.7% up to 92% (µ = 
75.95%,σ = 13.29). For comparison, a random prediction for 
a 15-way classification would yield about 7% accuracy, while 
a model trained on data from S1 a sighted computer scientist 
with understanding of the underlying algorithms achieved an 
average accuracy of 99.6%, and a model trained on S2, a 
sighted person unaware of the underlying methods, achieved 
an average accuracy of 96.9%. 

As expected, S1, taking images with minimal variation across 
training and setting, achieved almost perfect scores and out-
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Figure 9. Results of a personal object recognizer trained and tested on 
images from each participant with 20 samples per object and error bars 
calculated over 10 random experiment runs. 
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performed all participants. This serves as an upper baseline 
for the performance of our approach given the object stimuli, 
experimental setup of Phase 2, and the hyper parameters of 
our model. The fact that some of our participants P1 and 
P8 achieved performances comparable to those of a sighted 
participant S2 highlights the potentials of our approach. 

Error Analysis 
While the results on testing accuracy of Figure 9 allowed us 
to quickly grasp the potential of this technology, we looked 
deeper for how to improve upon it. In this section, we focus 
our attention on the errors and attempt to link them with prior 
observations from the study. 

Figure 10 shows the percentage of misclassified images per ob­
ject category, across all participants, with error bars calculated 
over the 10 trials. Our first observation here is that objects 
which are difficult to recognize are not uniformly distributed 
across participants. For example, focusing on P2 and P8, 
whose models achieve the lowest accuracies (seen in Fig 9), 
we observe P2’s model consistently misclassifies baking soda, 
cheetos, diet coke, and lacroix mango, whereas P8’s model 
consistently misclassifies lacroix apricot, pike place roast, and 
pike place roast decaf. 

Examining the training and testing images for P2 and P8 on 
the highly misclassified objects, we find that their recogniz­
ers’ performances vary for different reasons. Participant P2’s 
strategy for introducing variation during training tended to be 

consistent with the variation in testing. The degradation in 
classifier performance was due to idiosyncratic characteristics 
of the participant. As shown in Figure 6, P2 tended to hold the 
camera at a higher distance from the object and with a slight 
tilt away from the object. As a result, the object is marginally 
included or excluded in many of the training photos. For ex­
ample, none of the training data for diet coke included the 
object in the image frame. Thus, it is critical for a real world 
application to account and provide feedback for the presence 
of the object during training, either by detecting the tilt in 
users phone or by using computer vision techniques. 

However, from participant’s P8’s images among highly mis­
classified objects, we observed that training images included 
exaggerated viewpoints, e.g., the last photos of lacroix apricot 
tend to be from the top of the can and many of the last k-cup 
photos were taken from the side, while none of the testing 
photos for those objects where taken from those perspectives. 
Our models were trained on 20 randomly selected images 
from the participant’s training pool, and we believe that more 
intelligent sampling techniques for selecting training data can 
be employed to build more robust models. 

Figure 11 illustrates aggregated results on misclassified testing 
images across participants P1-P8 as a confusion heatmap. We 
observe that the highest confusions are: lacroix apricot as 
lacroix mango, dill as oregano, pike place roast decaf as pike 
place roast, coca cola as diet coke, fritos as lay’s, and cheetos 
as lay’s. These are all objects that were intentionally chosen 
due to shared shape and visual similarities. Interestingly, even 
for the sighted participant S2, the misclassified pairs were 
(lacroix apricot, lacroix mango) and (coca cola, diet coke). 
We suspect that there is room for better performance in our 
models orthogonal to the quality of photos taken by blind 
people, e.g. additional data, more training steps, and tuning of 
other parameters. 

Effect of Order in Training Examples 
Our initial results were obtained from personalized classifiers 
trained on 20 randomly sampled images per object from the 
available pool of participant’s training images. However, train­
ing images for any given object are acquired sequentially from 
users. We wondered whether training on a batch of photos 
taken sequentially would affect performance. Further, would 
it make a difference where this sequential batch is taken from 
among the entire sequence? This could matter if participants 
modulate their photo-taking strategies as they manipulate the 
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objects. To investigate this, we ran a set of experiments where 
the 20 samples were selected sequentially from the pool of 
available training images per object. For each participant’s 
recognizer, we ran 10 attempts, where each attempt shifts the 
selected images by one. For example, in attempt 0, we train on 
the first 20 images, i.e. images 1, . . . ,20, in attempt 1, we train 
on images 2, . . . ,21, and so on. On comparing recognizers’ 
performance on random versus sequential training images, we 
did not observe a consistent effect across all participants P1-P8. 
Moreover, we did not observe a common pattern when drilling 
down into achieved performance across participants per at­
tempt in the sequential selection, shown in Figure 13. This 
may be because many of our stimuli objects were cylindrical 
or that participants develop different strategies to train their 
personal object recognizer. As above, we believe that more 
sophisticated approaches need to be investigated for selecting 
a good subset of training images. 

Effect of Sample Size and Data Augmentation 
One issue raised by the participants is how Braille labeling is 
time consuming and requires a lot of discipline. Even though 
we observed that participants were able to take, on average, 30 
photos of an object over 65 seconds, we explored the potential 
of the proposed approach for training with highly limited 
sample sizes of 1 and 5 with k-shot learning 5. Figure 14 
illustrates the model accuracies across participants per value of 
k. In 1-shot learning, blind participants’ recognizers achieved 
an average accuracy of 52.6% (23.5% − 73.3%,σ = 12.7) 
with P7’s classifiers outperforming those of a sighted person, 
S2. Across all participants, higher k resulted in better accuracy. 

The most minimal improvement was observed for S1, who 
serves as an upper baseline in these experiments, and for the 
blind participant P2. For S1, this can be explained by the fact 
that both training and testing images were high quality and 
introduced minimal variation by intention. However, for P2 
this is as an effect of many training images which exclude 
the object, as discussed in the section on error analysis. We 
believe that presence of outlier images (i.e. unrepresentative of 
the object) in the training data can bias the solution, severely 
degrading classification performance in k-shot learning. 

A common practice to improve the performance of machine 
learning models is to augment the original training data with 
5Results in k-shot learning are typically reported for k = 1,5, 20. 



new data generated by applying different distortions on the 
original ones. To demonstrate the potentials of data augmen­
tation for our approach we expanded the effective size of the 
training data by randomly cropping and scaling up to 20% of 
the image, and by applying up to 10% brightness to training 
images of participants P5, P6, and P7. By adding possible 
variation of the same images we could help the personal ob­
ject classifier be more robust on distortions that can occur in 
testing. Initial results show that accuracy might be boosted by 
up to 10.7% (µ = 3.8%,σ = 3.2). 

Contrast to Models Trained on Photos by Sighted People 
As discussed in the related work section, LookTel Recognizer, 
the closest application to our work, requires training on high-
quality and well-framed images taken by sighted people in the 
user’s environment. While we cannot directly compare Look-
Tel performance to our approach, we explore the benefits of 
having a sighted person training a blind user’s personal object 
recognizer. Specifically, we compare the accuracy achieved 
by models trained and tested on images by the same person 
to the accuracy of models trained on images by S1 or S2 but 
tested on images from all all participants. 

Results, shown in Figure 12, show that models trained on a 
single example (k = 1) perform best when the training image is 
taken by a sighted person, with better performance using S1’s 
recognizer. However, for larger training samples, a personal 
object recognizer trained and tested on images from the same 
blind user tends to outperform a recognizer trained on images 
from a sighted person. Specifically, for k = 20 we observe 
that the accuracy of predicted labels drops for 6 out of 8 blind 
participants, with P2 and P8 as exceptions. 

Contrast to Generic Image Recognition 
While not a straightforward comparison, we wanted to explore 
how a personal object recognizer trained to recognize object 
instances performs relative to a generic image recognition 
model, the method used by most mobile applications for the 
blind. Since a generic recognizer is not trained on user-defined 
labels, an accuracy score cannot be calculated directly. Thus 
we cannot directly contrast its performance with our approach. 
However, we can compare desirable properties of the two, such 
as consistency of their predictions given images of the same 
object, and ability to distinguish between two different objects. 
For example, assume a blind user provides a photo to AppX, 
an imaginary mobile application with a fully trained Inception 
model, and receives the top-1 predicted label. The user is 
interested in distinguishing between the ’pike place roast’ and 
the ’pike place roast decaf k-cups’, shown in Figure 5 and has 
noticed that AppX recognizes the first as ’Petri dish’ and the 
second as ’bottlecap’. If AppX consistently identifies ’pike 
place roast’ as ’Petri dish’ and the decaffeinated as ’bottlecap’, 
then the user could learn a 1−1 mapping and still benefit from 
AppX despite the confusion in actual object labels. Though 
such a solution is not scalable, its utility in limited scenarios 
led us to contrast it with our approach. For this comparison, 
we adopt the V-measure [18] metric from cluster evaluation, 
which is independent of the absolute values of the labels. Thus, 
it measures the agreement of two independent label assignment 
strategies on the same data. First, we calculate V-measures for 

each of the participants’ recognizers in Fig 9 using true labels 
for testing images and the corresponding predicted labels as 
inputs. We average V-measures across the 10 experiment 
runs for each participant. To obtain the V-measure from a 
fully-trained Inception model, not adapted to the participants, 
we use true labels for testing images per participant against 
Inception’s predicted labels belonging to 1000 possible classes 
(distinct from user-defined labels). 

Figure 15 illustrates the obtained V-measures contrasted per 
each participant. We observe that for all the participants, our 
approach achieves higher V-measures, where a 100% accuracy 
would correspond to a V-measure 1.0. 

CONCLUSION AND FUTURE WORK 
We have presented a method that allows people with visual 
impairments to train a personal object recognition algorithm 
to differentiate between everyday objects specific to the user. 
By doing so, we have provided a solution for a very practical 
need for people with visual impairments – instance level object 
recognition. Additionally, by leveraging the constraints on 
the image data distribution through personalization, we were 
able to create image classifiers that can adapt state-of-the-art 
generic classifiers for user specific tasks using only a small 
number of examples. 

Based on our observations and findings, our future work will 
explore user interface design and computer vision methods to 
increase robustness in training. This will involve automating 
and providing user feedback on some of the pre-complied 
set of instructions e.g. indicating detected background clutter 
based on image analysis and a tilting phone based on the 
accelerometer. We found that one of the main reasons for 
performance degradation is the absence of the object of interest 
from the training examples due to challenges in photo-taking 
by blind users. Based on our observation of the users tendency 
to use their hand as a guiding point of reference for the camera, 
we will incorporate elements from our prior work on first-
person activity recognition [11] to select training examples 
where the object appears in the vicinity of the user’s hand. 
Moreover, we will investigate intelligent sampling techniques 
for selecting representative and diverse subsets of training 
examples from discriminative viewpoints. 

While there are many parameters that can still be evalu­
ated (e.g., incremental model learning, extreme illumination 
changes, video versus images), the more important remaining 
issue is one of scalability over long periods of time. Although 
we have shown success for a moderately sized dataset, what 
happens as the number of objects increase over time to hun­
dreds or thousands of labels? We believe that this work has 
been instrumental in understanding the use of personalized 
object classifiers for a short duration of time (i.e., 2 hour time 
frame) and hope that it serves as an impetus for large-scale 
long-term evaluation (e.g., based on remote usage data [10]) 
to validate the longevity and utility of such technologies. 
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