
Phys410/F16       Homework Problems  

From Classical Mechanics, by Taylor    

Homework to be turned in in hardcopy on due date, in class. 

 

Problem Set 1       due 09/08/16 

Ch 1:  6, 9, 17, 23, 28, 31, 36, 39 

Ch 2:  5 (solve explicitly for v(t), using the method Taylor uses)  

Ch 2:  repeat 5, using separation of variables.   Note that ln(x) is defined only for x > 0.   

Use Integral[dx/x] = ln(x), and exp[ln(x)] = x.   

Ch 2:  8 (use separation of variables, as done in class)  

Ch 2:  27 (look up any integrals) 

 

 

Problem Set 2       due 09/15/16 

Ch 3:  3, 5, 11, 18, 36 

Ch 4:  2, 8 (use polar coordinates), 12, 13 (a) and (c)  

4.1H (a)  Consider the 2D field F = (y,x).  Is this conservative?  Do line integrals along 2 

paths C1 and C2, both from (0,0) to (1,1), where C1 is along the line y=x, and C2 is 

along the line y=x
2
.    

4.1H (b)  Repeat part (a) but use F = (-y,x). 

 

 
Problem Set 3       due 09/22/16 

Ch 4:  21 (to find the potential, just try U proportional to 1/r, where r is the radius)  

Ch 4:  23 

Ch 4:  28 (note the kick is to the right, so pick the correct sign of dx/dt.   You may do the 

integral as suggested by Taylor, or simply look it up)  

Ch 4:  34, 36 

Ch 5:  1, 2, 5, 9, 10, 23, 35 

5.1H:  Solve the equation for x(t) if d
3
x/dt

3
 - d

2
x/dt

2
 + dx/dt – x = 0 and x(0)=0, 

(dx/dt)(0)=-1, 
 
(d

2
x/dt

2
)(0)=-2.     

 

 

Problem Set 4       due 09/29/16  

5.2H:   In class, we solved for the solutions of the HO equation (5.28) perturbatively, 

when beta is small.    Notes are posted for the perturbation expansion correct to 1
st
 order.  

Now, continue this expansion to 2
nd

 order.   Find the correction to omega and discuss 

how the solution is modified (does the damping rate change?  Or the oscillation 

frequency?  Both?  Change how?)    Compare your answer to the exact solution for 

omega by expanding out the exact solution to the appropriate order.    

Ch 5:  42 (look up the definition of Q), 43 

Ch 6:  1, 3, 9, 10, 16 



 

 

 

Problem Set 5       due 10/06/16 

Ch 6:  18  (pick a convenient point for the 1
st
 endpoint and thus fix the constant)  

Ch 7:  1, 3, 8, 10 (the Lagrangian can be constructed directly in non-Cartesian 

coordinates by intuiting the kinetic energy in those coordinates.  However, as a general 

rule, it helps to start with the kinetic energy in Cartesian coordinates and then transform 

to the non-Cartesian by using the transformation of coordinates). 

 

 

Problem Set 6       due 10/13/16 

Ch 7:  15, 21, 22, 29, 36 

  

 

Problem Set 7       due 10/20/16 

7.1H:   A mass moves in a harmonic oscillator central force F = -kr.  We will investigate 

this motion in detail, along the lines of Chapter 8 in Taylor.   The problem is attached 

below.   

 

 

Problem Set 8       due 10/27/16 

Ch 8:  1, 7(a) and (b), 10 (for “describe the motion”, comment on the oscillation 

frequencies, in particular in the limits α is very small or very large.), 12, 13 (12 and 13 

were done in class, so this is a review). 

 

 

Problem Set 9       due 11/03/16 

Ch 9:  2, 9, 12, 16, 17, 18 (gravity is assumed; assume also that x(0) = x0, all other initial 

conditions zero), 25  

 

 

Problem Set 10       due 11/10/16 

Ch 11*:  4, 14 (this is a good problem on which to practice how to normalize;  solution is 

pre-posted for reference), 19, 27, 32 

*Algebra in this chapter is facilitated by normalizing quantities and therefore non-

dimensionalizing the equations, as discussed in class and in Taylor.  You are not required 

to do this but encouraged, for any number of problems as you wish.  Problem 14 is good 

for practice, may want to start with this.  I have pre-posted the solution. 

 

 

Problem Set 11       due 11/17/16 

Ch 9:  26  (note that in the lowest order, the mass has only g acting on it, as in the 

calculation of p. 353.  However, there is also an initial velocity, v(0):  the effects of the 

initial velocity are also to be considered as part of the lowest order solution.)  

 



Problem Set 12       due 12/01/16 

Ch 10:  2 (read about the breakdown of T between CM and relative to CM, or fixed point, 

Eq. 10.18 and prior), 3, 10, 13, 15, 22, 23 

 

 

Problem Set 13       not graded, but material will be assumed for Final Exam 

Also, subject to update: more problems will be added to this set, with notification. 

Ch 10:  35, 36, 44 (to solve the final equations, use a new time coordinate defined by  

dτ = ω3(t)dt, ie, τ(t) = ∫0
t
 ω3(t′)dt′.   For simplicity, you may assume that ω3(0)=0.)     

13.1H   (attached, see below). 

Ch 15:  79, 80 (in class, we obtained the relativistic Newton’s Equation for motion along 

the direction of F.  The generalization to the transverse directions can be made.   The 

general equation is dp/dt = F, where p = γmv,  γ2
 = (1 – v.v/c

2
).   Use this for problem 79, 

and use 79 in 80.  Note also that (γv)
2
 = (γv).(γv).)    



Problem 13.1H    In this problem, we review some properties associated with 

Principal Axes of a rigid body (RB).   We first summarize the properties and then 

step thru the proofs. 

 

 

Summary 

 

For any RB, there exist three, orthogonal, Principal axes which have the following 

properties if physics is conducted w.r.t. to a coordinate system based on the P-axes: 

(1) the I tensor is diagonal;  (2)  if ωωωω // P-axes  then L is also // ωωωω, and vice-versa.   

Recall that L = I.ωωωω. 

 

 

 

To check all this, we step thru as below.    

 

1.  First, lets define P-axes as coordinate axes such that if ωωωω is // to a P-axis, then L 

// ωωωω.    Assume also there is a theorem which says three P-axes always exist and P-

axes are orthogonal (or can be made so). 

 

2.  As per the definition, to find the P-axes, we solve the equation I.ωωωω = λωωωω (i.e., L // 

ωωωω) for all possible ωωωω(n).  We solve this in an arbitrary Cartesian system.  If we can find 

such ωωωω(n), we have the P-axes.  The equation I.ωωωω = λωωωω is an eigenvalue equation.  

There is a theorem  (related to the above and more precise) which says that an n x n 

real, symmetric matrix has n real eigenvalues, and n eigenvectors which are 

orthogonal.  Since I is symmetric, we are assured we will find 3 P-axes, ωωωω(n), and 

associated λ(n).      

    

3.  Now assume we have found three ωωωω(n)
.   We now return to the RB and this time 

around we work in coordinates based on the P-axes.   Note that in this coordinate 

system, the ωωωω(n) are simply (1,0,0), (0,1,0), and (0,0,1).    Also, I will look different.   

Let I be a general matrix with elements Ixx, Ixy, Ixz, etc, w.r.t. the P-axes.   Since I.ωωωω(n) = 

λ(n)ωωωω(n), show, by considering each ωωωω(n) in turn, that I must be diagonal, made up 

from the λ(n)’s, and that the λ(n)’s are just the moments of inertia corresponding to 

the respective axes.    

 

4.   Using the fact that I is diagonal, prove the property mentioned in the Summary, 

ie, ωωωω // P-axes � L // ωωωω.   Your proof should work both ways.   (The left to right 

proof is straightforward;  the R to L one is not:  make sure write down all 3 

equations and solve them simultaneously.) 



Homework 7.1H:     Motion in harmonic oscillator (HO) central force 

 

Motion in harmonic oscillator (HO) central force 

 

Consider a single mass m in a central force field F = -kr, with respect to a fixed 

origin.   Here r(t) is the radius vector, r = (x,y,z), in Cartesian.      In this problem, we 

want to understand the various orbits of the mass about the HO central force. 

 

1. Check that F is conservative. 

 

2.  Find the potential U(r). 

 

3. It follows that the energy is conserved.  Write down the expression for this.   

Note that v(t) = dr/dt.   

 

4. F is a central force (in addition to being conservative).  Therefore, show that 

the angular momentum L is a constant, where L = m r x v.      Your proof must 

use 2 important vector identities. 

 

5. If L is constant, prove that r(t) must stay on a 2-dimensional plane.   State the 

important vector identity needed to prove this.   Thus, assume that r = x(t)x^ 

+ y(t)y^. 

 

6. Polar coordinates are clearly preferable.   Refer to Taylor Sec 1.7 and check 

the following (you do not have to derive these – just collect and review 

them):  r(t) = r(t)r^(t), v = r^ dr/dt + φφφφ^ rdφ/dt.    Also, obtain the expression 

for d2r/dt2.    

 

7. So, write down the 2 polar components of ma = F.    From the φφφφ^ component, 

show that the angular moment magnitude, L, is also a constant of the motion 

(so far we only used the direction of L).    

 

8. Eliminate in the radial equation all the φ terms by using the angular 

momentum equation from 7.  Thus, find a 2nd order nonlinear ODE for r(t).   

This equation cannot be solved in an easy way. 

 

9. But, we haven’t used energy conservation yet.   Write down the energy 

constant using polar coordinates (use 6 above).   Again eliminate the φ terms 

using the constancy of L, from 7.  Check that this energy constant contains 

terms only in dr/dt and r.   

 

10. As a check on energy conservation, start with your energy constant in 9 and 

differentiate E in t.   This should be zero, ie, dE/dt = 0.   Show that this results 

in the 2nd order ODE for r(t) in 8 above. 

 



11.  Take a square root in the equation from 9 and thus obtain a 1st order ODE for 

r(t).   (there will be a +/- sign from the square root).   Check that this 

equation is separable and therefore solvable in principle.   

 

12.  Define an effective potential starting from your energy equation in 9.  Let 

Ueff(r) = U(r) (of the central force) + angular momentum term in r.    Make a 

sketch of  Ueff(r) vs r.   Draw a horizontal line for E on this sketch.  Since 

(m/2)(dr/dt)2 > 0, observe that we must have E > Ueff(r) for a solution to 

exist.  Thus, show that r(t) must be bounded from above and below according 

to rmin < r(t) < rmax.    

 

13.   If Ueff(r) is at its minimum point, and E is adjusted so that E = Umin, observe 

that r(t) must be a constant, corresponding to circular orbit.  Find r0, the 

radius corresponding to Umin.  Insert this value of r in the angular momentum 

equation for dφ/dt found in 7 above to show that the angular frequency of 

the circular orbit, dφ/dt, is a constant, ω0, and given in terms of L, m, and r0.    

 

14. Using your knowledge of centripetal force, applied to the –kr force, find the 

frequency of circular orbit.  Compare this to ω0 found above.  You will have to 

eliminate L from your expression using the angular momentum equation 

found in 7. 

 

15.  We now want to perform small oscillations of the mass about the circular 

orbit.  To do this, start from the 2nd order ODE for r(t) found in 8.   Let r(t) = 

r0 + s(t).   Substitute this into the ODE and Taylor expand the RHS for small s.  

Use the definition of r0 to rewrite the RHS, so its only proportional to s.   

Thus, obtain a 2nd order ODE for s(t).    Solve this in general and find ω, the 

frequency of small oscillations about r0. Compare this frequency with ω0.   

Can you sketch the circular orbit + small oscillations added on? 

 
 


