
Phys604/F15/Hassam/Problem Set 12               Not graded but assumed for Final 

(subject to update) 

 

12.1 

 

In this problem we study two initial value in time problems, namely the diffusion 

equation and the wave equation. 

 

1.  Consider the 1-D heat conduction equation ∂tT = D∂x
2
T.   The temperature T(x,t) 

between two flat surfaces from x=0 to x=a is given initially by T(x,0) = f(x).  There are 

heat reservoirs so T(0,t)=0 and T(a,t)=0.   Find T(x,t) for general f(x).  

 

2.  Now consider the 1-D wave equation ∂t
2ξ = c

2∂x
2ξ, where ξ(x,t) is the displacement 

(of a string, eg).  The string is fixed at two ends from x=0 to x=a.  The displacement is 

given initially by ξ(x,0) = f(x).  Also, the velocity of the string is given initially by 

∂tξ(x,0) = g(x). Find ξ(x,t) for general f(x) and g(x).  Take note of the overall multiplicity 

of possible solutions in this problem compared to the diffusion problem in #1 and, thus, 

why two initial conditions are needed.    

 

Now extend the above problems to 2D as follows: 

 

3.  As an extension of #1, there is a temperature distribution T(x,y,t) inside a square of 

sides a by a.   At t=0, T = f(x,y).  Find T(x,y,t).  

 

4.   Likewise for #2, consider a square cavity.  For each eigenmode, there corresponds an 

eigenfrequency, ie, the normal mode frequencies of the “cavity modes”.   Identify these 

and sketch the lowest 4 spatial eigenfinctions (ie, the “drum” modes).    You are not 

asked to do the initial value problem, which would require two initial conditions and a 

sum over all possible eigenfrequencies.   

 

 
12.2 

 

Consider the operator L[f] = x(d/dx)[x(df/dx)] in the space of functions {f(x) in the domain 

x=[1,a]} such that f(1)=0 and f(a)=0, a > 1.  Note:  the domain starts at x=1. 

 

1. Show that the vector space of the{f(x)} with the operator L forms a Sturm-Liouville 

system.  Define the inner product (f,g), including any weight function.   Show 

explicitly that L is Hermitean. 

2. Find the eigenfunctions ϕn and the associated eigenvalues.  Explicitly calculate 

(ϕm,ϕm). 

3. Expand any f(x) in the set as a series in the ϕn(x).  Formally, obtain an expression for 

the coefficients Cn in the expansion. 

4. Find Cn for f(x) = ln(x)*[ln(a/x)] inside x=[1,a].   

 

Note:   the identity uw = ew ln(u), u real, may be useful. 



12.3 

 

Consider the 2D geometry shown in the Fig.  A scalar 

function ψ(x,y) satisfies ∇2ψ = 0 inside the boundary.   

Boundary conditions on ψ are shown in the Figure.   

Find ψ inside.    Make use of the fact that the function 

is zero at two radii and, thus, one expects oscillatory 

solutions in the radial coordinate.   The orthogonality 

condition may be unfamiliar but can be checked by 

using an appropriate weight function. 

 

 

 

 

 

 

12.4   

 

Two concentric spheres have radii a and b > a.   The outer sphere is divided into two 

hemispheres.  A function ψ(x) satisfies ∇2ψ = 0 in between the two spheres.   The inner 

sphere is maintained at ψ = 0.   The top hemisphere of the outer sphere is maintained at ψ 

= +V0 and the bottom hemisphere is maintained at ψ = -V0.   Find ψ in between the 

spheres. 

 

 

 



 

12.5 

 

A long cylinder of radius a is filled with a material of heat conduction coefficient κ.   

Thus, the diffusion of heat in the material is described by the diffusion equation ∂T/∂t = 

κ∇2
T.   In the case that the material is also heated by a given external heater, H(x), the 

governing equation is ∂T/∂t = κ∇2
T + H(x), where T = T(x,t).    The entire cylinder is 

placed in a heat bath of temperature = 0.   

 

(a) Suppose H is highly localized so that H = Aδ(ρ-ρ0), where ρ0 < a, A = constant, 

and we are using cylindrical coordinates.   The temperature inside the material 

builds up until it gets to a steady state as a balance between heating and 

conduction.   Find T(x) in steady state, using the symmetries of the problem.  

[Note:  inhomogeneous equations are in general solved by Green’s functions, 

except in this case the source is particularly simple.] 

 

(b) Suppose, after steady state is reached, we turn off H.  In this case, T will decay to 

zero.   Find T(x,t), again using the symmetries of the initial condition.   Leave 

your final answer in terms of integrals over known functions.   What does the 

approximate shape of the T function look like for large times (ie, the leading 

order term)?   

 

 


