
Phys601/F11/Midterm    

 

Take-Home    Due in class 11/21/11 
 

 

 

 

 

 

 

1. Work independently but can consult any text, etc 

 

2. Return only this exam booklet (8 pages), with boxes filled out.   All important 

steps should be clearly shown, succinctly and neatly.  If extra space is needed (it 

should not be), use the back sides.    Do not attach other pages unless you 

absolutely have to.    

 

3. Send email to me for any clarifications/typos. 

 

4. Parts 1, 2, 3, 7 can be done independently.  Possibly some others. 

 

5. 10 parts, O(10) points per part. 

 



Monopole 

 

A particle of mass m and charge q moves in the field of a magnetic monopole.    This 

field is given by B = br/r
3
, where b is a constant.   Assume that the mass m never gets to 

r = 0.   Apart from the Lorentz force, there are no other forces on the mass m. 

 

 

 

For the first 6 parts, do not use the Lagrangian method.   Simply use Newton’s Equations 

in the original form. 

 

1. Prove directly from Newton’s Equations that the kinetic energy, T = (1/2)mv
2
, is a 

constant of the motion. 

 

 

 

 

 

 

 

 

 

 

 

2. Prove by direct differentiation that the vector D = L – qbr/r is a constant of the 

motion.  Here L = mr x v is the angular momentum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Suppose we place the z-axis of a spherical coordinate system to point in the 

direction of the constant vector D.   Suppose at t=0 the particle is kicked off with 

v(0) = - φφφφ
^
v0, r(0)=r0, and θ(0)= θ0, where v0 is related to the initial position 

according to r0v0=(qb/m)tanθ0.  (r, θ, φ) are spherical coordinates.  Identify all 

constants of the motion using spherical coordinates.  In particular, count how 

many you have, point to any redundancies, and express these constants in terms of 

the initial conditions provided.   [Note:  v(0) and φφφφ^
(0) are negative, though v0 is 

defined positive.   The signs are important.]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constant #1: 

Constant #2: 

Constant #3: 

Constant #4: 



4. Find θ(t).   Based on this, what can you say qualitatively about the motion of the 

particle?  Illustrate by a sketch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Next, find an equivalent 1-D equation for r(t), ie, this equation should include 

only (dr/dt)
2
 terms and an effective potential which is a function of r.    What is 

the effective potential Veff(r)?    Qualitatively describe the motion of the particle 

and find |v| as r → ∞.  [Note: r0, v0, and θ0 are related.  It is convenient to work 

with the first two.] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equivalent 1-D Eq and Veff 

θ(t) = 



 

6. Find the solution for r(t).  Compare with your conclusion in 5 as t → ∞. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the remaining parts, Lagrangian methods are to be used. 

 

7. Find a vector potential for the magnetic field, valid for r ≠≠≠≠ 0, by assuming that A 

is always only in the φφφφ^ direction. [Why are we writing down a vector potential 

for a monopole field which has a divergence somewhere?] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r(t) 

A = 

 

 

Why? 



8. Find the Lagrangian and all obvious constants of the motion that can be found via 

the Lagrangian.    Express the constants in terms if the initial conditions provided.  

To what extent do these agree with those in part 3? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lagrangian =  

Constant #1: 

Constant #2: 

Constant #3: 



9. From the Lagrangian, write down the E-L equation for the θ variable. Use the 

initial conditions as provided earlier [v(0) = - φφφφ
^
v0, r(0)=r0, and θ(0)= θ0, where v0 

is related to the initial position according to r0v0=(qb/m)tanθ0].  Eliminate dφ(t)/dt 

by using a constant of the motion, so that the resulting equation includes only {r, 

θ} and their derivatives.  With all this, show by direct plug-in that θ(t) as obtained 

in Part 4 solves your θ equation. 

 

 

 

 

θ equation:  

 

 

θ(t) = 

 



10.    Consider small perturbations about the r(t) and the θ(t) obtained previously, ie, 

r(t)→r(t) + r
~
(t), etc.   Use the θ(t) equation from part 9 as the starting point.  Is the θ

~
(t) 

solution stable?   Find the frequency (or growth rate) for small oscillations.   Hint:  even 

though r = r(t) in the “equilibrium”, it can be “absorbed” into a derivative.  

 

 

 

 

 

Stable?    Frequency=? 


