Phys604/F15/Hassam/Problem Set 4

Due 10/06/15

Arfken, Weber, Harris, 7th Ed Chapter 11:

11.6.11

11.7.1 [(a), (c), (e), (h)] (you may select to evaluate one pole for each example)

8.9, 8.12(b), 8.15

Other

<u>4.1</u> Consider a contour C which is an arc of a circle of radius R, going from z1=R to z2=R exp(i ϕ). Evaluate exactly the integral I = $\int dz \exp[-a z]$ along C. Let a be real and positive. Show that $|I| \rightarrow 0$ as R $\rightarrow \infty$, but only for a specific range of ϕ . Specify this range.

<u>4.2</u> Consider the function (discussed in class) $F(z) = \int dt \exp(-t^2) / (t-z)$, where z = x + i y and y > 0. The analytic continuation of F(z) for $y \le 0$ can be obtained by deforming the original contour to below the real axis which then allows z to be moved to below the real axis but above the contour. Show that the analytic continuation of F(z) for z=x is

$$F(x) = P \int dt \exp(-t^2) / (t-x) + i \pi \exp(-x^2),$$

where P denotes Cauchy Principal Value wherein the integral over t runs from $-\infty$ to $(x - \varepsilon)$ and from $(x + \varepsilon)$ to $+\infty$, as $\varepsilon \to 0$.

<u>4.3</u> Evaluate $I = \int_C dz f(z)$, where $f(z) = [(z^2+1)(z-2i)]^{-1}$, and C runs along the x-axis from $-\infty$ to $+\infty$. Do this in two ways: deforming C upwards and then downwards.