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Abstract 
Medical alarm history is useful in hospital settings because it can be used to understand trends in 
patient health, allowing doctors to make informed decisions. Current systems for checking alarm 
history are inconvenient to use. Although visualizations do exist, they do not convey information 
very effectively. In response to this problem, I utilized Plotly, a Python library, to create a 
scatterplot that allows users to see at a glance the alarms that occurred during a certain time 
period, conveying information through size and color while allowing details to be viewable on 
hovering. In the future, I hope to improve and test this system, aiming to reduce the time spent 
on reviewing medical alarm data and improve patient outcomes. 

Introduction 
In hospitals, doctors and nurses often use alarm data to understand a patient’s condition. While 
active alarms are useful for nurses to respond to ongoing situations, alarm data history is 
important for understanding longer-term trends.  

However, current systems for checking alarm history are inconvenient to use. The database is in 
the form of a table; although the user is given summaries of the types, durations, and times that 
alarms occurred, there’s no way to visualize patterns other than filtering and looking at the 
database, which makes it harder to interpret and understand data. In Figure 1, for example, the 
user may see a spike in alarm count just before the halfway point in the view range, but there’s 
no way to tell what type of alarms there are. Similarly, the user can see at a glance the top alarm 
counts for each bed, but without directly searching the database, they cannot see when they 
occurred, or how long they lasted.  



 

 

Figure 1: A screenshot of the current alarm database being used at the University of Maryland 
Medical Center. 

In this paper, I created a visualization system for medical alarms, using the Plotly Python library, 
to improve the interpretability of alarm data. I aim to provide a more comprehensive overview 
that allows users to see patterns in the data at a glance. 

Methods 
I was given a sample dataframe, in CSV format, consisting of 4484 alarms gathered from 12 
beds at the University of Maryland Medical Center (UMMC) over a 72-hour period. (In 
compliance with HIPAA regulations surrounding the use of PHI, I have shifted the AlarmTime 
of the data by an arbitrary amount and applied a random shift to each data point. These changes 
do not detract from the ideas underlying the visualization.) It includes six features: 



•​ AlarmTime: “YYYY-MM-DD HH:MM:SS” formatted string, the time that the alarm began. 

•​ ID: A seven-digit integer that acts as an alarm identifier. 

•​ BedUID: A three-digit integer ID of the bed where the alarm was triggered. 

•​ AlarmLevel: A one-digit integer encoding one of four alarm types, assigned automatically by 
a computer. See Figure 2. 

•​ AlarmMessage: A formatted string describing what triggered the alarm. (ex. “HR HI ###”) 

•​ AlarmDuration: An integer representing the duration (in seconds) that the alarm was active.



 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2: A table of the first two words of the alarm messages and their respective counts for 
each alarm type. 

 

 

Figure 3 (left): A bar chart showing the distribution of alarm types. ​ ​ ​   
Figure 4 (right): A histogram of all alarm durations.​

 



I first created some basic visualizations to get a sense of the data. The two aspects that stood out 
the most to me were the alarm types and durations: a majority of the alarms were Advisories, and 
a majority of the alarms were short, with very brief “instantaneous” ones marked as lasting zero 
seconds.  

I understood that there were three big things to communicate: Time of alarm, duration of alarm, 
and some basic indication of the alarm type. This motivated my first idea. 

Timeline 

Making a timeline was an intuitive choice; considering the classic example of a schedule, it is 
immediately apparent when an event starts and how long it lasts. I split the data into the four 
different alarm types, and after some research, chose to use Plotly for its convenience. After 
isolating the data from just one bed, I created a timeline that simply had bars representing the 
start and end times (see Figures 5a, 5b, and 5c).  

However, a drawback is immediately visible. Alarms are short — on the order of seconds, rarely 
lasting longer than a minute — making it difficult to see at a glance where any given alarm is 
without zooming in. Furthermore, some alarms have a length of zero, making them invisible. 
While I didn’t want the short alarms to clutter the screen, I wanted them to at least be visible at a 
glance: even short alarms may be clinically significant. This motivated my next idea. 



 

Figures 5a, 5b, 5c: Visualization when zoomed out (top), selecting an area to zoom in on 
(middle), and results (bottom).​

 



Timeline with markers 

At the beginning of each bar, I added a small red marker to indicate that there is an alarm there. 
My motivation for doing this was so that alarms could at minimum be visible at any zoom level. 

While I considered this an improvement, I knew that the alarm type was important, accounting 
for the context in which I envision this system being used. I could think of two ways to do this; 
color-coding, and sorting the dots by alarm type instead of alarm level. The former was more 
compact — allowing the possibility of fitting more information onto a monitor with limited 
space — but with the tradeoff that it was more cluttered. The latter distinguished more easily 
between alarm types, making the information more visible at a glance, though this resulted in a 
lack of severity indicators.  

After consideration, I opted to use color coding to represent alarm types. I valued conciseness, 
and color was more scalable; there were many more alarm types than alarm levels, and I felt that 
having a longer legend was more beneficial than having more bars. I reasoned that I could 
implement a filter system to mitigate the possibility of clutter. 

 



 

 

Figures 6a, 6b, 6c: Visualization when zoomed out (top), selecting an area to zoom in on 
(middle), and results with hovertext (bottom). 

 



Color-coded markers 

I now faced the question of how to represent the alarm types. When I was given the dataset, the 
only indication of alarm type I had was the AlarmMessage column, which I couldn’t 
immediately use; since alarm values varied, my code would recognize them as distinct and 
assign a color coding to each distinct value. In reality, though, this is not only unhelpful but 
detrimental, cluttering the screen without providing any real use of color coding.  

Thus, I created a new column, AlarmMessageSimplified, with the first word of each 
AlarmMessage. On implementation, I found out that Plotly automatically created a filtering 
system, where one could click on a category in the legend to toggle; double click, and it would 
filter all but that category. However, while it worked as expected on the timeline, I found that it 
left the markers unfiltered. Reviewing my code, I hypothesized that since the markers weren’t a 
part of the timeline itself, instead “layered on top”, Plotly may not have considered it part of the 
figure for filtering purposes. Finally, I noticed how the actual timeline portion did not contribute 
as much to the visualization as I initially imagined; while it is a nice visual when visible, it was 
not helpful when zoomed out, only serving as a measure of alarm density. Thus, I decided to 
create a new system centered around the markers themselves.​

Fig 7: Visualization with color-coded markers.  



Duration indicators with size​
The implementation and the resulting interface were similar to those of the timeline. The 
drawback to this implementation was that I no longer had a way to see duration without 
hovering. Since I still wanted to display duration in a way that emphasized longer alarms, I 
decided to use dot size. However, I was unable to use AlarmDuration directly; alarms with length 
0 would not appear, and the longer alarms were unnecessarily large. Thus, I created a new 
column, DotSize, to contain the dot sizes. I arbitrarily defined it as AlarmDuration/2 + 1; this 
guaranteed that all points were at least visible while limiting the size of the larger dots.  

During discussions with other members of my lab, I was advised to include more information in 
AlarmMessageSimplified. It is unclear at a glance what some of them were meant to signify; 
“NO BREATH” is clearer than “NO”, and “V TACH” is clearer than “V”. So, I changed the 
AlarmMessageSimplified to use the first two words instead. 

Fig. 8: Scatterplot visualization.  



 

Result 
The full implementation of my current working system is below.  

Fig. 9a, 9b: My code for creating my current system. 



Fig. 10: My current system, compressed for viewing ease, with the cursor hovering over a 
sample alarm. 

In summary: 

●​ This system is a scatterplot with the alarm levels as categories on the vertical axis and 
time on the horizontal axis, where each point represents an alarm.  

●​ For each point, the color represents the alarm type, and the size indicates duration.  
●​ When hovering over a point, the visualization displays information about the alarm. 

Importantly, it shows the time, alarm message, and duration.  
●​ The user can select an area on the visualization to zoom in. This allows for more details 

to be viewable. 
●​ Clicking on an AlarmMessageSimplified option on the right filters it from the screen. 

Double-clicking filters all alarms except the selected one. 

Future steps 
The AlarmLevel labels were computer-generated, and I was not given any information on how 
the alarm system generated the labels for “Advisory”, “Warning”, and “Crisis”. In the future, I 
hope to investigate the current categorization and attempt to redesign it to improve patient 
outcomes. 

Depending on usability, I may change the organization of my current system further; if space is 
not as big of an issue, for example, I may split the rows by AlarmMessageSimplified and use a 
simple color code or some other method to display AlarmLevel. At the moment, the values are 
not in order of severity; I hope to investigate how Plotly sorts the rows, as well as what other 



methods there are to convey the severity of crisis alarms. In addition, I will create documentation 
that explains how the visualization works.  

Note that with this system, there is repetition of color in the legend starting from CONNECT 
PROBE, and a strong similarity between the colors: SPO2, ART1 S, and ART1 M, for example, 
are all shades of orange. This reduces its usefulness as a color coding and makes it unlikely to be 
useful to colorblind users. This shows the tradeoffs between one-word and two-word 
AlarmMessageSimplified; in the future, I may further analyze this problem to decide between the 
two, find a compromise, or develop a new solution. I also hope to compare this system to the 
existing system through testing. 
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