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Abstract. In this paper we describe and compare three approaches to calculate 
structure- and content-based performance metrics for user-based evaluation of 
math audio rendering systems: Syntax Tree alignment, Baseline Structure Tree 
alignment, and MathML Tree Edit Distance. While the first two approaches re-
quire “manual” tree transformation and alignment of the mathematical expres-
sions, the third approach obtains the metrics without human intervention using 
the minimum edit distance algorithm on the MathML representations of the 
math expressions.  Our metrics and their extraction methods are demonstrated 
in a pilot user study evaluating the Greek audio rendering rules of MathPlayer 
with 7 participants and 39 stimuli. We observed that the obtained results for the 
metrics are significantly correlated between all three approaches. 
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1 Introduction 

Acoustic modality is one approach often favored by researchers to create an acces-
sible platform for mathematics [1-6]. It is essential to evaluate and compare the accu-
racy of mathematical expressions provided by a rule-based system with speech out-
put. Recently, we introduced the EAR-Math methodology [7], along with a number of 
associated novel metrics, to automatically calculate their performance through quanti-
tative methods in audio rendered mathematics. However, one limitation is the re-
quirement for “manual” steps required in computing these metrics. The focus of this 
paper is to explore and compare alternative ways to  calculate the proposed metrics 
with and without human intervention. This would allow for more robust results with 
fewer human errors during the data processing steps. Furthermore, we present results 
of a pilot study in evaluating the Greek audio rendering rules with MathPlayer [8]. 
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2 Related Work 

Relatively few researchers have evaluated the quantitative performance of their math 
audio-access approaches. We reviewed the methods adopted for assessing the accura-
cy of these approaches as perceived by the users. In the user evaluation of MathTalk 
[9], participants’ response was considered correct if the perceived formula retained 
over 75% of the rendered formula’s content and its major structural features. Howev-
er, no further details on the calculation of these accuracy metrics were available. The 
transcriptions of participants during the evaluation of I-Math [10] were compared 
linearly to the original textual expressions. The number of correct words and positions 
were evaluated using precision, recall, and F-score. Last, TechRead’s evaluation [11] 
and the user study in [12] asked participants to choose among multiple un-weighted 
answers the one that best matched the audio stimuli. The differences in these evalua-
tion approaches and metrics pose challenges for future researchers to compare their 
findings to previous work.  

3 Performance Extraction for Audio Rendered Mathematics 

Evaluation of Audio Rendered Math (EAR-Math), proposed in [7], is as an experi-
mental methodology for user-based performance evaluation of mathematical expres-
sions rendered by a rule-based system with audio output. Mathematical expressions, 
non-linear in nature, make it challenging to define a fine-grained error rate metric that 
describes a rendering system’s performance. To measure the distance between the 
intended math expression and the one perceived by the users, EAR-Math proposes 
three error rate metrics. They are tailored to account for both content and structure 
and are derived by first aligning the two mathematical expressions and then compu-
ting the number of insertions, deletions, and substitutions in the perceived expression 
compared to the reference over the total number of elements in the reference expres-
sion for each of the three categories of elements: 
 
                  

               
                    

          
                     

                             
  

x Structure Error Rate (SER) involves structural components of a math formula such 
as fractions, roots, and arrays. 

x Operator Error Rate (OER) is focused on mathematical operators e.g. plus, minus, 
and times. 

x Identifier and Number Error Rate (INER) represent the number of errors for identi-
fiers and numerical values within the expression. 

The key step in the calculation of the error rates for the performance metrics SER, 
OER, and INER is the comparison of the intended mathematical expression and the 
one perceived by the users. It requires a representation and alignment method that 
allows for fine-grained labeling of the elements in the expressions as structural, opera-
tors, numerical, and identifiers. We compare three approaches that use tree transfor-



mations and discuss their pros and cons with respect to the adopted alignment pro-
cess. For each approach we illustrate an example of alignment for two math expres-
sions: the intended expression rendered by the system (Reference) and the one per-
ceived by a user (Perceived).  The box in the Perceived expression indicates the part 
which the user was unable to include in the response. 

Reference:      √   
 

  Perceived:    
   √  

3.1 Syntax Tree Alignment  

As in [7], the first approach is to draw the Syntax Trees for both reference and per-
ceived expressions. Next, we ‘manually’ perform the alignment of the perceived tree 
to the reference tree and count their differences such as insertion, deletion, and substi-
tution, to calculate the error rate metrics. In this approach, the leaves of the tree are 
considered identifiers or numbers and the inner nodes operators (e.g. +, -, *) or as 
structural elements (e.g. frac, sub, (, ), cos, log, sum). Fig. 1 illustrates the application 
of this error rate extraction method on the example expressions. While identifying the 
operator, identifier, and number errors is a straightforward process, structural errors 
may be more challenging, especially when the correct structural element is improper-
ly positioned in the tree. The approach counts this disposition as a double error, dele-
tion and re-insertion. A drawback of this approach could be the required cognitive 
load and ambiguity in the alignment process especially when the perceived expression 
is sparse compared to the reference. 
 

 
Fig. 1: Syntax Tree Alignment of the two math expressions. 

3.2 Baseline Structure Tree Alignment 

The Baseline Structure Tree [13], introduced for the recognition of handwritten math-
ematics, captures the layout of a formula without committing to any particular syntac-
tic or semantic representation. Horizontally adjacent symbols in the expression, con-
sidered to be in the same region, are represented as ordered siblings in the tree. Thus, 
we can draw the tree unambiguously by exploiting its reading order even for a sparse-
ly perceived math expression. Next, we ‘manually’ perform the alignment of the per-
ceived tree to the reference tree and count their differences such as insertion, deletion, 
and substitution to calculate the error rate metrics. In this approach, the structural 
elements are defined by regions (e.g. center, over, under) and are placed at even tree 
depths, while the operators (e.g. frac, sub, +, -), numericals, and identifiers, i.e. all the 



printable elements, are positioned in odd depths. Fig. 2 illustrates the application of 
this error rate extraction method for the example expressions. The approach inherent-
ly counts the disposition of structural elements in the perceived tree. A drawback of 
this approach is that the resulting trees are more verbose than the Syntax Trees and is 
more tedious especially if the alignment and error rates are “manually” calculated. 
 

 
Fig. 2: Baseline Structure Tree Alignment of the two math expressions. 

3.3 MathML Tree Edit Distance  

Tree alignment is an optimization problem well defined in computational biology. It 
searches for the minimum operation number of node insertions, deletions and substi-
tutions that are required to transform one tree into another, a measure called edit dis-
tance. To automate the calculation of the performance metrics, we apply the edit dis-
tance algorithm proposed in [14] to Presentation MathML encodings of the reference 
and perceived formulae. In particular, we parse the Presentation MathML trees into 
regular expressions and use the edit distance implementation in [15] (RTED) to obtain 
the optimal alignment of the trees. We further modified the RTED implementation to 
print the labels of the nodes in the tree and to assign them to the error rates categories: 
structural (<mrow>, <mfrac>, <msup>, etc.), operators (<mo>), and identifiers or 
numbers (<mi> and <mn>). Fig. 3 illustrates the application of this error rate extrac-
tion method for the example expressions. 
 

 
Fig. 3: MathML Tree Edit Distance Alignment of the two math expressions. 

A requirement of this approach is that similar MathML notations should be used 
for both formulae, e.g. the same tool generates them. If the MathML code is already 
available for the reference formula, then it is suggested to copy and modify it accord-
ingly for the perceived formula. One of the major advantages of this approach is that 



it provides more robust results while minimizing the required human intervention in 
the calculations of the proposed metrics.  

4 Comparison of Extraction Methods in a Pilot User Study 

While future researchers focusing on the pros and cons may choose one of the above 
approaches to evaluate their system performance, their results should be comparable. 
Therefore, we investigate the relationship of the obtained results from all three ap-
proaches within a pilot user study.  

4.1 Pilot User Study 

We revisited the results obtained from the pilot user study in [7] and calculated the 
metrics based on each of the approaches. The mathematical expressions, based on the 
set of formulae for ASTeR demonstration [16], were rendered through the Dimitris 
voice of Acapela Greek Text-to-Speech [17] driven by MathPlayer with lexical and 
prosodic cues.  

Of the 7 participants recruited for the study: 2 were congenitally blind and 5 were 
sighted. All participants had been exposed to more complex mathematical expressions 
than the stimuli. There were 5 men and 2 women of ages 20-34 (average age 25.9). 
During the study, participants would listen to mathematical expressions and write 
down the perceived formulae. They were allowed to make changes to their initial 
guess two more times. We collected all three perceived versions for each of the ex-
pressions. After the experimental session, blind participants would read their notes 
and describe their answers to a sighted member of the team who would then visualize 
the expression in two-dimensions. 

4.2 Results 

As in [7], we ‘manually’ drew and aligned the trees for the perceived and reference 
formulas for the first and second approach and recorded the errors. For the third ap-
proach the MathML tree of the reference math expression was already available in 
MathML. To create the perceived MathML tree we copied the reference tree and edit-
ed it accordingly to the users’ answers. Then, the alignment of the MathML trees was 
automatically performed as described in section 3.3. We calculated the error rates for 
the aggregated elements among all stimuli, as shown in Table 1. 

Table 1: Overall error rates in the stimuli set for the three approaches. 

 Syntax Tree (1) Visual Tree (2) MathML Tree (3) 
 SER OER INER SER OER INER SER OER INER 
1st Attempt 0.18 0.12 0.11 0.16 0.17 0.14 0.24 0.14 0.13 
2nd Attempt 0.1 0.06 0.04 0.08 0.09 0.06 0.14 0.07 0.07 
3rd Attempt 0.07 0.04 0.02 0.04 0.06 0.03 0.09 0.05 0.04 



 
Fig. 4 shows the distribution of the SER, OER, and INER for all three methods as 

boxplots with whiskers at the 1.5 IQR (inter-quartile range). To aid the comparison, 
mean values, illustrated with a star, are added as labels at the top of each plot. For all 
attempts, we observe that the MathML Tree Edit Distance results share similarities 
with the Syntax Tree results though the former shows higher variance and mean. We 
speculate this is due to the inherent verbosity of the MathML representation compared 
to the abstract representation of the Syntax Trees. The Visual Trees approach seems 
to have shifted the weight of the structural errors to the operators. This makes sense 
given that the structure in the mathematical expression is now represented by the lay-
out and not by the semantics. We also observe that participants tend to improve their 
performance the second and the third time they listen to the mathematical expression 
and this is captured by all three approaches. This suggests that the audio rendering 
might have been accurate, but other factors (such as audio memory and familiarity 
with the system) may have an effect on the results and should be taken into account 
when designing the experiment. 

 
Fig. 4: Error rate distributions for user attempted responses by methods (Method 1: Syntax 

Tree, Mehod 2: Baseline Structure Tree, Method 3: MathML Edit Distance).. 

We performed correlation analysis to the obtained results to further investigate the 
relationship of the error rates across the approaches. Table 2 displays the Spearman's 
rho correlation values for SER, OER and INER. The rho value is shown for each pair 
of approaches by error rate category. We note that all correlations were found to be 
significant. This indicates that future researchers may choose either of the approaches 



to calculate their metrics. We also observe that the aforementioned speculations about 
the similarities of the first and third approaches are supported. There is significantly 
strong correlation between SER1 and SER3. While the second approach shifts the 
structure errors to operators, the identifiers and numbers are almost identical to the 
first approach. This is also supported by the significantly strong correlation between 
their INER metrics. 

Table 2: Correlations (Spearman’s rho) between the three approaches.  All values were found to 
be highly significant (p < 0.001). 

 Method 1 & 2 Method 1 & 3 Method 2 & 3 
SER 0.79 0.831  0.662  
OER 0.73 0.529  0.789 
INER 0.975  0.668  0.674  

5 Conclusions 

This paper has described and compared three approaches to calculate the EAR-Math 
performance metrics for user-based evaluation of math audio rendering systems: Syn-
tax Tree alignment, Baseline Structure Tree alignment, and MathML Tree Edit Dis-
tance. While the first two approaches require “manual” tree transformation and 
alignment of the mathematical expressions, the third approach automatically derives 
the metrics using the minimum edit distance algorithm on the MathML representa-
tions of the math expressions. Our metrics and their extraction methods are demon-
strated in a pilot user study evaluating the Greek audio rendering rules of MathPlayer 
with 7 participants and 39 stimuli. We observed that the obtained results for the met-
rics are significantly correlated between all three approaches.  

This research makes three key contributions. First, it provides guidance for re-
searchers conducting user-based evaluation studies to: (i) measure the performance of 
math audio rendering systems against a baseline, (ii) compare alternative systems, or 
(iii) iteratively evaluate improvements/styles. Second, it suggests that future research-
ers may use any of three ways to calculate the proposed metrics since they were found 
to be highly correlated. Finally, it provides results from a pilot study comparing the 
three alternative approaches to derive the metrics. This allows future researchers to 
compare and interpret results across studies irrespective of the extraction approach for 
the proposed metrics.  
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