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Using matrices and vectors for spin operators and wave functions. 

A general form of a wave function of a spin-½ state can be written as follows: 1 2b bα βΨ = + .  Recall 

that because functions α and β  form a complete set, any function describing a spin-1/2 system can be 
written as a linear combination/superposition of α and β , with b1 and b2 being “projection coefficients”. 
Because the eigenfunctions α and β are the same for the various wave functions Ψ , the wave function 
Ψ is fully defined by the projection coefficients b1 and b2. Thus it can simply be represented as a list of 

values: {b1  b2} which can also be presented as a 2-element vector: 
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row-vector or a column-vector. For convenience of using matrix multiplications (see below), a column-
vector is typically used.  

For example, the eigenfunctions of the zŜ operator can be represented as column-vectors: 
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Complex conjugates of these functions are represented as row-vectors:
( ) ( ) ( )21*;10*;01* bb=Ψ== βα .  

(Strictly speaking, for matrices and vectors we have to make them not only complex conjugate but also 
transpose; these conjugate transpose are called adjoint matrices or vectors and typically designated as 
α†=( α*)T, but I will only the asterisk here, for simplicity.) 

So, an integral of two wave functions, for example, 
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simply as a vector multiplication: 
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of a projection of function Ψ onto Φ (and vice versa) and is analogous to a dot-product of two vectors -- 
here it is actually a dot product!  

For example, using these rules you can verify that the vectors representing the functions α and β are 
orthonormal: 

( ) ( ) ( ) ( ) ;0
0
1

10*;0
1
0

01*;1
1
0

10*;1
0
1

01* =







==








==








==








= ∫∫∫∫ σαβσβασββσαα dddd

In the same spirit, spin-1/2 operators are the conveniently represented by 2x2 matrices: 

 







=++=








−

=






 −
=








=

10
01

4
3ˆˆˆˆ;

10
01

2
ˆ;

01
10

2
ˆ;

01
10

2
ˆ

2
2222 

zyxzyx SSSSSiSS . 

You can easily derive these matrices using the following equations that define how the spin-1/2 
operators act on the functions α and β.  
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For example, let’s derive a matrix representation for zŜ . We start with a general form of a 2x2 matrix: 
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vector form or α and the matrix form of zŜ into the equation: αα
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Here I considered the case of spin S=½. The same approach can be used for other spin values, just the 
vectors will be of length 2S+1, and the matrices will be of size (2S+1)x(2S+1). Because spin is an angular 

momentum, the same concept applies to the general case of the angular momentum operator l̂


and its 

components: ˆ ˆ ˆ( , , )x y zl l l , and the wave functions corresponding to various states of the angular 

momentum – just the size of such vectors representing wave functions will be 2l+1 and the matrices will 
be of size (2l+1)x(2l+1).  Furthermore, a similar representation can be used for any 
countable/denumerable set of wave functions (for example, representing discrete states of a Q.M. 
system) and the corresponding operators. 

 


