HOMEWORK#4 SOLUTION

2 ••

Picture the Problem A charged particle placed in an electric field experiences an accelerating force that does work on the particle. From the work-kinetic energy theorem we know that the work done on the particle by the net force changes its kinetic energy and that the kinetic energy K acquired by such a particle whose charge is q that is accelerated through a potential difference V is given by K = qV. Let the numeral 1 refer to the alpha particle and the numeral 2 to the lithium nucleus and equate their kinetic energies after being accelerated through potential differences V_1 and V_2 .

Express the kinetic energy of the	$K_1 = q_1 V_1 = 2eV_1$
alpha particle when it has been	
accelerated through a potential	
difference V_1 :	
Express the kinetic energy of the	$K_2 = q_2 V_2 = 3eV_2$
accelerated through a potential	
difference V_2 :	
Equate the kinetic energies to	$2eV_1 = 3eV_2$
obtain:	or
	$V_2 = \frac{2}{3}V_1$ and (b) is correct.

*11 •

Picture the Problem We can use Coulomb's law and the superposition of fields to find E at the origin and the definition of the electric potential due to a point charge to find V at the origin.

Apply Coulomb's law and the superposition of fields to find the electric field *E* at the origin:

Express the potential *V* at the origin:

$$\boldsymbol{E} = \boldsymbol{E}_{+Qat-a} + \boldsymbol{E}_{+Qata}$$
$$= \frac{kQ}{a^2}\boldsymbol{\hat{i}} - \frac{kQ}{a^2}\boldsymbol{\hat{i}} = 0$$

$$V = V_{+Qat-a} + V_{+Qata}$$
$$= \frac{kQ}{a} + \frac{kQ}{a} = \frac{2kQ}{a}$$
and (b) is correct.

. .

21 •

Picture the Problem We can use the definition of finite potential difference to find the potential difference V(4 m) - V(0) and conservation of energy to find the kinetic energy of the charge when it is at x = 4 m. We can also find V(x) if V(x) is assigned various values at various positions from the definition of finite potential difference.

(<i>a</i>) Apply the definition of finite potential difference to obtain:	$V(4 \mathrm{m}) - V(0) = -\int_{a}^{b} \vec{E} \cdot d\vec{\ell} = -\int_{0}^{4\mathrm{m}} Ed\ell$ $= -(2 \mathrm{kN/C})(4 \mathrm{m})$ $= -8.00 \mathrm{kV}$
(b) By definition, ΔU is given by:	$\Delta U = q\Delta V = (3\mu\text{C})(-8\text{kV})$ $= \boxed{-24.0\text{mJ}}$
(c) Use conservation of energy to relate ΔU and ΔK :	$\Delta K + \Delta U = 0$ or $K_{4m} - K_0 + \Delta U = 0$
Because $K_0 = 0$:	$K_{4\mathrm{m}} = -\Delta U = 24.0 \mathrm{mJ}$
Use the definition of finite potential difference to obtain:	$V(x) - V(x_0) = -E_x(x - x_0)$ = -(2 kV/m)(x - x_0)
(<i>d</i>) For $V(0) = 0$:	V(x) - 0 = -(2 kV/m)(x - 0) or $V(x) = \boxed{-(2 \text{ kV/m})x}$
(<i>e</i>) For $V(0) = 4$ kV:	V(x) - 4 kV = -(2 kV/m)(x - 0) or V(x) = 4kV - (2kV/m)x
(<i>f</i>) For <i>V</i> (1m) = 0:	V(x) - 0 = -(2 kV/m)(x - 1) or V(x) = 2 kV - (2 kV/m)x

27 ••

Picture the Problem We know that energy is conserved in the interaction between the α

particle and the massive nucleus. Under the assumption that the recoil of the massive nucleus is negligible, we know that the initial kinetic energy of the α particle will be transformed into potential energy of the two-body system when the particles are at their distance of closest approach.

(a) Apply conservation of energy to
the system consisting of the
$$\alpha$$
 particle
and the massive nucleus: $\Delta K + \Delta U = 0$
or
 $K_{\rm f} - K_{\rm i} + U_{\rm f} - U_{\rm i} = 0$

Because $K_f = U_i = 0$ and $K_i = E$:

Letting *r* be the separation of the particles at closest approach, express $U_{\rm f}$:

$$U_{\rm f} = \frac{kq_{\rm nucleus}q_{\alpha}}{r} = \frac{k(Ze)(2e)}{r} = \frac{2kZe^2}{r}$$

Substitute to obtain:

$$-E + \frac{2kZe^2}{r} = 0$$

Solve for *r* to obtain:

$$r = \boxed{\frac{2kZe^2}{E}}$$

 $-E + U_{\rm f} = 0$

(b) For a 5.0-MeV α particle and a gold nucleus:

$$r_{5} = \frac{2(8.99 \times 10^{9} \text{ N} \cdot \text{m}^{2}/\text{C}^{2})(79)(1.6 \times 10^{-19} \text{ C})^{2}}{(5 \text{ MeV})(1.6 \times 10^{-19} \text{ J/eV})} = 4.55 \times 10^{-14} \text{ m} = 45.4 \text{ fm}$$

For a 9.0-MeV α particle and a gold nucleus:

$$r_9 = \frac{2(8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2)(79)(1.6 \times 10^{-19} \text{ C})^2}{(9 \text{ MeV})(1.6 \times 10^{-19} \text{ J/eV})} = 2.53 \times 10^{-14} \text{ m} = 25.3 \text{ fm}$$

33 ••

Picture the Problem For the two charges, r = |x - a| and |x + a| respectively and the electric potential at *x* is the algebraic sum of the potentials at that point due to the charges at x = +a and x = -a.

(a) Express
$$V(x)$$
 as the sum of the potentials due to the charges at $x = +a$ and $x = -a$:

$$V = \boxed{kq \left(\frac{1}{|x-a|} + \frac{1}{|x+a|}\right)}$$

*47 ••

Picture the Problem Let the charge per unit length be $\lambda = Q/L$ and dy be a line element with charge λdy . We can express the potential dV at any point on the *x* axis due to λdy and integrate of find V(x, 0).

(*a*) Express the element of potential*dV* due to the line element *dy*:

$$dV = \frac{k\lambda}{r}dy$$

V

where $r = \sqrt{x^2 + y^2}$

Integrate dV from y = -L/2 to y = L/2:

$$(x,0) = \frac{kQ}{L} \int_{-L/2}^{L/2} \frac{dy}{\sqrt{x^2 + y^2}}$$
$$= \boxed{\frac{kQ}{L} \ln\left(\frac{\sqrt{x^2 + L^2/4} + L/2}{\sqrt{x^2 + L^2/4} - L/2}\right)}$$

(*b*) Factor *x* from the numerator and denominator within the parentheses to obtain:

$$V(x,0) = \frac{kQ}{L} \ln \left(\frac{\sqrt{1 + \frac{L^2}{4x^2}} + \frac{L}{2x}}{\sqrt{1 + \frac{L^2}{4x^2}} - \frac{L}{2x}} \right)$$

Use
$$\ln \frac{a}{b} = \ln a - \ln b$$
 to obtain:

$$V(x,0) = \frac{kQ}{L} \left\{ \ln \left(\sqrt{1 + \frac{L^2}{4x^2}} + \frac{L}{2x} \right) - \ln \left(\sqrt{1 + \frac{L^2}{4x^2}} - \frac{L}{2x} \right) \right\}$$
Let $\varepsilon = \frac{L^2}{4x^2}$ and use $(1 + \varepsilon)^{1/2} = 1 + \frac{1}{2}\varepsilon - \frac{1}{8}\varepsilon^2 + \dots$ to expand $\sqrt{1 + \frac{L^2}{4x^2}}$:
 $\left(1 + \frac{L^2}{4x^2} \right)^{1/2} = 1 + \frac{1}{2}\frac{L^2}{4x^2} - \frac{1}{8} \left(\frac{L^2}{4x^2} \right)^2 + \dots \approx 1 \text{ for } x >> L.$

Substitute to obtain:

$$V(x,0) = \frac{kQ}{L} \left\{ \ln\left(1 + \frac{L}{2x}\right) - \ln\left(1 - \frac{L}{2x}\right) \right\}$$

Let $\delta = \frac{L}{2x}$ and use $\ln(1+\delta) = \delta - \frac{1}{2}\delta^2 + \dots$ to expand $\ln\left(1 \pm \frac{L}{2x}\right)$:
 $\ln\left(1 + \frac{L}{2x}\right) \approx \frac{L}{2x} - \frac{L^2}{4x^2}$ and $\ln\left(1 - \frac{L}{2x}\right) \approx -\frac{L}{2x} - \frac{L^2}{4x^2}$ for $x >> L$.

Substitute and simplify to obtain:

$$V(x,0) = \frac{kQ}{L} \left\{ \frac{L}{2x} - \frac{L^2}{4x^2} - \left(-\frac{L}{2x} - \frac{L^2}{4x^2} \right) \right\} = \boxed{\frac{kQ}{x}}$$

77 ••

Picture the Problem We can use $W_{q \rightarrow \text{final position}} = q \Delta V_{i \rightarrow f}$ to find the work required to move these charges between the given points.

(*a*) Express the required work in terms of the charge being moved and the potential due to the charge at x = +a:

(*b*) Express the required work in terms of the charge being moved and the potentials due to the charges at x = +a and x = -a:

$$W_{+Q \to +a} = Q\Delta V_{\infty \to +a}$$
$$= Q[V(a) - V(\infty)]$$
$$= QV(a) = Q\left(\frac{kQ}{2a}\right) = \boxed{\frac{kQ^2}{2a}}$$

$$W_{-Q \to 0} = -Q\Delta V_{\infty \to 0}$$

= $-Q[V(0) - V(\infty)]$
= $-QV(0)$
= $-Q[V_{\text{charge at } -a} + V_{\text{charge at } +a}]$
= $-Q\left(\frac{kQ}{a} + \frac{kQ}{a}\right) = \boxed{\frac{-2kQ^2}{a}}$

(c) Express the required work in terms of the charge being moved and the potentials due to the charges at x = +a and x = -a:

$$W_{-Q \to 2a} = -Q\Delta V_{0 \to 2a}$$

= $-Q[V(2a) - V(0)]$
= $-Q[V_{\text{charge at } -a} + V_{\text{charge at } +a} - V(0)]$
= $-Q\left(\frac{kQ}{3a} + \frac{kQ}{a} - \frac{2kQ}{a}\right)$
= $\frac{2kQ^2}{3a}$