
Homework #3 — PHYS 625 — Spring 2021
Deadline: Monday, March 22, 2020, by email to
masoudma@umd.edu before class

Professor Victor Galitski
Office: 2270 PSC

TA: Masoud Arzanagh
masoudma@umd.edu

Web page: https://terpconnect.umd.edu/ galitski/PHYS625/index.html

Do not forget to write your name and the homework number!

Tight-binding models. Single-particle Green’s function

1. Band structure for a particle hopping on a square lattice

Consider an infinite square lattice with lattice spacing a and with discrete translation
symmetry ~a ≡ (ax, ay) = (a, a). Consider fermionic particles (e.g., electrons) hopping
on the lattice, described by the following (nearest-neighbor) Hamiltonian,

Ĥsq = −t
∑
〈nm〉

ĉ†nĉm + H.c. (1)

where, 〈nm〉 denote nearest-neighbor lattice sites.

(a) Calculate the band structure of the model E(k).

(b) Provide an example of a perturbation to or modification of the Hamiltonian that
would give rise to a gap in the spectrum. Note that there is no unique solution to
this problem, there are in fact infinite number of perturbations that would result
in a gap.

2. Band structure of a spinless graphene

Graphene has a two dimensional honeycomb lattice structure composed of regular
hexagons as shown in Fig.1. Consider the nearest-neighbor hopping Hamiltonian for
spinless graphene,

Ĥsq = −t
∑
〈nm〉

â†nb̂m + H.c. (2)

where, 〈nm〉 denote nearest-neighbor lattice sites on the honeycomb lattice and a, b
are the electron annihilation operators on the A and B sublattice, respectively.
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Figure 1: The sub-lattices in graphene are color-coded differently. ~a1 and ~a2 are the lattice
unit vectors, and δi, i = 1, 2, 3 are the nearest-neighbor vectors. Let ||δ1,2,3|| = a =⇒ ~a1 =
a
2
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√

3),~a2 = a
2
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(a) Prove the existence of Dirac points in the spectrum, defined as a point in the
Brillouin zone, where the density of state vanishes, while electron group velocity
v = dε(k)

dk
remains finite. How many nonequivalent Dirac points are in the model?

(b) Calculate the band structure of the model E(~k). You can use numerical sim-
ulations (e.g. mathematica or Matlab or any other computer program) to plot
the band structure. If you are unable to derive/plot the full band structure, just
derive the asymptotic form of the band structure near the Dirac points.

3. In the lectures, we derived the following equation for the scattering amplitude operator

F̂ = V̂ + V̂ Ĝ0F̂ , (3)

which is valid in any representation for any scattering potential. E.g., in position
representation it should be understood as an equation for the Kernel, F (r, t; r′, t′) (the
same holds for all operators involved). The action of an operator and the operator
products are defined in a natural way (as a “continuum version” of a matrix product).

Derive the explicit form that Eq. (3) takes in energy-momentum representation.

4. Using the toy diagram tecninque developed in the lectures, derive the first correction
to the Born approximation formula for the scattering amplitude. Draw the relevant
diagram and write down the correpsonding equation in momentum representation.

5. In 1956, Leon Cooper considered the problem of electrons experiencing an attractive
force, when their momenta lie within a thin shell near the Fermi surface. He showed
that this interaction leads to the formation of bound states (now known as Cooper
pairs) for an arbitrarily weak attractive force. His paper (https://journals.aps.
org/pr/abstract/10.1103/PhysRev.104.1189) was the basis of the follow-up work
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of Bardeen, Cooper, and Schrieffer, who were later awarded Nobel prize for the de-
velopment of the theory superconductivity http://nobelprize.org/nobel_prizes/

physics/laureates/1972/.

Consider the two-particle problem in which the particles experience a constant attrac-
tive potential, −V0, if their momenta lie within a thin shell defined by

k0 − δk < {|k1|, |k2|} < k0 + δk

with δk � k0 and do not interact otherwise.

Derive the Schrödinger equation in momentum space corresponding to this problem,
solve it for the bound state (Cooper pair), and determine its binding energy. You may
follow the famous work of Cooper, but are asked explain all calculations.

6. Bonus problem (not required): Bernevig-Hughes-Zhang (BHZ) model

Consider the BHZ model, introduced in class, with the 4×4 Bloch Hamiltonian defined
as follows

ĤBHZ =

(
ĥp 0

0 ĥ∗−p

)
(4)

where, ĥp = εp1̂ + ~dp · ~̂τ , where the spin-orbit-coupling vector is ~dp = (Apx, Apy,Mp)
and εp is the spin-independent part of the electron dispersion. Mp = M − Bp2 is the

momentum-dependent Dirac mass, ~̂τ = (τ̂x, τ̂y, τ̂z) is the vector of Pauli matrices and
1̂ is a 2× 2 unit matrix and A,B, and M are constant parameters.

(a) Plot the band structure of the BHZ model.

(b) Find the eigenstates, |un(p)〉 of one of the blocks of the BHZ Hamiltonian (where
n is the band index; e.g., we can define n = −1 for the lower - valence - band and
n = +1 for the upper - conduction - band).

(c) Calculate the Berry connection for the valence band (occupied in the insulating
state) of one of the blocks,

A(p) = 〈u(p)|∂pu(p)〉 (5)

Here, the band index is omitted for brevity.

(d) Calculate the corresponding Berry curvature in the valence band.

B(p) = curlA(p) (6)

(e) Calculate the Chern number of the valence band of one of the blocks, by integrat-
ing the Berry curvature, for M = B = +1 and B = −M = 1.
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