Visualizing Medical Alarm History with Python

George Xie

Abstract

Medical alarm history is useful in hospital settings because it can be used to understand trends in
patient health, allowing doctors to make informed decisions. Current systems for checking alarm
history are inconvenient to use. Although visualizations do exist, they do not convey information
very effectively. In response to this problem, I utilized Plotly, a Python library, to create a
scatterplot that allows users to see at a glance the alarms that occurred during a certain time
period, conveying information through size and color while allowing details to be viewable on
hovering. In the future, I hope to improve and test this system, aiming to reduce the time spent
on reviewing medical alarm data and improve patient outcomes.

Introduction

In hospitals, doctors and nurses often use alarm data to understand a patient’s condition. While
active alarms are useful for nurses to respond to ongoing situations, alarm data history is
important for understanding longer-term trends.

However, current systems for checking alarm history are inconvenient to use. The database is in
the form of a table; although the user is given summaries of the types, durations, and times that
alarms occurred, there’s no way to visualize patterns other than filtering and looking at the
database, which makes it harder to interpret and understand data. In Figure 1, for example, the
user may see a spike in alarm count just before the halfway point in the view range, but there’s
no way to tell what type of alarms there are. Similarly, the user can see at a glance the top alarm
counts for each bed, but without directly searching the database, they cannot see when they
occurred, or how long they lasted.

.".-'-"-.-‘:‘ 1tch 51
Alarm Total 135 A” Ala“.ﬂg H]-
Crisis]

zoom (14 [| 7 [0 oo R -

Top 5 Alarms

Alarm Count

Top 5 Durations (days,hrs,min)

Duration

Figure 1: A screenshot of the current alarm database being used at the University of Maryland
Medical Center.

In this paper, I created a visualization system for medical alarms, using the Plotly Python library,
to improve the interpretability of alarm data. I aim to provide a more comprehensive overview
that allows users to see patterns in the data at a glance.

Methods

I was given a sample dataframe, in CSV format, consisting of 4484 alarms gathered from 12
beds at the University of Maryland Medical Center (UMMC) over a 72-hour period. (In
compliance with HIPAA regulations surrounding the use of PHI, I have shifted the AlarmTime
of the data by an arbitrary amount and applied a random shift to each data point. These changes
do not detract from the ideas underlying the visualization.) It includes six features:

AlarmTime: “YYYY-MM-DD HH:MM:SS” formatted string, the time that the alarm began.
ID: A seven-digit integer that acts as an alarm identifier.
BedUID: A three-digit integer ID of the bed where the alarm was triggered.

AlarmLevel: A one-digit integer encoding one of four alarm types, assigned automatically by
a computer. See Figure 2.

AlarmMessage: A formatted string describing what triggered the alarm. (ex. “HR HI ###”)

AlarmDuration: An integer representing the duration (in seconds) that the alarm was active.

Crisis ASYSTOLE 4 Advisory ART1D 421

HR HI 68 ART1 M 211
ART1S 963

HRLO 33
ART2D 46
ICP1TM 116 Em—— -
ICPZM 184 ART2S 69
ICP4M 14 CAL CO2 5
NO BREATH 3g CAL SENSOR 1
CHECK ADAPTER SI75]

V TACH 15
CO2 BLKD 2

System ARRHY SUSPEND 147
NBP D 47
CONNECT PROBE 41 NBP M 7
LEADS FAIL 144 NBP S 87
NBP MAX 13 NO BREATH 101
NO ECG 26 SPO2 HI 1
SPO2 LO 814

RR LEADS 28
Warning ICP1M 1

SENSCR 24
ICP3 M 2
SPO2 PROBE 186 NO BREATH g
WRONG CABLE 1 SPO2LO 16

Figure 2: A table of the first two words of the alarm messages and their respective counts for
each alarm type.

Alarm Types Alarm Durations
3500 1200 A
3000 4 1000 4
25001
800 4
& 2000 g
c c
g L 600
(=2 (=2
2 1500 4 2
400
1000 4
N N | ‘ | |
o : 0 ||IIIIIII I|| [TI [} I I| .
Advisory Crisis System Warning 0 20 40 60 80
Alarm Type Alarm Duration

Figure 3 (left): A bar chart showing the distribution of alarm types.
Figure 4 (right): A histogram of all alarm durations.

I first created some basic visualizations to get a sense of the data. The two aspects that stood out
the most to me were the alarm types and durations: a majority of the alarms were Advisories, and
a majority of the alarms were short, with very brief “instantaneous” ones marked as lasting zero
seconds.

I understood that there were three big things to communicate: Time of alarm, duration of alarm,
and some basic indication of the alarm type. This motivated my first idea.

Timeline

Making a timeline was an intuitive choice; considering the classic example of a schedule, it is
immediately apparent when an event starts and how long it lasts. I split the data into the four
different alarm types, and after some research, chose to use Plotly for its convenience. After
isolating the data from just one bed, I created a timeline that simply had bars representing the
start and end times (see Figures 5a, 5b, and 5¢).

However, a drawback is immediately visible. Alarms are short — on the order of seconds, rarely
lasting longer than a minute — making it difficult to see at a glance where any given alarm is
without zooming in. Furthermore, some alarms have a length of zero, making them invisible.
While I didn’t want the short alarms to clutter the screen, I wanted them to at least be visible at a
glance: even short alarms may be clinically significant. This motivated my next idea.

Warning

AlarmLevel

System
Advisory
Crisis
12:00 00:00 12:00 00:00 12:00 00:00
Dec 24, 1981 Dec 25, 1981 Dec 26, 1981 Dec 27, 1981
o
>
[
]
£
=
o
<
12:00 00:00 00:00
Dec 24, 1981 Dec 25, 1981 Dec 26, 1981 Dec 27, 1981

©

=

] Advisory|

E

=

=

=4

22:00 22:30 23:00 23:30 00:00 00:30 01:00 01:30 02:00
Dec 25, 1981 Dec 26, 1981

Figures 5a, 5b, 5c: Visualization when zoomed out (top), selecting an area to zoom in on
(middle), and results (bottom).

Timeline with markers

At the beginning of each bar, I added a small red marker to indicate that there is an alarm there.
My motivation for doing this was so that alarms could at minimum be visible at any zoom level.

While I considered this an improvement, I knew that the alarm type was important, accounting
for the context in which I envision this system being used. I could think of two ways to do this;
color-coding, and sorting the dots by alarm type instead of alarm level. The former was more
compact — allowing the possibility of fitting more information onto a monitor with limited
space — but with the tradeoff that it was more cluttered. The latter distinguished more easily
between alarm types, making the information more visible at a glance, though this resulted in a
lack of severity indicators.

After consideration, I opted to use color coding to represent alarm types. I valued conciseness,
and color was more scalable; there were many more alarm types than alarm levels, and I felt that
having a longer legend was more beneficial than having more bars. I reasoned that I could
implement a filter system to mitigate the possibility of clutter.

Medical Alarms Timeline

12:00 00:00 12i00 1200 00:00
Dec 24, 1981 Dec 25, 1981 Dec 27, 1981

Medical Alarms Timeline

Alarm Level

12:00
Dec 24, 1981

Medical Alarms Timeline

uuuuuu v b b v ——— - toi— e

19:00 20:00 w0 2200
Dec 25, 1981

200

000 o100 02:00
Dec 26, 1981
Time

Figures 6a, 6b, 6¢: Visualization when zoomed out (top), selecting an area to zoom in on
(middle), and results with hovertext (bottom).

Color-coded markers

I now faced the question of how to represent the alarm types. When I was given the dataset, the
only indication of alarm type I had was the AlarmMessage column, which I couldn’t
immediately use; since alarm values varied, my code would recognize them as distinct and
assign a color coding to each distinct value. In reality, though, this is not only unhelpful but
detrimental, cluttering the screen without providing any real use of color coding.

Thus, I created a new column, AlarmMessageSimplified, with the first word of each
AlarmMessage. On implementation, I found out that Plotly automatically created a filtering
system, where one could click on a category in the legend to toggle; double click, and it would
filter all but that category. However, while it worked as expected on the timeline, I found that it
left the markers unfiltered. Reviewing my code, I hypothesized that since the markers weren’t a
part of the timeline itself, instead “layered on top”, Plotly may not have considered it part of the
figure for filtering purposes. Finally, I noticed how the actual timeline portion did not contribute
as much to the visualization as I initially imagined; while it is a nice visual when visible, it was
not helpful when zoomed out, only serving as a measure of alarm density. Thus, I decided to

create a new system centered around the markers themselves.
Q i}

Medical Alarms Timeline

AlarmMessageSimplified
H HR
Warning B spo2
W nBP
B ART1
LEADS
SENSOR
System : A/ = e e CONNECT
ARRHY
RR
NO
m v

Advisory @ o oo o “e e som s o o0 omm Cmmme® cmmmme % s @ e @ o cmmmm o e Markers

Alarm Level|

Crisis

12:00 00:00 12:00 00:00
Dec 26, 1981 Dec 27, 1981

Time

Fig 7: Visualization with color-coded markers.

Duration indicators with size

The implementation and the resulting interface were similar to those of the timeline. The
drawback to this implementation was that I no longer had a way to see duration without
hovering. Since I still wanted to display duration in a way that emphasized longer alarms, I
decided to use dot size. However, I was unable to use AlarmDuration directly; alarms with length
0 would not appear, and the longer alarms were unnecessarily large. Thus, I created a new
column, DotSize, to contain the dot sizes. I arbitrarily defined it as AlarmDuration/2 + 1; this
guaranteed that all points were at least visible while limiting the size of the larger dots.

During discussions with other members of my lab, I was advised to include more information in
AlarmMessageSimplified. It is unclear at a glance what some of them were meant to signify;
“NO BREATH?” is clearer than “NO”, and “V TACH” is clearer than “V”. So, I changed the
AlarmMessageSimplified to use the first two words instead.

e i
) AlarmMessageSimplified
Warning R
SPO2
NBP
ART1
LEADS
System ® @ SENSOR
_ CONNECT
g ARRHY
3 RR
E NO
o
2 \
i | (@ wae® CaC (@@) ice C ({ |
advisory (@) o @ CE«ae CC(WEEwPe -0 2 o(0O

AlarmMessageSimplified=HR

AlarmTime=Dec 24, 1981, 13:16:09
AlarmLevel=Crisis

DotSize=3

AlarmMessage=HR HI 138

®
[]

Crisis ()

12:00 [N, 0 00:00 12:00 00:00
Dec 24, 108 Dec 26, 1981 Dec 27, 1981
AlarmTime

Fig. 8: Scatterplot visualization.

Result

The full implementation of my current working system is below.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go

#File was preloaded.
df = pd.read_csv("/content/alarmdb.csv", names = ["AlarmTime", "id", "BeduID", "AlarmLevel", "AlarmMessage", "AlarmDuration”])

#alarm Levels are given as integers; this converts them to their corresponding strings.
alarmLevels = ["","","","System”, "","Advisory","Warning","Crisis"]
newAlarmLevel = [alarmLevels[i] for i in df['AlarmLevel’]]

df['AlarmLevel’] = newAlarmLevel

#Creating AlarmMessageSimplified. Note that the implementation here is for the two-word AlarmMessageSimplifed.
messages = df["AlarmMessage”].str.split().str[:2]
for i,message in enumerate(messages):

stringMessage = ""

#These two alarm types are only one word long.

if message[@] == "ASYSTOLE" or message[@] == "SENSOR":
stringMessage = message[@]

else:

stringMessage = message[@] + " " + message[1]
messages[i] = stringMessage

df["AlarmMessageSimplified”] = messages

#Convert AlarmTime to datetime and calculate AlarmEnd.
df['AlarmTime'] = pd.to datetime(df['AlarmTime'])
df['AlarmEnd’] = df['AlarmTime'] + pd.to timedelta(df['AlarmDuration’], unit='s")

#Establishing DotSize
df['DotSize"'] = df['Alarmburation”]/2+2

For privacy purposes, I will shift all AlarmTime values back by an arbitrary amount of time,
and scramble the timings by applying some shift to each AlarmTime.
Note that these two lines would not be here in practice.

4f " AlarnTine'] = df[*AlarnTine’] - pd.pateofrset
df["AlarnTine'] - df[’AlarnTine’] + pd. to_tinedelta

#T will be using information from one specific bed.
dfBed265 = df[df.BedUID == 265]

fig = px.scatter(dfBed265, x="AlarmTime", y="AlarmLevel"”, color="AlarmMessageSimplified",

size="DotSize", hover_data=["AlarmMessage","AlarmDuration”])

My attempt at removing DotSize, AlarmMessageSimplified, and AlarmLevel -- redundant information -- from hoverdata.
Not currently functional; may continue work on this as a future step.

fig.update_traces(customdata=dfBed265[["AlarmTime", 'AlarmMessage’, 'AlarmDuration']],

hovertemplate="
".join([

"Alarm Time: %{customdata[e]}",

"Alarm Message: %{customdata[1]}",

"Duration: %{customdata[2]} seconds”,
m

fig.show()

Fig. 9a, 9b: My code for creating my current system.

AlarmLevel

AlarmMessageSimplified

Warning HR HI
SPO2 LO
NBP D
NBP S
ART1 S
= Y LEADS FAIL
System @ \.@]X@_((! @ e CEnsOR
ART1 D
NBP MAX
ART1I M
CONNECT PROBE
Advisory @ » @ - € 3 m((f: ® 9 P ® SPO2 PROBE

ARRHY SUSPEND
RR LEADS
NO BREATH

AlarmMessageSimplified=HR HI V TACH

AlarmTime=Dec 24, 1981, 13:16:22

AlarmLevel=Crisis

Crisis (] DotSize=3 e
AlarmMessage=HR HI 138
PR 5 | Duration=2 00:00 12:00 00:00
Dec 24, 1 GBI Eaas P Dec 26, 1981 Dec 27, 1981

AlarmTime

Fig. 10: My current system, compressed for viewing ease, with the cursor hovering over a

sample alarm.

In summary:

This system is a scatterplot with the alarm levels as categories on the vertical axis and
time on the horizontal axis, where each point represents an alarm.

For each point, the color represents the alarm type, and the size indicates duration.
When hovering over a point, the visualization displays information about the alarm.
Importantly, it shows the time, alarm message, and duration.

The user can select an area on the visualization to zoom in. This allows for more details
to be viewable.

Clicking on an AlarmMessageSimplified option on the right filters it from the screen.
Double-clicking filters all alarms except the selected one.

Future steps

The AlarmLevel labels were computer-generated, and [was not given any information on how
the alarm system generated the labels for “Advisory”, “Warning”, and “Crisis”. In the future, I
hope to investigate the current categorization and attempt to redesign it to improve patient

outcomes.

Depending on usability, I may change the organization of my current system further; if space is

not as big of an issue, for example, I may split the rows by AlarmMessageSimplified and use a
simple color code or some other method to display AlarmLevel. At the moment, the values are
not in order of severity; I hope to investigate how Plotly sorts the rows, as well as what other

methods there are to convey the severity of crisis alarms. In addition, I will create documentation
that explains how the visualization works.

Note that with this system, there is repetition of color in the legend starting from CONNECT
PROBE, and a strong similarity between the colors: SPO2, ART1 S, and ART1 M, for example,
are all shades of orange. This reduces its usefulness as a color coding and makes it unlikely to be
useful to colorblind users. This shows the tradeoffs between one-word and two-word
AlarmMessageSimplified; in the future, I may further analyze this problem to decide between the
two, find a compromise, or develop a new solution. I also hope to compare this system to the
existing system through testing.

Acknowledgments

This research was done at the STAR-ORC lab at the University of Maryland Medical
Center. I thank Dr. Peter Hu for his experience and support, and Mr. Bradford Burdette for his
mentorship. I would like to thank Mr. Anthony Wang for providing me with data, and Dr. Megan
Watkins for her review of my system. Finally, I would like to thank Dr. Fritz for his review of my
paper, and Mr. Peter Ostrander for coordinating the Senior Research Project.

	Visualizing Medical Alarm History with Python
	Abstract
	Introduction
	Methods
	Result
	Future steps
	Acknowledgments

