Motion in harmonic oscillator (HO) central force

Consider a single mass m in a central force field $\mathbf{F} = -\mathbf{k}\mathbf{r}$, with respect to a fixed origin. Here $\mathbf{r}(t)$ is the radius vector, $\mathbf{r} = (x,y,z)$, in Cartesian. In this problem, we want to understand the various orbits of the mass about the HO central force.

- 1. Check that **F** is conservative.
- 2. Find the potential $U(\mathbf{r})$.
- 3. It follows that the energy is conserved. Write down the expression for this. Note that $\mathbf{v}(t) = d\mathbf{r}/dt$.
- 4. **F** is a central force (in addition to being conservative). Therefore, show that the angular momentum **L** is a constant, where $\mathbf{L} = \mathbf{m} \mathbf{r} \times \mathbf{v}$. Your proof must use 2 important vector identities.
- 5. If L is constant, prove that $\mathbf{r}(t)$ must stay on a 2-dimensional plane. State the important vector identity needed to prove this. Thus, assume that $\mathbf{r} = \mathbf{x}(t)\mathbf{x}^{\wedge} + \mathbf{y}(t)\mathbf{y}^{\wedge}$.
- 6. Polar coordinates are clearly preferable. Refer to Taylor Sec 1.7 and check the following (you do not have to derive these just collect and review them): $\mathbf{r}(t) = r(t)\mathbf{r}^{(t)}$, $\mathbf{v} = \mathbf{r}^{\wedge} dr/dt + \mathbf{\phi}^{\wedge} rd\mathbf{\phi}/dt$. Also, obtain the expression for $d^2\mathbf{r}/dt^2$.
- 7. So, write down the 2 polar components of $m\mathbf{a} = \mathbf{F}$. From the ϕ^{\wedge} component, show that the angular moment magnitude, L, is also a constant of the motion (so far we only used the direction of L).
- 8. Eliminate in the radial equation all the ϕ terms by using the angular momentum equation from 7. Thus, find a 2nd order nonlinear ODE for r(t). This equation cannot be solved in an easy way.
- 9. But, we haven't used energy conservation yet. Write down the energy constant using polar coordinates (use 6 above). Again eliminate the ϕ terms using the constancy of L, from 7. Check that this energy constant contains terms only in dr/dt and r.
- 10. As a check on energy conservation, start with your energy constant in 9 and differentiate E in t. This should be zero, ie, dE/dt = 0. Show that this results in the 2nd order ODE for r(t) in 8 above.
- Take a square root in the equation from 9 and thus obtain a 1st order ODE for r(t). (there will be a +/- sign from the square root). Check that this equation is separable and therefore solvable in principle.

- 12. Define an effective potential starting from your energy equation in 9. Let $U_{eff}(r) = U(r)$ (of the central force) + angular momentum term in r. Make a sketch of $U_{eff}(r)$ vs r. Draw a horizontal line for E on this sketch. Since $(m/2)(dr/dt)^2 > 0$, observe that we must have $E > U_{eff}(r)$ for a solution to exist. Thus, show that r(t) must be bounded from above and below according to $r_{min} < r(t) < r_{max}$.
- 13. If $U_{eff}(r)$ is at its minimum point, and E is adjusted so that $E = U_{min}$, observe that r(t) must be a constant, corresponding to circular orbit. Find r_0 , the radius corresponding to U_{min} . Insert this value of r in the angular momentum equation for $d\phi/dt$ found in 7 above to show that the angular frequency of the circular orbit, $d\phi/dt$, is a constant, ω_0 , and given in terms of L, m, and r_0 .
- 14. Using your knowledge of centripetal force, applied to the $-k\mathbf{r}$ force, find the frequency of circular orbit. Compare this to ω_0 found above. You will have to eliminate L from your expression using the angular momentum equation found in 7.
- 15. We now want to perform small oscillations of the mass *about the circular orbit*. To do this, start from the 2^{nd} order ODE for r(t) found in 8. Let $r(t) = r_0 + s(t)$. Substitute this into the ODE and Taylor expand the RHS for small s. Use the definition of r_0 to rewrite the RHS, so its only proportional to s. Thus, obtain a 2^{nd} order ODE for s(t). Solve this in general and find ω , the frequency of small oscillations about r_0 . Compare this frequency with ω_0 . Can you sketch the circular orbit + small oscillations added on?