Using matrices and vectors for spin operators and wave functions.

A general form of a wave function of a spin-½ state can be written as follows: $\Psi = b_1 \alpha + b_2 \beta$. Recall that because functions α and β form a complete set, any function describing a spin-1/2 system can be written as a linear combination/superposition of α and β , with b_1 and b_2 being "projection coefficients". Because the eigenfunctions α and β are the same for the various wave functions Ψ , the wave function Ψ is fully defined by the projection coefficients b_1 and b_2 . Thus it can simply be represented as a list of

values: $\{b_1 \ b_2\}$ which can also be presented as a 2-element vector: $\Psi = b_1 \alpha + b_2 \beta = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$. It could be a

row-vector or a column-vector. For convenience of using matrix multiplications (see below), a column-vector is typically used.

For example, the eigenfunctions of the \hat{S}_z operator can be represented as column-vectors:

$$\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \quad \beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Complex conjugates of these functions are represented as row-vectors: $\alpha^* = \begin{pmatrix} 1 & 0 \end{pmatrix}; \quad \beta^* = \begin{pmatrix} 0 & 1 \end{pmatrix}; \quad \Psi^* = \begin{pmatrix} b_1 & b_2 \end{pmatrix}.$

(Strictly speaking, for matrices and vectors we have to make them not only complex conjugate but also transpose; these conjugate transpose are called *adjoint* matrices or vectors and typically designated as $\alpha^{\dagger} = (\alpha^{*})^{T}$, but I will only the asterisk here, for simplicity.)

So, an integral of two wave functions, for example, $\Psi = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ and $\Phi = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$, can be represented

simply as a vector multiplication:

 $\int \Psi * \Phi \, d\sigma = \begin{pmatrix} b_1 & b_2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = b_1 c_1 + b_2 c_2$. Recall we discussed that this integral in QM has the meaning

of a projection of function Ψ onto Φ (and vice versa) and is analogous to a dot-product of two vectors -here it is actually a dot product!

For example, using these rules you can verify that the vectors representing the functions α and β are orthonormal:

$$\int \alpha \ast \alpha \ d\sigma = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1; \ \int \beta \ast \beta \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1; \ \int \alpha \ast \beta \ d\sigma = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = 0; \ \int \beta \ast \alpha \ d\sigma = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$$

In the same spirit, spin-1/2 operators are the conveniently represented by 2x2 matrices:

$$\hat{S}_{x} = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \\ \hat{S}_{y} = \frac{i\hbar}{2} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}; \\ \hat{S}_{z} = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}; \\ \hat{S}^{2} = \hat{S}_{x}^{2} + \hat{S}_{y}^{2} + \hat{S}_{z}^{2} = \frac{3\hbar^{2}}{4} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

You can easily derive these matrices using the following equations that define how the spin-1/2 operators act on the functions α and β .

-

$$\hat{S}_{z}\alpha = \frac{\hbar}{2}\alpha; \quad \hat{S}_{z}\beta = -\frac{\hbar}{2}\beta; \quad \hat{S}_{x}\alpha = \frac{\hbar}{2}\beta; \quad \hat{S}_{x}\beta = \frac{\hbar}{2}\alpha; \quad \hat{S}_{y}\alpha = i\frac{\hbar}{2}\beta; \quad \hat{S}_{y}\beta = -i\frac{\hbar}{2}\alpha$$
$$\int \alpha^{*}\alpha \ d\sigma = 1; \quad \int \beta^{*}\beta \ d\sigma = 1; \quad \int \beta^{*}\alpha \ d\sigma = 0; \quad \int \alpha^{*}\beta \ d\sigma = 0$$

For example, let's derive a matrix representation for \hat{S}_z . We start with a general form of a 2x2 matrix:

$$\hat{S}_{z} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
; where *a*,*b*,*c*,*d* are the unknowns that we need to determine. First let's substitute the

vector form or α and the matrix form of \hat{S}_z into the equation: $\hat{S}_z \alpha = \frac{\hbar}{2} \alpha$, which now reads

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. The multiplication in the left-hand-side of this equation gives $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$, and we get $\begin{pmatrix} a \\ c \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. This immediately gives $\Rightarrow a = \frac{\hbar}{2}$ and c = 0.

Likewise, using the equation $\hat{S}_z \beta = -\frac{\hbar}{2} \beta$, we get $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} b \\ d \end{pmatrix} = -\frac{\hbar}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\Rightarrow b = 0$ and

$$d = -\frac{\hbar}{2}$$
. Finally, after putting these values of *a*,*b*,*c*,*d* into the matrix expression for \hat{S}_z we get
 $\hat{S}_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. (Q.E.D.)

Here I considered the case of spin S=½. The same approach can be used for other spin values, just the vectors will be of length 2S+1, and the matrices will be of size (2S+1)x(2S+1). Because spin is an angular momentum, the same concept applies to the general case of the angular momentum operator \hat{l} and its components: $(\hat{l}_x, \hat{l}_y, \hat{l}_z)$, and the wave functions corresponding to various states of the angular momentum – just the size of such vectors representing wave functions will be 2/+1 and the matrices will be of size (2/+1)x(2/+1). Furthermore, a similar representation can be used for any countable/denumerable set of wave functions (for example, representing discrete states of a Q.M. system) and the corresponding operators.