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Problem 1 (4 points). Consider electrons in the π-network in decapentaene (C10H12, see the 
structure drawing below) as particles in a 1-D box. Recall that each carbon atom donates one 
electron to the π-network. The C=C bond length is 1.35 Å, the C–C bond length is 1.54 Å (1Å = 
10-10 m). What is the longest wavelength of light required to induce a transition from the ground 
state of these electrons to one of the excited states of these electrons? 

      
The box length can be estimated as a = 5 ×1.35 Å + 4 × 1.54 Å = 12.91 Å =12.91 ×10-10 m. The 
total number of donated π-electrons = 10: with no more than two electrons per energy level 
(according to Pauli exclusion principle), they will completely occupy 5 lowest energy levels (n 
=1 to 5). This will be the ground state of the system. Because the wavelength of 
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is inversely proportional to ∆E, the longest wavelength 

corresponds to the smallest quantum of energy. Since the energy of particle in a box increases as 
n2, the smallest quantum of energy will involve the transition to the first excited state(s). This 
will involve a change in the quantum number n from 5 to 6. The corresponding quantum of 
energy is: 
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λ = 4.99 ×10-7 m = 499 nm (this corresponds to green light near the edge 

between green and blue).  
 
Problem 2 (4 points). Are the wave functions listed below orthogonal to each other? Support 
your answer by performing the appropriate integration over the corresponding interval. Show 
your calculation. 
(A) wave functions of a particle in a 1D box corresponding to the states with n=2 and n=4. 
Yes they are. Here is my calculation: 
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Here I simplified the integrand using the trigonometric identity 

[ ]1sin sin cos( ) cos( )
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(B) wave functions of the harmonic oscillator corresponding to the states with n = 0 and n = 2; 
interval: –∞ < x < ∞ 
Yes they are. Here is my calculation: 
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Problem 3 (4 points). Is it possible to know with arbitrary precision both the angular coordinate 
φ and the angular momentum lz of a particle moving on a ring? Support your answer by 
evaluating the corresponding commutator. Show your calculation. Based on your results, 
formulate a mathematical equation representing the uncertainty principle for these two 
observables. 
Evaluate the commutator of the corresponding QM operators: 
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[ ] ilz =ˆ,φ̂ . Because the commutator is not zero, we conclude that the corresponding two 
physical observables (the angular momentum lz and the angular coordinate φ of the particle) 
cannot be known simultaneously with arbitrary precision.  
By full analogy of this commutator with that of x̂  and p̂ , and the analogy between x and φ and 

between p and lz, we can formulate the uncertainty principle for φ and lz as 
2


≥∆×∆ zlφ . The 

same result can be obtained rigorously by plugging in ˆ ˆ, zl iφ  =    into the equation that relates 

the uncertainties of observables A and B to the commutator of the corresponding operators
1 ˆ ˆ,
2

A B A B ∆ × ∆ ≥    where in this case ˆ ˆˆ ˆ, , zA B l i iφ   = = =      .  

 
Problem 4 (8 points). Consider vibrations of an oxygen molecule. Here are some relevant 
characteristics of the molecule: the equilibrium bond length is 1.208 Å (1Å=10-10 m), the force 
constant is 1177 N·m-1 (1 N=1 kg·m·s-2).  
(A) Assume that vibrational states of the oxygen molecule can be described by the harmonic 
oscillator model. Calculate the quantum of energy required for a transition between vibrational 
states with quantum numbers n and n+1 of the oxygen molecule. 
By the energy conservation law, the quantum of energy equals the energy difference between the 

two vibrational states:  1n n
kE E E hν
µ+∆ = − = =  . Substituting the reduced mass of O2, µ = 8 

amu = 1.328 ×10-26 kg (1 amu = 1.66 ×10-27 kg), and the force constant, we get ∆E=3.14×10-20 J. 
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(B) When approximating the actual potential energy of the inter-atomic interaction by the 
harmonic potential (parabola), 21

2V kx= , we assumed that the amplitudes of bond vibrations are 
small compared to the equilibrium bond length. Does this assumption hold for molecular 
oxygen? To answer this question, estimate the vibrational amplitude of the oxygen molecule in 
the ground state by calculating 2x x∆ = , and compare your result with the equilibrium bond 

length.    
Because of the symmetry of the harmonic potential, 
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vibrational amplitude can be estimated as 2

2
x x

kµ
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 . Substituting all the relevant 

parameters into this equation, we get ∆x ≈ 3.65×10-12 m. This value is only 3% of the equilibrium 
bond length in O2, therefore, the assumption of a relatively small amplitude of bond length 
variations is valid. 
(Note that you can evaluate <x2> without integration if you realize that it is directly related to the 
average potential energy, <V> = k<x2>/2, and recall the equipartitioning of the kinetic and 
potential energies of harmonic oscillator (we showed this in class), i.e. <V>=<E>/2 = hν/4).  
 
------------------------------------------------------------ 
The following table integrals might or might not turn useful:  
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