Phys601/F11/Problem Set 3

Due 09/26/07

(to be upgraded)

From Goldstein et al

Do Ch 1 #8, #9, #10 (use #9), #20 (possible typo in #20: should be V²)

<u>3.1H</u>

Prove the following identities. A is a constant vector, **r** is a vector with Cartesian components x_k , the components of $\partial/\partial \mathbf{r}$ are $\partial/\partial x_k$, and $\mathbf{r} = |\mathbf{r}| = (\mathbf{r}.\mathbf{r})^{1/2}$. Note that $\partial \mathbf{r}/\partial \mathbf{r} = \mathbf{1}$, where **1** is the unit tensor with Cartesian components $\mathbf{1}_{ik} = \delta_{ik}$.

a. $\partial(\mathbf{r}.\mathbf{A})/\partial \mathbf{r} = \mathbf{A}$ b. $\partial(\mathbf{r}^2/2)/\partial \mathbf{r} = \mathbf{r}$ c. $(d/dt)(\mathbf{r}^2/2) = \mathbf{r}.\mathbf{v}$ if $\mathbf{v} = d\mathbf{r}/dt$ d. $(d/dt)f[\mathbf{r}(t),t] = \mathbf{v}.\partial f/\partial \mathbf{r} + \partial f/\partial t$ if $\mathbf{v} = d\mathbf{r}/dt$

<u>3.2H</u>

Suppose a force, **F**, acting on a mass m has the form $\mathbf{F} = \mathbf{Q} \mathbf{v} \cdot [\mathbf{r} \mathbf{D} - \mathbf{D} \mathbf{r}]$, where the order of the vectors in the dyadic is important, Q=constant, and **D** is a constant vector. Here, $\mathbf{r}(t)$ is the particle position vector, and $\mathbf{v}(t) = d\mathbf{r}/dt$ is the velocity.

We contend that if this is fundamental force of physics, the Newtonian equation of motion must be rewritable as¹

 $(d/dt)(\partial L/\partial q_k) = (\partial L/\partial q_k),$

where L = T - U, T is the kinetic energy, and $U = U(q_k, q_k, t)$. Here $q_k(t)$ are generalized coordinates and there are no constraints assumed in the formulation of **F**. (Since there are no constraints, one may let $q_k \rightarrow \mathbf{r}$.)

Show that \mathbf{F} can be cast into Lagrangian formulation by finding a U(\mathbf{r} , \mathbf{v}). There is a systematic way to do this but it can be done by trial and error.

¹ Not all v-dependent forces can do this – for example, the friction force, $-\mu v$, cannot.