## Due 11/24/15

## <u>11.1</u>

1. Solve Laplace's Equation,  $\nabla^2 \psi = 0$ , for  $\psi(\mathbf{x})$  inside an infinite cylinder of radius a, if  $\psi$  on the surface = V( $\phi$ ), where V is a given function. State explicitly how and why your separation constant is quantized. Assume that V( $\phi$ ) is odd in  $\phi$  and thus pick your function basis conveniently. Leave your answer in terms of integrals over V but evaluate explicitly other coefficients.

2. We modify the previous problem to include an inner concentric cylinder of radius b <

a. Let  $\psi = 0$  on the inner cylinder. Find  $\psi$  in the annulus if all else is unchanged.

3. The cylinder in the first problem is now cut into a pizza shape (see Fig), with boundary conditions as shown. V has no obvious symmetry. Find  $\psi$  inside the pizza.

