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Abstract. In her thesis, Mirzakhani showed that the number of simple closed geodesics of length

≤ L on a closed, connected, oriented hyperbolic surface X of genus g is asymptotic to L6g−6 times a
constant depending on the geometry of X. In this survey we give a detailed account of Mirzakhani’s

proof of this result aimed at non-experts. We draw inspiration from classic primitive lattice point

counting results in homogeneous dynamics. The focus is on understanding how the general principles
that drive the proof in the case of lattices also apply in the setting of hyperbolic surfaces.
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1. Introduction

Let us begin our discussion by recalling a classic result in number theory: the prime number
theorem. According to this theorem, the number π(N) of positive prime integers p such that p ≤ N
satisfies the following asymptotic estimate as N →∞,

π(N) ∼ N

log(N)
,

where the symbol ∼ represents the fact that the following identity holds

lim
N→∞

π(N)

N/ log(N)
= 1.

Analogous results also hold in the more geometric setting of hyperbolic surfaces. A closed geodesic
on a hyperbolic surface is said to be primitive if it cannot be represented as a concatenation of multiple
copies of a shorter closed geodesic. Given a closed, oriented hyperbolic surface X and a parameter
L > 0, denote by c(X,L) the number of non-oriented, primitive closed geodesics on X of length ≤ L.
The prime geodesic theorem states that, for any closed, connected, oriented hyperbolic surface X, the
following asymptotic estimate holds as L→∞,

c(X,L) ∼ eL

2L
.

This result shows in particular that the asymptotics of c(X,L) as L → ∞ do not depend on the
geometry of X nor on its topology. The first proof of this theorem was given by Huber and Selberg
using analytic methods. See [Bus92, Chapter 9] for a detailed discussion of this proof.
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In the more geometric setting of hyperbolic surfaces we can push our curiosity even further. A
closed geodesic on a hyperbolic surface is said to be simple if it does not intersect itself. Given a
closed, connected, oriented hyperbolic surface X and a parameter L > 0, denote by s(X,L) the
number of simple closed geodesics on X of length ≤ L. What are the asymptotics of this quantity as
L→∞? Do they depend on the geometry of X? Do they depend on the topology of X?

These questions, which a priori seem very similar to the ones answered by the prime geodesic
theorem, remained out of reach for quite a long time. The analytic perspective of Huber and Selberg
was not of much use in this setting as it could not distinguish simple closed geodesics among primitive
ones. Some progress towards answering these questions was made by Birman and Series [BS85],
McShane and Rivin [MR95a, MR95b], and Rivin [Riv01]. The first major breaktrough would come
through the work of Mirkzakhani, who, in her thesis [Mir04], proved the following outstanding theorem.

Theorem 1.1. [Mir08b, Theorem 1.1] Let X be a closed, connected, oriented hyperbolic surface of
genus g ≥ 2. Then, there exists s(X) > 0 such that the following asymptotic estimate holds as L→∞,

s(X,L) ∼ s(X) · L6g−6.

Mirzakhani’s proof of Theorem 1.1 uses ergodic theory in a crucial way. Her proof also makes
important use of a couple of other breakthroughs of herself: her famous formulas for the total Weil-
Petersson volumes of moduli spaces and her famous integration formulas over moduli space.

The tools developed by Mirzakhani in her thesis have broad-ranging consequences in many fields
of mathematics. Let us highlight the following remarkably concrete consequence of her work.

Theorem 1.2. [Mir08b, Corollary 1.4] On any closed, oriented hyperbolic surface of genus 2 it is 48
times more likely for a random long simple closed geodesic to be non-separating rather than separating.

The main goal of this survey is to give a detailed account of Mirzakhani’s proof of Theorem 1.1
aimed at non-experts. We will draw inspiration from classic primitive lattice point counting results
in homogeneous dynamics. Although we will cover the necessary background, the focus will be on
understanding how the general principles that drive the proof in the case of lattices also apply in
the setting of hyperbolic surfaces. In particular, we will take for granted several fundamental results
about Teichmüller spaces and mapping class groups and focus on understanding their applications.

Organization of this survey. In §2 we study counting problems for primitive lattice points in
the Euclidean plane. This discussion will later guide the proof of Theorem 1.1. In §3 we cover the
background material on hyperbolic surfaces, Teichmüller spaces, and simple closed curves needed to
understand the proof of Theorem 1.1. In §4 we discuss Mirzakhani’s famous formulas for the total
Weil-Petersson volumes of moduli spaces and her famous integration formulas over moduli space.
In §5 we give a complete proof of Theorem 1.1. In §6 we give a brief overview of several counting
results for closed curves on surfaces and other related objects that have been proved since the debut
of Mirkzakani’s thesis.

Acknowledgments. The author is very grateful to Alex Wright and Steve Kerckhoff for their invalu-
able advice, patience, and encouragement. This survey got started as a set of notes for a minicourse
taught by the author at the CMI-HIMR Dynamics and Geometry Online Summer School. The author
is very grateful to Viveka Erlandsson, John Mackay, and Jens Marklof for giving him the chance to
teach this minicourse. This survey was finished while the author was a member of the Institute for
Advanced Study (IAS). The author is very grateful to the IAS for its hospitality. This material is
based upon work supported by the National Science Foundation under Grant No. DMS-1926686.

2. Counting primitive lattice points in the Euclidean plane

Outline of this section. In this section we study counting problems for primitive lattice points in
the Euclidean plane. The techniques introduced in this section will serve as a rough guide for the
proof of Theorem 1.1 that will be discussed in §5.
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Counting primitive integer points. Consider the integer lattice Z2 ⊆ R2. In analogy with the
definition of prime numbers, a vector v ∈ Z2 is said to be primitive if it cannot be written as a
non-negative integer multiple of another vector in Z2. Equivalently, a vector v = (a, b) ∈ Z2 is said
to be primitive if the greatest common divisor of a and b is 1. Denote by Z2

prim ⊆ Z2 the subset of
all primitive vectors of Z2. See Figure 1. Notice Z2

prim ⊆ Z2 is not a sublattice, not even a subgroup.
Denote by ‖ · ‖ the Euclidean norm on R2. For every L > 0 consider the counting function

(2.1) p
(
Z2, L

)
:= #{v ∈ Z2

prim : ‖v‖ ≤ L},

Figure 1. Primitive vectors of the integer lattice Z2.

Just as in the case of the counting function π(N) introduced in §1, we are interested in the asymp-
totics of p(Z2, L) as L → ∞. The main goal of this section is to discuss a proof of the following
asymptotic estimate for the counting function p(Z2, L).

Theorem 2.1. The following asymptotic estimate holds as L→∞,

p
(
Z2, L

)
∼ 6

π
· L2.

To prove Theorem 2.1 we begin by rewriting the counting function p(Z2, L) in a more convenient
way. More concretely, notice that for every L > 0,

p(Z2, L) = #{v ∈ Z2
prim : ‖v‖ ≤ L}

= #
{
v ∈ Z2

prim : ‖ 1
L · v‖ ≤ 1

}
= #

{
v ∈ 1

L · Z
2
prim : ‖v‖ ≤ 1

}
.

It is natural then to study the rescaled lattice 1
L · Z

2
prim ⊆ R2 as L → ∞. We do this by means of a

measure theoretic approach. For every L > 0 consider the counting measure on R2 given by

νprim
L :=

1

L2
·
∑

v∈Z2
prim

δ 1
L ·v

.

Notice that, if B ⊆ R2 denotes the unit ball centered at the origin, then

νprim
L (B) =

p (Z2, L)

L2
.

This setup reduces the original problem of proving an asymptotic estimate for the counting function
p (Z2, L) to the problem of understanding the asymptotic behaviour of the measures νprim

L as L→∞.
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The Lebesgue measure. To develop some intuition, let us first consider a much simpler family of
counting measures on R2. For every L > 0 consider the counting measure νL on R2 given by

(2.2) νL :=
1

L2
·
∑
v∈Z2

δ 1
L ·v

.

Denote by ν the standard Lebesgue measure on R2. Based solely on geometric intuition, one expect
that the following weak-? convergence of measures holds,

(2.3) lim
L→∞

νL = ν.

More concretely, one expects that for every continuous, compactly supported function f : R2 → R,

(2.4) lim
L→∞

∫
R2

f dνL =

∫
R2

f dν.

The proof of (2.3) will be left as an exercise towards the end of this section. See Exercise 2.14. Let us
point out for the moment that the main idea behind the proof of (2.3) is the fact that every weak-?
limit point of the sequence of counting measures (νL)L>0 is translation invariant.

Exercise 2.2. What would happen with (2.3) if we considered a finite index subgroup of Z2 instead
of all Z2 in the definition of the counting measures (νL)L>0 in (2.2)?

Invariance of counting measures. The discussion above suggests that to prove an analogue of
(2.3) for the counting measures (νprim

L )L>0, one should try to understand the behavior of the weak-?
limit points of this sequence. A priori, one has no reason to expect the limit points of this sequence
will be translation invariant, as we will conclude a fortiori. Nevertheless, there is still a relevant notion
of invariance present in this setting. Indeed, consider the discrete matrix group

SL(2,Z) :=

{(
a b
c d

)
∈ Mat2×2(R)

∣∣∣∣ a, b, c, d ∈ Z, ab− cd = 1

}
acting on R2 by linear transformations. The following crucial exercise will provide the notion of
invariance we will use to study the counting measures (νprim

L )L>0.

Exercise 2.3. Show that the SL(2,Z) orbit of the vector (1, 0) ∈ R2 is precisely Z2
prim ⊆ Z2.

Conclude that any weak-? limit point of the sequence (νprim
L )L>0 is SL(2,Z)-invariant. Hint: Use

Bézout’s identity for greatest common divisors.

Exercise 2.3 ensures that any weak-? limit point of the sequence (νprim
L )L>0 is SL(2,Z)-invariant.

Using ergodic theory we will show this property greatly constraints the possible weak-? limit points.

Ergodic theory. Let (X,A) be a measurable space and G be a countable group acting on (X,A)
by measure preserving transformations. We say a σ-finite measure µ on (X,A) is G-invariant if
µ(g.A) = µ(A) for every measurable subset A ∈ A and every g ∈ G. Furthermore, we say a G-
invariant measure µ on (X,A) is G-ergodic if it admits no non-trivial G-invariant subsets, that is,
if µ(A) = 0 or µ(X \ A) = 0 for every A ∈ A such that g.A = A for every g ∈ G. Equivalently,
a G-invariant measure µ on (X,A) is ergodic if every G-invariant measurable function is constant
almost everywhere with respect to µ. The following exercise characterizes G-invariant measures on
(X,A) that are absolutely continuous with respect to a G-ergodic measure.

Exercise 2.4. Let (X,A) be a measurable space and G be a countable group acting on (X,A) by
measure preserving transformations. Suppose that ν is a G-ergodic measure on (X,A) and that µ is
a G-invariant measure on (X,A) that is absolutely continuous with respect to µ. Show that µ is a
non-negative constant multiple of ν. Hint: Show that the Radon-Nikodym derivative of µ with respect
to ν is G-invariant and use the G-ergodicity of ν to show this derivative is constant.

In the setting of counting problems for primitive lattice points, the following ergodicity result will
be relevant for us. Although we will not prove it in this survey, let us at least mention that this result
can be proved using the ergodicity of the horocycle flow on the unit tangent of the modular curve
T 1M1 := SL(2,Z)\SL(2,R).
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Theorem 2.5. The Lebesgue measure ν on R2 is ergodic with respect to the linear action of SL(2,Z).

Portmanteau’s theorem. We now state a classic theorem of Portmanteau that gives useful alter-
native characterizations to the definition of weak-? convergence in (2.4).

Theorem 2.6. Let X be a metric space and (µL)L>0 be a sequence of locally finite Borel measures on
X converging in the weak-? topology to a Borel measure µ on X. Then, for every open subset U ⊆ X,

µ(U) ≤ lim inf
L→∞

µL(U).

Additionally, for every compact subset K ⊆ X such that µ(∂K) = 0,

(2.5) lim
L→∞

µL(K) = µ(K).

Exercise 2.7. Asuming the weak-? convergence in (2.3) holds, find counterexamples to identity (2.5)
in Theorem 2.6 when either K ⊆ R2 is not compact or does not satisfy ν(∂K) = 0.

Limit points of counting measures. Using Exercises 2.3 and 2.4, and Theorem 2.5 and 2.6, one can
greatly restrict the possible weak-? limit points of the the sequence of counting measures (νprim

L )L>0.

Proposition 2.8. Every weak-? limit point νprim of the sequence of counting measures (νprim
L )L>0 is

of the form νprim = c · ν for some constant c ≥ 0.

Proof. Let νprim be a weak-? limit point of the sequence (νprim
L )L>0. Exercise 2.3 guarantees that

νprim is SL(2,Z)-invariant. Theorem 2.5 ensures that the Lebesgue measure ν on R2 is ergodic with
respect to the linear action of SL(2,Z). Thus, by Exercise 2.4, to prove νprim = c ·ν for some constant
c ≥ 0, it is enough to check that νprim is absolutely continuous with respect to ν.

To prove this let us consider an arbitrary Borel measurable subset A ⊆ R2 such that ν(A) = 0.
Our goal is to show that νprim(A) = 0. Let δ > 0 be arbitrary. The outer regularity of the Lebesgue
measure ν guarantees that one can find a countable collection of open squares {Bi}i∈N such that

(2.6) A ⊆
⋃
i∈N

Bi,
∑
i∈N

ν(Bi) ≤ δ.

To bound νprim(A) let us first give a rough bound of the measure νprim(B) of an arbitrary open
square B ⊆ R2. Denote by ε > 0 the side length of B. Notice that, for every L > 0,

(2.7) νprim
L (B) ≤ νL(B) =

#
(
Z2 ∩ (L ·B)

)
L2

.

The set L ·B ⊆ R2 is an open square of side length L · ε. Suppose L > 0 is large enough so that this
side length satisfies L · ε ≥ 1. Consider the set S ⊆ R2 obtained by taking the union of disjoint open
squares of side length 1/2 centered at every point v ∈ Z2 ∩ (L · B). This set is contained in an open
square B′ ⊆ R2 of side length L · ε+ 1. It follows that

(2.8) #
(
Z2 ∩ (L ·B)

)
· (1/4) = ν(S) ≤ ν(B′) = (L · ε+ 1)2 ≤ 4 · L2 · ε2 = 4 · L2 · ν(B).

Putting together (2.7) and (2.8) we deduce

(2.9) lim sup
L→∞

νprim
L (B) ≤ 16 · ν(B).

We now bound νprim(A). Using the cover in (2.6) and the subadditivity of νprim we deduce

(2.10) νprim(A) ≤
∑
i∈N

νprim(Bi).

Theorem 2.6 ensures that, for every i ∈ N,

(2.11) νprim(Bi) ≤ lim inf
L→∞

νprim
L (Bi) ≤ lim sup

L→∞
νprim
L (Bi).

The identity in (2.9) guarantees that, for every i ∈ N,

(2.12) lim sup
L→∞

νprim
L (Bi) ≤ 16 · ν(Bi).
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Putting together (2.10), (2.11), and (2.12), and using the inequality in (2.6) we deduce

νprim(A) ≤
∑
i∈N

16 · ν(Bi) ≤ 16 · δ.

As δ > 0 is arbitrary we conclude νprim(A) = 0, thus finishing the proof. �

The space of unimodular lattices. Our next goal is to show that the constant c ≥ 0 in the
conclusion of Proposition 2.8 is positive and independent of the limit point νprim. We do this by
considering an averaging argument over the space of unimodular lattices of R2 up to rotation.

A lattice Λ ⊆ R2 is the Z-span of an R-basis of R2. A marking of a lattice Λ ⊆ R2 is a choice
of positively oriented R-basis (v1, v2) of R2 such that Λ = spanZ(v1, v2). The covolume of a lattice
Λ := spanZ(v1, v2) ⊆ R2 is defined as covol(Λ) := |det(v1, v2)|. This definition is independent of the
choice of marking (v1, v2). A lattice is said to be unimodular if it has unit covolume. The group

SL(2,R) :=

{(
a b
c d

)
∈ Mat2×2(R)

∣∣∣∣ a, b, c, d ∈ R, ab− cd = 1

}
acts transitively on the set of unimodular lattices of R2. The stabilizer of the integer lattice Z2 ⊆ R2

is the group SL(2,Z) ⊆ SL(2,R). We can thus identify the space of unimodular lattices of R2 with the
quotient T 1M1 := SL(2,R)/SL(2,Z). The corresponding identification maps the equivalence class of
matrices [A] ∈ T 1M1 to the lattice A · Z2 ⊆ R2. The orthogonal group

SO(2,R) :=

{(
cos θ − sin θ
sin θ cos θ

)
∈ Mat2×2(R)

∣∣∣∣ θ ∈ [0, 2π]

}
acts on the space of unimodular lattices through its linear action on R2, or, equivalently, by left
multiplication on T 1M1. The corresponding quotient M1 := SO(2,R)\SL(2,R)/SL(2,Z) can thus
be identified with the space of unimodular lattices of R2 up to rotation.

It will be convenient to consider the following alternative description of the space M1. Denote

H2 := {z ∈ C | =(z) > 0}.

The upper half-space H2 can be identified with the space SO(2,R)\SL(2,R) of marked unimodular
lattices of R2 up to rotation via the map which sends z ∈ H2 to the marked unimodular lattice
Λ(z) := spanZ(cze1, czz) ⊆ R2, where cz := =(z)−1/2 > 0. The discrete group SL(2,Z) acts properly
discontinuously on H2 by Möbius transformations in the following way,(

a b
c d

)
· z =

az + b

cz + d
, z ∈ H2.

The identification above intertwines this action with the action of SL(2,Z) on SO(2,R)\SL(2,R)
by right multiplication. Thus, the quotient M1 := H2/SL(2,Z2), commonly known as the modular
curve, can be identified with the space of unimodular lattices of R2 up to rotation. See Figure 2 for
a representation of this space using a fundamental domain of the action of SL(2,Z) on H2.

Consider the Lebesgue class measure µ on H2 given in the coordinates z = x+ iy by

µ =
dx dy

y2
.

A direct computation shows that µ is preserved by the action of SL(2,Z) on H2. Denote by µ̂ the
local pushforward of µ to the quotient M1 := H2/SL(2,Z). More explicitely, µ̂ is the measure on
M1 obtained by restricting µ to the fundamental domain of the action of SL(2,Z) on H2 in Figure 2.
Local pushforwards of measures will be discussed in more detail in §3 following a fundamental domain
independent perspective. A direct computation shows that µ̂(M1) = π/3.
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R
0 1-1 ½½

(a) Fundamental domain. (b) Modular curve M1.

Figure 2. A fundamental domain of SL(2,Z) action on H2 and the quotient M1.

Averaging over the space of unimodular lattices. Let Λ ∈ M1 be a unimodular lattice of R2.
A vector v ∈ Λ is said to be primitive if it cannot be written as a non-negative integer multiple of
another vector of Λ. Denote by Λprim ⊆ Λ the subset of all primitive vectors of Λ. Recall that ‖ · ‖
denotes the Euclidean norm of R2. For every L > 0 we consider the counting function

(2.13) p(Λ, L) := {v ∈ Λprim : ‖v‖ ≤ L}.
As one might already expect after considering the case of the integer lattice Z2 ⊆ R2, explicitely

describing p(Λ, L) for a given unimodular lattice Λ ∈ M1 as a function of L is a particularly hard
problem. Nevertheless, and perhaps surprisingly, the average∫

M1

p(Λ, L) dµ̂(Λ)

can be computed explicitly. Indeed, the following formula holds. This formula is a consequence of
Siegel’s famous integration formulas over M1 [Sie45]. In §4 we will prove this result using a general
local change of variables formula. See Exercise 4.3.

Proposition 2.9. The following integration formula holds,∫
M1

p(Λ, L) dµ̂(Λ) = 2 · L2.

To prove Theorem 2.1 we will need a more uniform control on the integrability of the counting
functions p(Λ, L) as L→∞. To this end we consider the function u : M1 → R given by

u(Λ) := sup
v∈Λ

1

‖v‖
.

Exercise 2.10. Show there exists a constant C > 0 such that for every Λ ∈M1 and every L > 0,

p(Λ, L) ≤ C · L2 · u(Λ).

Additionally, show that the function u : M1 → R is integrable with respect to the measure µ̂, i.e.,∫
M1

u(Λ) dµ̂(Λ) <∞.

Convergence and compactness. Before proceeding with the proof of Theorem 2.1 let us discuss
a couple of basic convergence and compactness criteria. To prove the sequence of counting measure
(νprim
L )L>0 on R2 converges in the weak-? topology we will use the following convergence criterion.

Exercise 2.11. Let X be a metric space. Show that a sequence (xL)L>0 in X converges to x ∈ X if
and only if every subsequence of (xL)L>0 has a subsubsequence converging to x.

The following compactness criterion for the weak-? topology serves as a convenient tool for extract-
ing convergent subsequences of locally finite measures on metric spaces. This result is a consequence
of the well known Banach-Alaoglu theorem in functional analysis.
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Theorem 2.12. Let X be a metric space and (µn)n∈N be a sequence of locally finite measures on
X. Suppose that the sequence (µn(K))n∈N is bounded for every K ⊆ X compact. Then, the sequence
(µn)n∈N has a subsequence converging in the weak-? topology to a locally finite measure on X.

Equidistribution of primitive integer points. We are finally ready to prove that the sequence
of counting measure (νprim

L )L>0 on R2 converges in the weak-? topology to a constant multiple of the
Lebesgue measure ν. We will later deduce Theorem 2.1 directly from this result.

Theorem 2.13. With respect to the weak-? topology for measures on R2,

lim
L→∞

νprim
L =

6

π2
· ν.

Proof. By Exercise 2.11, it is enough to show every subsequence of (νprim
L )L>0 has a subsubsequence

converging to (6/π2) · ν in the weak-? topology. Theorem 2.12 and the bound in (2.9) ensure that
every subsequence of (νprim

L )L>0 has a subsubsequence (νprim
Lk

)k∈N converging in the weak-? topology
to a locally finite measure νprim on R2. By Proposition 2.8, it must be the case that νprim = c · ν for
some constant c ≥ 0. It is enough then to show that c = 6/π2, independent of the subsubsequence
considered. To prove this identity holds we compute the following limit in two different ways

lim
k→∞

∫
M1

p(Λ, Lk)

L2
k

dµ̂(Λ).

The first computation is immediate. Directly from Proposition 2.9 we deduce

(2.14) lim
k→∞

∫
M1

p(Λ, Lk)

L2
k

dµ̂(Λ) = 2.

The second computation requires more work. For every matrix A ∈ SL(2,R) consider the subset

BA := {v ∈ R2 : ‖A · v‖ ≤ 1}.

Notice that, for every unimodular lattice Λ := A · Z2 ∈M1 with A ∈ SL(2,Z) and every k ∈ N,

p(Λ, Lk)

L2
k

= νprim
Lk

(BA).

In this setting, as limk→∞ νprim
Lk

= c · ν in the weak-? topology, Theorem 2.6 ensures that

lim
k→∞

p(Λ, Lk)

L2
k

= lim
k→∞

νprim
Lk

(BA) = c · ν(BA) = c · π.

From this identity, Exercise 2.10, and the dominate convergence theorem, we deduce

(2.15) lim
k→∞

∫
M1

p(Λ, Lk)

L2
k

dµ̂(Λ) = c · π
2

3
.

Putting together (2.14) and (2.15) we deduce

c · π
2

3
= 2.

Solving for c we conclude c = 6/π2, thus finishing the proof. �

Exercise 2.14. Recall the definition of the sequence of counting measures (νL)L>0 on R2 in (2.2).
Using the methods introduced in the proof of Theorem 2.13 show that (2.3) holds, i.e., show that with
respect to the weak-? topology for measures on R2,

lim
L→∞

νL = ν.
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Counting primitive integer points. We are now ready to prove Theorem 2.1, the main result of
this section. Let us restate this theorem in the following equivalent way.

Theorem 2.15. The following asymptotic estimate holds,

lim
L→∞

p
(
Z2, L

)
L2

=
6

π
.

Proof. Recall that if B ⊆ R2 is the Euclidean unit ball centered at the origin then, for every L > 0,

p
(
Z2, L

)
L2

= νprim
L (B).

Using Theorems 2.13 and 2.6 we conclude

lim
L→∞

p
(
Z2, L

)
L2

= lim
L→∞

νprim
L (B) =

6

π2
· ν(B) =

6

π
. �

Exercise 2.16. Using Theorem 2.13 show that for every unimodular lattice Λ ∈M1,

lim
L→∞

p(Λ, L)

L2
=

6

π
.

3. Hyperbolic surfaces, Teichmüller spaces, and simple closed curves

Outline of this section. In this section we cover the background material needed to understand
the proof of Theorem 1.1. The focus will be in developing geometric intuition rather than on giving
complete proofs. Unless otherwise stated, all surfaces considered will be connected and orientable.
Two excellent references for the topics that will be covered in this section are [FM12] and [Mar16].

The hyperbolic plane. The hyperbolic plane H2 is the unique, up to isometry, two dimensional
simply connected Riemannian manifold of constant sectional curvature −1. The hyperbolic plane can
be modeled on the upper half space {z ∈ C | =(z) > 0} by endowing it with the Riemannian metric

g :=
dx2 + dy2

y2
.

The geodesics of this metric are the lines and half circles of the upper half space perpendicular to
the the real axis R ⊆ C. See Figure 3. The orientation preserving isometries of this metric can be
identified with the group PSL(2,R) = SL(2,R)/{±I} acting on H2 by Möbius transformations:(

a b
c d

)
.z :=

az + b

cz + d
, ∀z ∈ H.

This group acts simply transitively on the unit tangent bundle of H2. Such a large isometry group
should hint at a rigid geometry: it becomes hard to distinguish objects up to isometry. The next
exercise is a manifestation of this idea. Nevertheless, in dimension two the situation remains quite
flexible, as we will see below. In higher dimensions the picture becomes incredibly rigid; curious
readers are invited to investigate Mostow’s rigidity theorem.

R

Figure 3. The geodesics of the hyperbolic plane.
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Exercise 3.1. Show that for every (a, b, c) ∈ (R+)3 there exists a unique, up to isometry, hyperbolic
right angled hexagon with alternating edge lengths (a, b, c). Hint: Consider a configuration as in
Figure 4 and study how the length z(y) varies as the parameter y varies.

R

a

b

z(y)

y

Figure 4. Right angled hyperbolic hexagons are rigid.

Hyperbolic surfaces. A hyperbolic surface is a surface whose geometry is locally modelled on H2.
More concetely, a hyperbolic surface X is a surface endowed with an atlas of charts to H2 whose
transition functions are restrictions of isometries of H2. Pulling back the metric of H2 via these
charts yields a metric of constant curvature equal to −1 on X. A geodesic of X is a geodesic of this
metric. Equivalently, a geodesic of X is a curve which is mapped to geodesics of H2 via local charts.
Every closed curve on X can be tightened, i.e., homotoped, to a unique geodesic representative.

We will not spend much time discussing the many interesting features of hyperbolic surfaces but
let us at least highlight one fact that is very useful to keep in mind for the sake of geometric intuition.
The following fact is known as the collar lemma: every simple closed geodesic on a hyperbolic surface
has a collar whose width goes to infinity as the length of the geodesic goes to zero. See Figure 5.

(a) Every geodesic has a collar. (b) Shorter geodesics have longer collars.

Figure 5. The collar lemma.

Teichmüller space. All hyperbolic surfaces of a given genus fit together nicely into a moduli space.
To keep track of how any pair of hyperbolic surfaces looks with respect to each other we will record
more information than just their position in moduli space. This leads us to introduce Teichmüller
space. We will later see how to recover moduli space as a quotient of Teichmüller space.

For the rest of this lecture we fix an integer g ≥ 2 and a connected, oriented, closed surface Sg
of genus g. The Teichmüller space Tg of marked hyperbolic structures on Sg is the space of all
pairs (X,ϕ) where X is an oriented hyperbolic surface and ϕ : Sg → X is an orientation preserving
homeomorphism, modulo the equivalence relation (X1, ϕ1) ∼ (X2, ϕ2) if and only if there exists an
orientation preserving isometry I : X1 → X2 isotopic to ϕ2 ◦ϕ−1

1 . In most situations we will omit the
marking of a point (X,ϕ) ∈ Tg and denote it simply by X ∈ Tg.

Roughly speaking, a point in Teichmüller space does not only keep track of a hyperbolic structure on
Sg but also of how Sg is “wearing” that hyperbolic structure. This allows us to communicate marked



COUNTING PROBLEMS FROM THE VIEWPOINT OF ERGODIC THEORY 11

hyperbolic structures on Sg in a very explicit way. For instance, given a marked hyperbolic structure
(X,ϕ) ∈ Tg, any parametrized closed curve γ on Sg can be canonically identified with the closed
geodesic obtained by tightening the closed curve ϕ(γ) on X to its unique geodesics representative.
We denote the length of this representative by `γ(X).

The mapping class group. The mapping class group of Sg, denoted Modg, is the group of orien-
tation preserving homeomorphisms of Sg up to homotopy. More explicitely,

Modg := Homeo+(Sg)/Homeo0(Sg).

This group acts naturally on Tg by changing the markings: for every (X,ϕ) ∈ Tg and every φ ∈ Modg,

φ.(X,ϕ) = (X,ϕ ◦ φ−1).

We think of Modg acting on Tg as an analogue of SL(2,Z) acting on H2.

Exercise 3.2. Let (X,ϕ) ∈ Tg be a marked hyperbolic structure on Sg. Show there exists a natural
one-to-one correspondence between the Modg stabilizer of (X,ϕ) and the set of isometries of X.

A particularly important family of mapping classes are Dehn twists. Given a simple closed curve
γ on Sg, the Dehn twist Tγ of Sg along γ is the mapping class which leaves the surface Sg untouched
safe for an embedded annular neighborhood of γ which gets twisted to the right, with respect to the
orientation of Sg, by a full rotation. See Figure 6.

Tγ−−−−−→

Figure 6. Dehn twist in an annular neighborhood of a simple closed curve γ (in green).

Moduli space of hyperbolic surfaces. As Modg acts on Tg by changing the markings, one should
expect that, if one quotients Tg by this action, one should get a space grouping together all (unmarked)
hyperbolic surfaces of genus g. It turns out that Modg acts on Tg properly discontinuously and thus
the corresponding quotient behaves nicely. The quotientMg := Tg/Modg is the moduli space of genus
g hyperbolic surfaces. By uniformization, this space can be canonically identified with the moduli
space of genus g Riemann surfaces you might have seen in algebraic geometry.

Fenchel-Nielsen coordinates. Notice that any orientable topological surface of genus g ≥ 2 can
be constructed by glueing 2g − 2 pairs of pants, that is, spheres with three boundary components,
along their boundaries. See Figure 7 for an example. A similar construction can also be considered
for hyperbolic surfaces. Indeed, cutting an orientable hyperbolic surface X of genus g ≥ 2 along any
collection of 3g−3 disjoint simple closed geodesics yields 2g−2 hyperbolic pairs of pants with geodesic
boundary components. This class of pairs of pants is very rigid, as the following exercise shows.

Figure 7. Pair of pants decomposition of a genus 2 surface.
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Exercise 3.3. Show that, for every a, b, c ∈ R+, there exists a unique, up to isometry, hyperbolic
pair of paints with geodesic boundary components of lengths a, b, c. Hint: Cutting a hyperbolic pair
of pants with geodesic boundary components along the orthogeodesics joining its boundary components
yields a pair of isometric hyperbolic right-angled hexagons. See Figure 8.

Figure 8. Cutting a hyperbolic pair of pants into isometric right-angled hexagons.

By Exercise 3.3, the hyperbolic pairs of pants obtained by cutting an orientable hyperbolic surface
X of genus g ≥ 2 along a maximal collection of disjoint simple closed geodesics are determined, up to
isometry, by the lengths of the geodesics one cuts along. Glueing back these pairs of pants following
the same original pattern allows us to recover X. One needs to be careful at this point as there are
several ways in which one can glue back these pants along their cuffs. Indeed, for each geodesic one
cutted X along there is a full circle worth of different twist with which one can glue back the adjacent
pairs of pants. If one is interested in marked hyperbolic surfaces rather than just hyperbolic surfaces,
there is actually a full line worth of different twists one can glue with respect to.

More concretely, one can deform (marked) oriented hyperbolic surfaces using the following opera-
tion: given a (marked) oriented hyperbolic surface X, a simple closed geodesic γ on X, and t ∈ R, cut
X along γ and glue the resulting surface back along γ with a twist of t units of hyperbolic length to the
right with respect to the orientation of X. See Figure 9. This operation is known as a Fenchel-Nielsen
twist. Given a simple closed curve γ on Sg and a marked hyperbolic structure on X ∈ Tg, the point
Tγ .X ∈ Tg is equal to the marked hyperbolic structure obtained by doing a Fenchel-Nielsen twist of
parameter t = `γ(X) along the unique geodesic representative of γ on X.

(a) Before twist.

t

(b) After twist.

Figure 9. Fenchel Nielsen twist along a simple closed curve (in red).

The discussion above leads us to introduce Fenchel-Nielsen coordinates. A pair of pants decomposi-
tion of Sg is a maximal collection of disjoint simple closed curves on Sg. Fix a pair of pants decompo-
sition P := (γi)

3g−3
i=1 of Sg. Given a marked hyperbolic structure X ∈ Tg, for every i ∈ {1, . . . , 3g− 3}

denote `i(X) := `γi(X) and let τi(X) be the twist of X at the geodesic representative of γi. The

parameters (`i, τi)
3g−3
i=1 ∈ (R+ ×R)3g−3 provide global coordinates for Tg known as Fenchel-Nielsen

coordinates. In particular, Tg is homeomorphic to an open ball of dimension 6g − 6. For every
i ∈ {1, . . . , 3g − 3}, the action of the Dehn twist Tγi in Fenchel-Nielsen coordinates corresponds to
leaving all coordinates constant safe for τi which gets changed by the transformation τi 7→ τi + `i.

Exercise 3.4. Using the definition of Fenchel-Nielsen coordinates, the collar lemma, Dehn twists,
and your geometric intuition, come up with an intuitive explanation of the following fact: a marked
hyperbolic structure on Teichmüller space escapes to infinity, i.e., leaves every compact set, if and
only if one of its geodesics becomes arbitrarily long.
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Let us highlight an interesting feature of geodesic pair of pants decompositions of hyperbolic sur-
faces. By work of Bers [Ber85], every closed, connected, oriented hyperbolic surface admits a geodesic
pair of pants decompositions whose cuffs have lengths bounded by a linear function of g. Buser con-
jectured this result can be improved to ensure the cuffs have lengths bounded by a linear function of√
g [Bus92]. This conjecture remains open until today, even for random hyperbolic surfaces.

Exercise 3.5. Show that there are finitely many pair of pants decompositions of Sg up to homeo-
morphism. Can you give an asymptotic estimate for the number of such equivalence classes? Hint: If
IN denotes the number of isomorphism classes of cubic multigraphs on N vertices then, as N →∞,

IN ∼
e2

√
πN
·
(

3N

4e

)N/2
.

Exercise 3.6. Use Bers’s theorem and Exercise 3.5 to show that for every ε > 0 the subset Kε ⊆Mg

of genus g hyperbolic surfaces all of whose closed geodesics have length ≥ ε is compact. This result
is commonly known as Mumford’s compactness criterion. Hint: Using Fenchel-Nielsen coordinates
write Kε ⊆Mg as a union of finitely many projections of compact subsets of Tg.

The Weil-Petersson measure on Teichmüller space. The discussion above suggests consid-
ering the following volume form on Teichmüller space: Given a set of Fenchel-Nielsen coordinates
(`i, τi)

3g−3
i=1 ∈ (R+ ×R)3g−3, denote by vwp the volume form on Tg given by

(3.1) vwp :=

3g−3∧
i=1

d`i ∧ dτi.

This volume form is independent of the choice of Fenchel-Nielsen coordinates and in particular is
mapping class group invariant. This fact is a consequence of a deep result of Wolpert known as
Wolpert’s magic formula [Wol83]. We refer to the volume form vwp above as the Weil-Petersson
volume form of Tg. We refer to the corresponding measure µwp as the Weil-Petersson measure of Tg.

Local pushforwards of measures. In the upcoming discussion we make use of the following abstract
measure theoretic construction. Let X be a locally compact, Hausdorff, second countable topological
space endowed with a properly discontinuous action of a discrete group G. Notice that X/G is also
locally compact, Hausdorff, and second countable. Let π : X → X/G be the corresponding quotient
map. As the action of G on X is properly discontinuous, one can cover X by open subsets U ⊆ X
invariant under the action of finite subgroups ΓU < G and such that gU ∩ U = ∅ for all g ∈ G \ ΓU .
Open sets U/ΓU ⊆ X/G of this form will be refered to as well covered.

Given a locally finite G-invariant Borel measure µ on X, there exists a unique locally finite Borel
measure π#µ on X/G satisfying the following property: If U/ΓU ⊆ X/G is a well covered open set,

(3.2) (π#µ) |U/ΓU =
1

|ΓU |
· (π|U )∗ (µ|U ),

where (π|U )∗(µ|U ) denotes the usual pushforward of the measure µ|U through the map π|U . We refer
to the measure π#µ as the local pushfoward of µ to X/G,

Exercise 3.7. Check that the definition of π#µ gives rise to a unique well defined measure on X/G.

The Weil-Petersson measure on moduli space. Recall that the quotientMg := Tg/Modg is the
moduli space of genus g hyperbolic surfaces. As the action of Modg on Tg is properly discontinuous
and preserves the Weil-Petersson measure µwp, one can consider the local pushforward of µwp toMg.
We denote this measure by µ̂wp and refer to it as the Weil-Petersson measure of Mg.

Exercise 3.8. Using Bers’s theorem and Exercise 3.5, show that the Weil-Petersson measure µ̂wp on
Mg is finite. Can you give a bound on the total Weil-Petersson measure µ̂wp(Mg)? Hint: Follow a
similar approach as in Exercise 3.6.

Mirzakhani and Zograf [MZ15] proved asymptotic estimates for the total Weil-Petersson volumes
µ̂wp(Mg) as g →∞ that wildly differ from the rough upper bound one obtains in Exercise 3.8. The
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finiteness of the Weil-Petersson measure on moduli space suggests studying random hyperbolic surfaces
sampled according to this measure. This has become a very active field of study in recent years. As
a starting point for curious readers we recommend [Mir13, MZ15, MP19, Mon20, MT20, LW21].

Simple closed multi-curves. We refer to a parametrized simple closed curve on Sg up to homotopy
and orientation reversal as a simple closed curve. We will always assume simple closed curves on Sg
are homotopically non-trivial. The group Modg acts naturally on these equivalence classes. Given a
marked hyperbolic structure X ∈ Tg, every simple closed curve on Sg corresponds to a unique simple
closed geodesic on X. Through this perspective, counting problems for simple closed geodesics on X
can be easily reformulated as counting problems for simple closed curves on Sg.

Exercise 3.9. The 9g−9 theorem, see for instance [FM12, Theorem 10.7], guarantees that a marked
hyperbolic structure X ∈ Tg is completely determined by its simple marked length spectrum, i.e., by
the function which to every simple closed curve γ on Sg assigns the length `γ(X) of its unique geodesic
representative with respect to X. Using this theorem and Dehn-Thurston coordinates show that the
kernel of the action of Modg on Tg is equal to the kernel of the action of Modg on the set of simple
closed curves on Sg.

More generally, a simple closed multi-curve on Sg is a formal sum γ =
∑k
i=1aiγi of distinct simple

closed curves on Sg with real positive weights ai ∈ R+. Given a marked hyperbolic structure X ∈ Tg
we define `γ(X) :=

∑k
i=1 ai`γi(X). An integral simple closed multi-curve on Sg is a simple closed

multi-curve all of whose weights are integral. The group Modg acts naturally on simple closed multi-
curves by acting on each of the components of the formal sum. We think of Modg acting on integral
simple closed multi-curves as an analogue of SL(2,Z) acting on Z2.

We say two simple closed multi-curves on Sg have the same topological type if they belong to the
same mapping class group orbit. More generally, we say two simple closed multi-curves on homeomor-
phic surfaces have the same topological type if there exists a homeomorphism between the surfaces
mapping one simple closed multi-curve to the other. See Figure 10 for an example. We think of
integral simple closed multi-curves on Sg of a fixed topological type as an analogue of Z2

prim.

(a) Non-separating simple closed curve. (b) Separating simple closed curve.

Figure 10. Simple closed curves of different topological types on a genus 2 surface.

Measured geodesic laminations. Just as the integer lattice Z2 sits inside the continuum R2,
we would like to have a continuum interpolating between integral simple closed multi-curves on Sg.
Although we will not need it explicitely, let us give a geometric description of how objects in this
continuum look like. Fix a marked hyperbolic structure X ∈ Tg. A geodesic lamination on X is
a closed subset of X that can be written as a disjoint union of simple geodesics. The most basic
example of a geodesic lamination is a union of disjoint simple closed geodesics. See Figure 11 for a
more complicated example. Very commonly, the intersection of a geodesic lamination with a transverse
arc is a fractal set, making it is hard to draw non-trivial examples.

A measured geodesic lamination is a geodesic lamination endowed with a fully supported invariant
transverse measure. The transverse measure assigns a finite Borel measure to every arc transverse to
the the lamination. This assignment is invariant under splitting of arcs and homotopies preserving the
leaves of the lamination. Not every lamination admits a fully supported invariant transverse measure.

Exercise 3.10. Show that the geodesic lamination in Figure 11 does not admit a fully supported
invariant transverse measure. Hint: Consider an arc going across the middle closed geodesic.
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Figure 11. A non-trivial example of a geodesic lamination on a genus 2 surface.

The different spaces of measured geodesic laminations obtained as X varies over Tg can be canon-
ically identified to each other. We will denote by MLg any such space and refer to it as the space
of measured geodesic laminations on Sg. Simple closed multi-curves embed naturally into MLg by
considering their geodesic representatives and endowing them with appropriately weighted transverse
dirac measures. We denote by MLg(Z) ⊆MLg the set of integral simple closed multi-curves on Sg.

The space MLg can be topologized in such a way that rationally weighted simple closed multi-
curves on Sg are dense in it. The action of Modg on simple closed multi-curves extends continuously
to an action onMLg. We think of Modg acting onMLg as an analogue of SL(2,Z) acting on R2. By
work of Thurston [Thu80], the length `λ(X) > 0 of a measured geodesic lamination λ ∈ MLg with
respect to a marked hyperbolic structure X ∈ Tg can be defined in a unique continuous way extending
the definition on simple closed multi-curves introduced above.

Dehn-Thurston coordinates. In a similar spirit to how hyperbolic surfaces can be constructed by
glueing hyperbolic pairs of pants with geodesic boundary components, integral simple closed multi-
curves on surfaces can be constructed by glueing simple arc systems on pairs of pants. By an arc on
a pair of pants we will always mean an arc joining two of its boundary components. Every simple arc
on a pair of pants is isotopic to exactly one of the six arcs represented in Figure 12. Every simple arc
system on a pair of pants is isotopic to an arc system contructed by taking disjoint parallel copies of
these arcs. Given an assignment of non-negative integers (a, b, c) ∈ N to the boundary components
of a pair of pants satisfying a+ b+ c ∈ 2N, there exists a unique, up to isotopy, arc system realizing
(a, b, c) as the number of intersections of the arc system with the boundary components.

Figure 12. The six isotopy classes of simple arcs in a pair of pants.

Given simple arc systems on pairs of pants glued along two of their boundary components, these
arc systems can be glued together if and only if the number of times they intersect the glued boundary
components is the same. There exist Z many different ways of glueing these arc systems depending
on how much we twist one with respect to the other before glueing them together.

Let P := (γi)
3g−3
i=1 be a pair of pants decomposition of Sg. Following the discussion above we can

parametrize integral simple closed multi-curves on Sg in terms of intersection numbers mi ∈ N and
twisting numbers ti ∈ Z with respect to the components of P. Consider the parameter space

Σ :=

3g−3∏
i=1

(R≥0 ×R) / ∼,
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where ∼ denotes the equivalence relation on R≥0×R identifying (0, t) ∼ (0,−t) for every t ∈ R. The
parameters (mi, ti)

3g−3
i=1 give rise to a bijection between the set of integral simple closed multi-cuves

on Sg and the set of integral points in Σ such that for every complementary region R of Sg,n\P the
parameters mi corresponding to components γi of P bounding R add up to an even number. If mi = 0
and ti = t ∈ Z, the corresponding simple closed multi-curve has |t| disjoint parallel copies of γi. We
refer to the parameters (mi, ti)

3g−3
i=1 as a set of Dehn-Thurston coordinates.

Although we have not defined twisting numbers precisely, we can easily describe the effect of
changing them by a given amount. See Figure 13 for an example. In particular, for every i ∈
{1, . . . , 3g−3}, the action of the Dehn twist Tγi in Dehn-Thurston coordinates corresponds to leaving
all coordinates constant except for ti which gets changed by the transformation ti 7→ ti +mi.

(a) Before change. (b) After change.

Figure 13. The effect of changing a twist coordinate by ti 7→ ti + 1.

By work of Thurston [Thu80], the parametrization of MLg(Z) provided by any set of Dehn-
Thurston coordinates extends to a homeomorphism between MLg and the parameter space Σ. This
shows in particular that MLg is homeomorphic R6g−6. For more details on the definition and prop-
erties of Dehn-Thurston coordinates we refer the reader to [PH92, §1.2].

The Thurston measure. Any set of Dehn-Thurston coordinates induces a homeomorphism between
MLg and the parameter space Σ. The Thurston measure µThu onMLg is the pullback of the Lebesgue
measure on Σ via this identification. This measure is well defined, i.e., independent of the choice of
Dehn-Thurston coordinates. Indeed, in analogy with the case of the Lebesgue measure, one can
characterize µThu as the weak-? limit of a natural family of rescaled integral simple closed multi-
curve counting measures. Consider the natural R+ action onMLg scaling transverse measures. This
action corresponds to the natural scaling action of R+ on Σ via the identification by Dehn-Thurston
coordinates. For every L > 0 consider the rescaled counting measure

µL :=
1

L6g−6

∑
γ∈MLg(Z)

δ 1
L ·γ

.

Exercise 3.11. Show that the sequence of rescaled counting measures (µL)L>0 onMLg converges in
the weak-? topology as L→∞ to the pullback of the Lebesgue measure on Σ under the identification
with MLg induced by any set Dehn-Thurston coordinates.

Directly from Exercise 3.11 we deduce µThu is invariant with respect to the Modg action onMLg.
The definition of µThu in terms of Dehn-Thurston coordinates guarantees it satisifies the following
scaling property: for every Borel measurable subset A ⊆MLg and every t > 0,

(3.3) µThu(t ·A) = t6g−6 · µThu(A).

Exercise 3.12. Let f : MLg → R be a non-negative, continuous function. Suppose that f is homo-
geneous with respect to the R+ scaling action on MLg. Using (3.3) show that, for every c > 0,

µ(f−1({c})) = 0.
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Analogies with the lattice setting. Let us finish this section by highlighting some analogies that
will be useful to have in mind when proving Theorem 1.1. The proof of Theorem 1.1 will follow
the same approach as the proof of Theorem 2.1, but will use the analogies in Table 1 together with
important results of Mirzakhani that will be discused in §4.

Lattice setting Surface setting

SL(2,Z) Modg = mapping class group of Sg
R2 MLg = measured geodesic laminations on Sg

Z2
prim Modg · γ = mapping class group orbit

LebR2 µThu = Thurston measure
BA BX = {λ ∈MLg | `λ(X) ≤ 1}

Table 1. Analogies between the lattice and surface settings.

4. Weil-Petersson volumes and Mirzakhani’s integration formulas

Outline of this section. In this section we discuss two remarkable results of Mirzhakhani that will
play a crucial role in the proof of Theorem 1.1. The first of these results corresponds to the fact
that the total Weil-Petersson volume of any moduli space of hyperbolic surfaces with totally geodesic
boundary components is a polynomial on the lengths of the boundary components. See Theorem
4.1. The second of these results corresponds to Mirzakahani’s famous integration formula over moduli
space. See Exercise 4.6. We focus most of our attention on the second of these results. We sketch a
proof of the first of these results for tori with one boundary component at the end of this section.

Surfaces with boundary. The first result we discuss concerns moduli spaces of hyperbolic surfaces
with totally geodesic boundary components and their total Weil-Petersson volumes. To state this
result precisely we first introduce some notation. As many of the definitions that follow are analogous
to the ones discussed in the previous section, we do not spend much time covering them.

Let g, b ≥ 0 be a pair of non-negative integers such that 2− 2g − b < 0. Fix a connected, oriented,
compact surface Sg,b of genus g with b labeled boundary components β1, . . . , βb. Denote by Modg,b
the mapping class group of Sg,b, that is, the group of orientation preserving homeomorphisms of Sg,b
that setwise fix each boundary component, up to homotopy setwise fixing each boundary component.

Let L := (Li)
b
i=1 ∈ (R>0)b be a vector of positive real numbers. Denote by Tg,b(L) the Teichmüller

space of marked, oriented hyperbolic structures on Sg,b with labeled geodesic boundary components
whose lengths are given by L, up to isotopy fixing each boundary component setwise. The mapping
class group Modg,b acts properly discontinuously on Tg,b(L) by changing the markings. The quotient
Mg,b(L) := Tg,b(L)/Modg,b is the moduli space of oriented hyperbolic structures on Sg,b with labeled
geodesic boundary components whose lengths are given by L.

Weil-Petersson volumes. The Teichmüller space Tg,b(L) can be parametrized using Fenchel-Nielsen
coordinates in a similar way as for closed surfaces. More concretely, for any pair of pants decomposition

P := (γi)
3g−3+b
i=1 of Sg,b, the length and twist parameters (`i, τi)

3g−3+b
i=1 of marked hyperbolic structures

X ∈ Tg,b(L) with respect to the components of P provide a global coordinate system for Tg,b(L). The
Weil-Petersson volume form vwp of Tg,b(L) can be defined as follows,

(4.1) vwp :=

3g−3+b∧
i=1

d`i ∧ dτi.

By work of Wolpert [Wol83], this volume form is well defined, independent of the choice of Fenchel-
Nielsen coordinates, and in particular mapping class group invariant. We refer to the measure induced
by vwp as the Weil-Petersson measure of Tg,b(L) and denote it by µwp.

On the moduli space Mg,b(L) := Tg,b(L)/Modg,b consider the local pushforward µ̂wp of the Weil-
Petersson measure µwp. We refer to this measure as the Weil-Petersson measure of Mg,b(L). The
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same arguments suggested in Exercise 3.8 can be used to show that the Weil-Petersson measure µ̂wp

on Mg,b(L) is finite. The total Weil-Petersson volume of Mg,b(L) will be denoted by

Vg,b(L) := µ̂wp(Mg,b(L)).

By Exercise 3.3, if the surface Sg,b is a pair of pants, i.e., if g = 0 and b = 3, the moduli spaceMb
g,n(L)

consists of exactly one point. In this case we adopt the convention

V0,3(L) := 1.

The following remarkable theorem of Mirzakhani shows that the total Weil-Petersson volumes
Vg,b(L) are polynomials on the L variables. We will later sketch a proof of this result for the case of
tori with one boundary component, i.e., for the case g = 1 and b = 1.

Theorem 4.1. [Mir07a, Theorem 1.1] [Mir07b, Theorem 1.1] Let g, b ≥ 0 be non-negative integers
such that 2− 2g − b < 0. The total Weil-Petersson volume

Vg,b(L1, . . . , Lb)

is a polynomial of degree 3g − 3 + b on the variables L2
1, . . . , L

2
b . Moreover, if

Vg,b(L1, . . . , Lb) =
∑

α∈(Z≥0)b

|α|≤3g−3+b

cα · L2α1
1 · · ·L2αb

b ,

where |α| := α1 + · · · + αb for every α ∈ (Z≥0)b, then cα ∈ Q>0 · π6g−6+2b−2|α|. In particular, the
leading coefficients of Vg,b(L1, . . . , Lb) belong to Q>0.

The local change of variables formula. We now introduce a local change of variables formula
that will be used in forthcoming discussions. Let X be a locally compact, Hausdorff, second countable
topological space endowed with a properly discontinuous action of a discrete group G and f : X → R
be a measurable, non-negative function. Suppose that f is invariant with respect to a subgroup
H < G, that is, f(h.x) = f(x) for every x ∈ X and every h ∈ H. Denote by f̃ : X/H → R the
measurable, non-negative function induced by f on X/H. Consider the measurable non-negative
function f̂ : X/G→ R which to every x ∈ X/G assigns the value

f̂(x) :=
∑

g∈G/H

f(g.x).

Let µ be a locally finite G-invariant Borel measure on X. Denote by µ̃ the local pushforward of µ to
X/H and by µ̂ the local pushforward of µ to X/G. The following exercise can be interpreted as a
local change of variables formula.

Exercise 4.2. Show that, in the setting described above, the following integration formula holds,∫
X/G

f̂(x) dµ̂(x) =

∫
X/H

f̃(y) dµ̃(y).

Hint: Use a partition of unity of X/G to reduce to the case where f is supported on the preimage of a
well covered neighborhood.

The following exercise, which corresponds to Proposition 2.9, is a classical application of the local
change of variables formula in the setting of lattices.

Exercise 4.3. Let X := SO(2,R)\SL(2,R) and G := SL(2,Z) acting on X via right multiplication.
Recall that X can be identified with the space of marked, oriented, unimodular lattices on R2 up to
rotation via the map which sends A ∈ X to A · Z2 ⊆ R2. Denote by ‖ · ‖ the Euclidean norm on
R2 and by e1 := (1, 0) ∈ R2 the first canonical vector of R2. For every L > 0 consider the function
f : X → R which to every A ∈ X assigns the value f(A) := 1‖A·e1‖≤L. Notice that f is invariant with
respect to the subgroup H < G generated by the unipotent matrix

u1 :=

(
1 1
0 1

)
.



COUNTING PROBLEMS FROM THE VIEWPOINT OF ERGODIC THEORY 19

Indeed, H is the stabilizer of e1 with respect to the linear action of G on R2. Recall thatM1 := X/G
can be identified with the space of oriented, unimodular lattices on R2 up to rotation. Recall the
definition of the counting function p(Λ, L) in (2.13). Show that for every Λ ∈M1 and every L > 0,

f̂(Λ) = p(Λ, L).

Recall that X can be identified with the upper half space H2 via the map which sends z ∈ H2 to the
unimodular lattice Λz := spanZ(cze1, czz) ⊆ R2, where cz := =(z)−1/2 > 0. Show that if A ∈ X gets
identified with z ∈ H2 then the following identity holds,

‖A · e1‖ = =(z)−1/2.

In particular, this implies that for every L > 0,

f(A) = 1=(z)≥1/L2 .

Recall that the identification of X with H2 conjugates the right action of G on X with the left action
of G on H2 by Möbius transformations. This identification sends the Haar measure µ on X to the
measure y−2dxdy on H2. Denote by µ̂ the local pushforward of µ to M1 as defined in (3.2). Notice
that this definition differs from the one used in Proposition 2.9 by a factor of 2. Using Exercise 4.2,
the fundamental domain in Figure 2, and the discussion above, show that∫

M1

p(Λ, L) dµ̂(Λ) = L2.

The cut and glue fibration. We now discuss a remarkable observation due to Mirzakhani regarding
how the Weil-Petersson measure on certain quotients of Teichmüller space disintegrates along the fibers
of natural projections over products of moduli spaces of lower complexity. This observation is nothing
more than a simple consequence of Wolpert’s magic formula but its importance cannot be understated.

For the rest of this discussion we fix an integer g ≥ 2 and a connected, oriented, closed surface
Sg of genus g. Recall that Modg denotes the mapping class group of Sg. Given a simple closed
curve α on Sg denote by Stab0(α) ⊆ Modg the subgroup of mapping classes of Sg that fix α up to
isotopy together with its orientations. Although α is unoriented, it admits two possible orientations.
A mapping class belongs to Stab0(α) if it sends each orientation of α back to itself. An ordered simple
closed multi-curve on Sg is a tuple γ := (γi)

k
i=1 of pairwise disjoint, pairwise non-isotopic simple closed

curves on Sg. Given such a simple closed multi-curve on Sg denote

Stab0(γ) :=

k⋂
i=1

Stab0(γi) ⊆ Modg.

For the rest of this discussion we fix an ordered simple closed multi-curve γ := (γi)
k
i=1 on Sg.

Recall that Tg denotes the Teichmüller space of marked hyperbolic structures on Sg. The quotient
Tg/Stab0(γ) fibers naturally over a product of moduli spaces of surfaces with boundary of less com-
plexity than Sg. This fibration, which we refer to as the cut and glue fibration of Tg/Stab0(γ), will
play a crucial role in our discussion of Mirzakhani’s integration formula. To describe this fibration in
detail we first introduce some notation.

Let Sg(γ) be the potentially disconnected oriented surface with boundary obtained by cutting Sg
along the components of γ. See Figure 14 for an example. Let c > 0 be the number of components
of Sg(γ). Fixing an orientation on each component of γ, we can keep track of which components of
Sg(γ) lie to the left and to the right of each component of γ, so we can label the components of Sg(γ)
in a consistent way, say Σj with j ∈ {1, . . . , c}. As the components of γ are labeled and oriented, this
induces a labeling of the boundary components of each Σj . Let gj , bj ≥ 0 with 2− 2gj − bj < 0 be a
pair of non-negative integers such that Σj is homeomorphic to Sgj ,bj . Fix a homeomorphism between
these surfaces respecting the labeling of their boundary components.
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(a) Before cutting. (b) After cutting.

Figure 14. Cutting a genus 2 surface along a non-separating simple closed curve.

The base of the cut and glue fibration is the space Ωg(γ) of pairs (L,X) where

L := (`i)
k
i=1 ∈ (R>0)k,

X := (Xj)
c
j=1 ∈

c∏
j=1

Mgj ,bj (Lj),

such that Lj ∈ (R>0)bj is defined using the vector L := (`i)
k
i=1 ∈ (R>0)k and the correspondence

between the labeling of the boundary components of Σj and the labeling of the components of γ.
An ordered simple closed multi-geodesic α := (αi)

k
i=1 on a hyperbolic surface X is a tuple of pairwise

disjoint simple closed geodesics on X. Every ordered simple closed multi-geodesic is in particular an
ordered simple closed multi-curve. Two ordered simple closed multi-curves on homeomorphic surfaces
are said to have the same topological type if there exists a homeomorphism between the surfaces
mapping one simple closed multi-curve to the other respecting their labelings. Recall thatMg denotes
the moduli space of genus g hyperbolic surfaces. The following exercise will play a crucial role in our
description of the cut and glue fibration.

Exercise 4.4. Show there exists a one-to-one correspondence between points in the quotient space
Tg/Stab0(γ) and pairs (X,α) where X ∈ Mg is a genus g hyperbolic surface and α := (αi)

k
i=1 is a

simple closed multi-geodesic on X of the same topological type as γ with a choice of orientation on
each of its components, modulo the equivalence relation (X ′, α′) ∼ (X ′′, α′′) if and only if there exists
an orientation-preserving isometry I : X ′ → X ′′ sending the components of α′ to the components of
α′′ respecting their labelings and orientations.

Consider the identification of the quotient space Tg,n/Stab0(γ) provided by Exercise 4.4. The cut
and glue fibration of Tg,n/Stab0(γ) is the map Ψ: Tg,n/Stab0(γ)→ Ωg,n(γ) which to every equivalence
class (X,α) ∈ Tg,n/Stab0(γ) assigns the pair (L,X) ∈ Ωg(γ) given by

L := (`αi(X))ki=1, X := (X(α)j)
c
j=1,

where X(α)j ∈ Mgj ,bj (Lj) is the j-th component (according to the labeling and orientation of the
components of α) of the hyperbolic surface with geodesic boundary components obtained by cutting
X along the components of α. The fiber Ψ−1(X,L) above any pair (L,X) ∈ Ωg(γ) is given by
all possible ways of glueing the components of X := (Xj)

c
j=1 along their boundaries respecting the

labelings. Given any point (X,α) ∈ Ψ−1(X,L), the whole fiber Ψ−1(X,L) can be recovered by
considering all possible Fenchel-Nielsen twists of X along the components of α.

Consider a point (L,X) ∈ Ωg(γ) on the base of the cut and glue fibration. Let (X,α) ∈ Ψ−1(X,L)
with α := (αi)

k
i=1. The fiber Ψ−1(X,L) supports well defined 1-forms dταi that measure the infin-

itesimal Fenchel-Nielsen twists along the components of α. Wedging these 1-forms yields a natural
volume form on Ψ−1(X,L). For every set of lengths L := (`i)

k
i=1 and for Weil-Petersson almost every

X, the total mass of the fiber Ψ−1(X,L) with respect to this volume form is given by

(4.2) |Ψ−1(X,L)| = 2−ρg,n(γ) · `1 · · · `k,
where ρg(γ) is the number of components of γ that bound (on any of its sides) a component of Sg(γ)
that is homeomorphic to a torus with one boundary component. We refer to pairs (L,X) ∈ Ωg(γ) such

that (4.2) holds as generic pairs. The factor 2−ρg(γ) reflects the observation that every hyperbolic
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torus with one geodesic boundary component has a non-trivial isometric involution preserving its
boundary setwise. See Figure 15 for a picture of this involution.

Figure 15. The isometric involution of a torus with one boundary component.

Denote by µwp the Weil-Petersson measure on Tg and by µ̃wp the local pushforward of µwp to
Tg/Stab0(γ). It follows from Wolpert’s magic formula, i.e., from (3.1) and (4.1), that µ̃wp can be
disintegrated along the fibers of the cut and glue fibration Ψ: Tg,n/Stab0(γ)→ Ωg,n(γ) as

µ̃wp = σg(γ) ·
k∏
i=1

dταi ⊗
c∏
i=1

µ̂jwp ⊗
k∏
i=1

d`i,

where µ̂jwp denotes the Weil-Petersson measure on Mgj ,bj (Lj) and σg(γ) : Tg/Stab0(γ)→ Q>0 is the
function with non-negative rational values that records the discrepancy between the stabilizer factors,
i.e., the factors |Γ| in (3.2), of the measure µ̃wp and the product of measures

∏c
i=1 µ̂

j
wp. One can show

that the function σg(γ) is almost everywhere constant with respect to µ̃wp and is given by

σg(γ) :=

∏c
j=1 |Kgj ,bj |

|Stab0(γ) ∩Kg|
,

where Kgj ,bj / Modgj ,bj is the kernel of the mapping class group action on Tgj ,bj and Kg / Modg is

the kernel of the mapping class group action on Tg. Indeed, µ̂jwp almost every hyperbolic surface in
Mgj ,bj (L) has |Kgj ,bj | automorphisms and analogously for elements of Tg/Stab0(γ). For example, if
g = 2 and γ is a separating simple closed curve on S2, then σ2(γ) = 4/2 = 2.

Let us record the most important conclusions of the discussion above in the following theorem.

Theorem 4.5. The Weil-Petersson measure µ̃wp on Tg/Stab0(γ) can be disintegrated along the fibers
of the cut and glue fibration Ψ: Tg,n/Stab0(γ)→ Ωg,n(γ) in the following way,

µ̃wp = σg(γ) ·
k∏
i=1

dταi ⊗
c∏
i=1

µ̂jwp ⊗
k∏
i=1

d`i.

Generically, the volume of the fiber Ψ−1(X,L) above a (L,X) ∈ Ωg,n(γ) with L := (`i)
k
i=1 is equal to

|Ψ−1(X,L)| = 2−ρg(γ) · `1 · · · `k.

Mirzakhani’s integration formula. We are now ready to discuss Mirzakhani’s integration formula.
Let γ := (γi)

k
i=1 be an ordered simple closed multi-curve on Sg. Consider the stabilizer

Stab(γ) :=

k⋂
i=1

Stab(γi) ⊆ Modg.

Notice that Stab0(γ) is a finite index subgroup of Stab(γ). Let c > 0 and gj , bj ≥ 0 with j ∈ {1, . . . , c}
be as above. Consider the total Weil-Petersson volumes

Vgj ,bj (xj) := µ̂jwp(Mgj ,bj (xj))

of the moduli spacesMgj ,bj (xj) as functions of the boundary lengths xj ∈ R
bj
+ . Recall the definitions

of the constants ρg(γ) ∈ N and σg(γ) ∈ Q>0 introduced above. Consider the measurable function
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Vg(γ, ·) : Rk
+ → R+ which to every vector x := (xi)

k
i=1 with positive entries assigns the value

(4.3) Vg(γ,x) :=
σg(γ) · 2−ρg(γ)

[Stab(γ) : Stab0(γ)]
·
c∏
j=1

Vgj ,bj (xj),

where the vector xj ∈ R
bj
+ is defined using the correspondence between the components of γ and the

boundary components of Sgj ,bj . By Theorem 4.1, Vg(γ,x) is a polynomial on the x variables.
Let f : Rk

+ → R be a non-negative, measurable function. Given a marked hyperbolic structure
X ∈ Tg and an ordered simple closed multi-curve α on Sg, denote ~̀

α(X) := (`αi(X))ki=1 ∈ Rk
+.

Consider the non-negative, measurable function fγ : Tg → R which to every X ∈ Tg assigns the value

fγ(X) :=
∑

α∈Modg·γ

f (~̀α(X)) .

This function is clearly invariant with respect to the action of Modg on Tg. Denote by f̂γ : Mg → R
the corresponding non-negative, measurable function induced on moduli space. Denote by µ̂wp the
Weil-Petersson measure on Mg. On Rk

+ consider the standard coordinate system x := (xi)
k
i=1 and

the Lebesgue class measure x · dx := x1 · · ·xk · dx1 · · · dxk. The following exercise corresponds to
Mirzakhani’s integration formula [Mir08b, Theorem 4.1].

Exercise 4.6. Using Exercise 4.2 and Theorem 4.5 show that the following integration formula holds,∫
Mg

f̂γ(X) dµ̂wp(X) =

∫
Rk

+

f(x) · Vg(γ,x) · x · dx.

McShane’s identity. We now sketch a proof of Theorem 4.1 for the case of tori with one boundary
component, i.e., for the case g = 1 and b = 1. For the rest of this discussion we fix a torus with
one boundary component S1,1 and a parameter L > 0. To compute the total Weil-Petersson volume
V1,1(L) := µ̂wp(M1,1(L)) one could recall M1,1(L) := T1,1(L)/Mod1,1 and try to find a fundamental
domain for the action of Mod1,1 on T1,1(L) that can be described explicitely in Fenchel-Nielsen coor-
dinates. This happens to be quite a formidable task. In abscence of such a fundamental domain we
consider a different approach that relies on Mirzakhani’s integration formula.

For the rest of this discussion we fix a simple closed curve γ on S1,1. Let f : R+ → R be a
non-negative measurable function. Just as in the case of closed surfaces, consider the non-negative,
measurable transform f̂γ : M1,1(L)→ R which to every X ∈M1,1(L) assigns the value

f̂γ(X) =
∑

α∈Mod1,1·γ

f(`γ(X)).

An analogue of Mirzakhani’s integration formula in Exercise 4.6 also holds in this setting. Our
immediate goal is to find a non-negative, measurable function f : R+ → R for which the transform
f̂γ : M1,1(L)→ R is equal to a constant c(L) > 0. Indeed, for such a function we would have

(4.4) c(L) · µ̂wp(M1,1(L)) =

∫
M1,1(L)

f̂γ(X) dµ̂wp(X) =
1

2
·
∫
R+

f(x) · x · dx.

Rearranging the terms in this equation would yield

(4.5) V1,1(L) := µ̂wp(M1,1(L)) =
1

2 · c(L)
·
∫
R+

f(x) · x · dx.

Finding a non-negative, measurable function f : R+ → R for which f̂γ : M1,1(L)→ R is constant
is the content of McShane’s identity. Consider the function D : R3 → R given by

D(x, y, z) := 2 log

(
e
x
2 + e

y+z
2

e−
x
2 + e

y+z
2

)
.
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Theorem 4.7. [McS91] Let γ a simple closed curve on S1,1 and L > 0. Then, for every X ∈M1,1(L),

(4.6)
∑

α∈Mod1,1·γ

D(L, `α(X), `α(X)) = L.

Let us give a quick rundown of the main ideas of the proof of Theorem 4.7. For this we interpret
the right hand side of (4.6) as the length of the boundary component of X ∈ M1,1(L). For every
point on this boundary component we shoot a geodesic into X in the direction orthogonal to the
boundary. Three things can happen at this stage. Either the geodesic remains in X at all times
without intersecting itself, the geodesic exits X without intersecting itself, or the geodesic intersects
itself. By work of Birman and Series [BS85], the first case only happens for a measure zero subset of
points on the boundary. In each of the two other cases we consider the simple closed curves α described
in Figure 16. Cutting X along the corresponding geodesic representatives yields a hyperbolic pair of
pants with boundary lengths (L, `α(X), `α(X)). Using the rigidity of such pairs of pants one can
show that for points in exactly two arcs of the original boundary component whose lengths add
up to D((L, `α(X), `α(X)), the corresponding orthogonal geodesics either intersect themselves or the
original boundary component before exiting the pants. Putting these ideas together finishes the proof.

(a) Geodesic intersects boundary first. (b) Geodesic intersects itself first.

Figure 16. The geodesic shot orthogonal to the boundary (in blue) determines a
simple closed curve (in green) which tightens to a simple closed geodesic (in red).

Exercise 4.8. Using (4.5) and Theorem 4.7 show that

(4.7) V1,1(L) =
1

48
· L2 +

π2

12
.

Hint: To simplify the computations, differentiate (4.4) with respect to L instead of using (4.5) directly.

In her thesis [Mir04], Mirzakhani generalized Theorem 4.7 to arbitrary closed, orientable surfaces
[Mir07a, Theorem 1.3]. Using this generalization, Mirzakhani proved a recursive formula for the total
Weil-Petersson volumes Vg,b(L) [Mir07a, §5]. Using this formula she ultimately deduced Theorem 4.1.
An alternative proof of Theorem 4.1 using symplectic reduction can also be found in Mirzakhani’s
thesis [Mir07b, Theorem 1.1]. An excellent reference for all these topics is Do’s survey [Do13].

In subsequent discussions we will use the following explicit volume polynomial,

(4.8) V1,2(L1, L2) =
1

192
· L4

1 +
1

96
· L2

1L
2
2 +

1

192
· L4

2 +
π2

12
· L2

1 +
π2

12
· L2

2 +
π2

4
.

Exercise 4.9. Recall the definition of the polynomials Vg(γ,x) in (4.3). Let γ1 and γ2 be non-
separating and separating simple closed curves on S2, respectively. Using (4.7) and (4.8) show that

V2(γ1, x) =
1

96
· x4, V2(γ2, x) =

1

4608
· x4.

5. Counting simple closed geodesics on hyperbolic surfaces

Outline of this section. In this section we give a complete proof of Theorem 1.1, the main result
of this survey. We follow the same approach as in the proof of Theorem 2.1 but use the vocabulary
and tools introduced in §3 – 4. We encourage the reader to keep in mind the analogies described in
Table 1 for the rest of this section.
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Counting simple closed geodesics. Recall that Theorem 1.1, the main result of this survey, asserts
that the number s(X,L) of unoriented simple closed geodesics of length ≤ L on an arbitrary closed,
orientable hyperbolic surface X of genus g ≥ 2 is asymptotic as L → ∞ to a polynomial of degree
6g − 6 on L. To prove this result we follow the same approach considered in the proof of Theorem
2.15. We begin by rewriting the counting function of interest s(X,L) using the vocabulary introduced
in previous sections.

For the rest of this section we fix an integer g ≥ 2 and a connected, oriented, closed surface Sg of
genus g. Recall that a simple closed curve on Sg is an equivalence class of homotopically non-trivial
parametrized simple closed curves on Sg up to free homotopy and orientation reversal. Recall that
Modg denotes the mapping class group of Sg and that this group acts naturally on the set of simple
closed curves on Sg. Recall that orbits of this action are in one-to-one correspondence with topological
types of simple closed curves on Sg. The following exercise will be crucial for our approach.

Exercise 5.1. Show there are only finitely many topological types of simple closed curves on Sg. Can
you give an exact formula for the number of such equivalence classes?

Recall that Tg denotes the Teichmüller space of marked hyperbolic structures on Sg. Recall that if
γ is a simple closed curve on Sg and X ∈ Tg then `γ(X) > 0 denotes the length of the unique geodesic
representative of γ with respect to X. Let γ be a simple closed curve on Sg and X ∈ Tg be a marked
hyperbolic structure on Sg. For every L > 0 consider the counting function

s(X, γ, L) := #{α ∈ Modg · γ | `α(X) ≤ L}.

As every free homotopy class of simple closed curves on Sg has a unique geodesic representative with
respect to X, this is exactly the number of unoriented simple closed geodesics on X of the same
topological type as γ and length ≤ L. Hence, we can decompose the counting function s(X,L) as

(5.1) s(X,L) =
∑
γ

s(X, γ, L),

where γ runs over all the finitely many different topological types of simple closed curves on Sg. See
Exercise 5.1. Thus, it is enough for our purposes to study the asymptotics of s(X, γ, L) as L→∞.

Motivated by this observation we generalize the definition of the counting function s(X, γ, L) to
general integral simple closed multi-curves on Sg. Recall that if α :=

∑k
i=1 aiαi is a simple closed

multi-curve on Sg and X ∈ Tg then `α(X) :=
∑
i=1 ai`αi(X) > 0. Let γ :=

∑k
i=1 aiγi be an integral

simple closed multi-curve on Sg and X ∈ Tg. For every L > 0 consider the counting function

s(X, γ, L) := #{α ∈ Modg · γ | `α(X) ≤ L}.

Recall that Mg := Tg/Modg denotes the moduli space of hyperbolic structures on Sg. Notice that
the counting function s(X, γ, L) does not depend on the marking of X ∈ Tg but only on its underlying
hyperbolic structure X ∈ Mg. We aim to prove the following asymptotic estimate for the counting
function s(X, γ, L). Theorem 1.1 will later be deduced as a direct consequence of this estimate.

Theorem 5.2. Let γ :=
∑k
i=1 aiγi be an integral simple closed multi-curve on Sg and X ∈ Mg.

Then, there exists a constant n(X, γ) > 0 depending only on the topological type of γ and the geometry
of X such that the following asymptotic estimate holds as L→∞,

s(X, γ, L) ∼ n(X, γ) · L6g−6.

Counting measures on the space of measured geodesic laminations. Inspired by the case of
lattices, to prove Theorem 5.2 we introduce appropriate families of counting measures. Recall that
MLg denotes the space of measured geodesic laminations on Sg, that is, the natural 6g−6 dimensional
completion of the set of simple closed multi-curves on Sg. Let γ :=

∑k
i=1 aiγi be an integral simple

closed multi-curve on Sg. For every L > 0 consider the counting measure on MLg given by

µγL :=
1

L6g−6
·

∑
α∈Modg·γ

δ 1
L ·α

.
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Recall that the length `λ(X) > 0 of a measured geodesic lamination λ ∈MLg with respect to a marked
hyperbolic structure X ∈ Tg can be defined in a unique continuous way extending the definition on
simple closed multi-curves. Let X ∈ Tg be a marked hyperbolic structure on Sg. Consider the subset

BX := {λ ∈MLg | `λ(X) ≤ 1}.
A direct computation shows that for every L > 0,

(5.2) µγL (BX) =
s(X, γ, L)

L6g−6
.

This reduces the original problem of proving an asymptotic estimate for the counting function s(X, γ, L)
to the problem of understanding the behavior as L→∞ of the sequence of counting measures (µγL)L>0.

Ergodicity of the mapping class group action. To study the asymptotic behavior of the sequence
of counting measures (µγL)L>0 we use the dynamics of the action of the mapping class group on
MLg. Recall the definition of the Thurston measure µThu onMLg and its relation to Dehn-Thurston
coordinates as described in Exercise 3.11. The following result of Masur is an analogue of the fact
that the Lebesgue measure is ergodic with respect to the action of SL(2,Z) on R2. See Theorem 2.5.

Theorem 5.3. [Mas85] The measure µThu is ergodic with respect to the action of Modg on MLg.

In analogy with the case of lattices, the ergodicity of the mapping class group action on MLg can
be used to study the weak-? limit points of the sequence of counting measures (µγL)L>0. The following
crucial exercise is an analogue of Proposition 2.8.

Exercise 5.4. Let γ :=
∑k
i=1 aiγi be an integral simple closed multi-curve on Sg. Show that every

weak-? limit point µγ of the sequence of counting measures (µγL)L>0 is of the form µγ = c · µThu for
some constant c ≥ 0. Hint: Follow the same approach as in the proof of Proposition 2.8. To prove µγ

is absolutely continuous with respect to µThu use Dehn-Thurston coordinates and Exercise 3.11.

Integration and integrability. Our next goal is to show that the constant c ≥ 0 in the conclusion
of Exercise 5.4 is positive and independent of the limit point µγ . Similar to the case of lattices, we
achieve this goal by averaging over moduli space and using Mirzakhani’s integration formula.

Recall that µ̂wp denotes the Weil-Petersson measure onMg. Let γ := (γi)
k
i=1 be an ordered simple

closed multi-curve on Sg and a := (ai)
k
i=1 ∈ Rk

+ be a vector of positive weights. On Sg consider the
simple closed multi-curve given by a · γ :=

∑k
i=1 aiγi. Recall the definition of the polynomial Vg(γ,x)

introduced in (4.3). Notice that Stab(γ) ⊆ Modg is a finite index subgroup of Stab(a · γ). Define

Vg(a · γ,x) := [Stab(a · γ) : Stab(γ)]−1 · Vg(γ,x).

On Rk
+ consider the standard coordinate system x := (xi)

k
i=1 and the Lebesgue class measure x ·dx :=

x1 · · ·xk · dx1 · · · dxk. The following exercise is an analogue of Proposition 2.9 and Exercise 4.3.

Exercise 5.5. Let γ := (γi)
k
i=1 be an ordered simple closed multi-curve on Sg and a := (ai)

k
i=1 ∈ Rk

+

be a vector of positive weights on the components of γ. Using Exercise 4.6 show that for every L > 0,∫
Mg

s(X,a · γ, L) dµ̂wp(X) =

∫
a·x≤L

Vg(a · γ,x) · x · dx.

Using this formula and Theorem 4.1 deduce that the function

(5.3) P (a · γ, L) :=

∫
Mg

s(X,a · γ, L) dµ̂wp(X)

is a polynomial of degree 6g − 6 on L with rational leading coefficient.

Let γ :=
∑k
i=1 aiγi be a simple closed multi-curve on Sg and P (γ, L) be as in (5.3). Following

Exercise 5.5 we define the frequency of γ to be the positive rational number

(5.4) c(γ) := lim
L→∞

P (γ, L)

L6g−6
.



26 FRANCISCO ARANA–HERRERA

Using Mirzakhani’s recursion for the Weil-Petersson volume polynomials Vg,b(L) [Mir07a, §5], the
frequency of any simple closed curve can be computed explicitely by means of a recursive algorithm.

Exercise 5.6. Let γ1 and γ2 be non-separating and separating simple closed curves on S2, respectively.
Using Exercise 4.9 show that the frequencies of these simple closed curves are given by

c(γ1) = 1/576, c(γ2) = 1/27648.

We now discuss an analogue of the integrability bound in Exercise 2.10 for the function s(X, γ, L).
Let us first introduce a more precise statement of the collar lemma discussed in §3. A proof of this
result can be found in [FM12, Lemma 13.6]. Consider the width function w : R+ → R+ given by

w(x) := arcsinh

(
1

sinh
(
x
2

)) .
Lemma 5.7. Let γ be a simple closed geodesic on a closed, orientable hyperbolic surface X. Denote
by d the metric on X. Then, the subset Nγ ⊆ X defined as follows is an embedded annulus in X,

Nγ := {x ∈ X : d(x, γ) < w(`γ(X))}.

Let P := (γi)
3g−3
i=1 be a pair of pants decomposition of Sg and (mi, ti)

3g−3
i=1 be a set of Dehn-Thurston

coordinates of MLg induced by P. Given a measured geodesic lamination λ ∈ MLg and X ∈ Tg,
define the combinatorial length of λ with respect X and P as

Lλ(X,P) :=

N∑
i=1

(mi(γ) · w(`γi(X)) + |ti(γ)| · `γi(X)).

For a simple closed curve α on Sg and X ∈ Tg this definition has a concrete interpretation: add the
width w(`γi(X)) of the collar given by Lemma 5.7 to the combinatorial length of α every time it
intersects γi and add the length `γi(X) to the combinatorial length of α every time it twists around
γi. A pair of pants decomposition P := (γi)

3g−3
i=1 of Sg is said to be L-bounded with respect to X ∈ Tg

for some L > 0 if `γi(X) ≤ L for every i ∈ {1, . . . , 3g − 3}. The following result of Mirzakhani shows
that combinatorial lengths approximate hyperbolic lengths in a coarse sense.

Proposition 5.8. [Mir08b, Proposition 3.5] For every L > 0 there exists C = C(L) > 0 such that for
every X ∈ Tg and every pair of pants decomposition P of Sg that is L-bounded with respect to X there
exist Dehn-Thurston coordinates (mi, ti)

3g−3
i=1 of MLg induced by P such that for every λ ∈MLg,

C−1 · LP(X,λ) ≤ `λ(X) ≤ C · LP(X,λ).

To prove the aforementioned integrability bound for the counting function s(X, γ, L) we will also
use the following stronger version of Bers’s theorem. For a proof see [FM12, Theorem 12.8].

Theorem 5.9. For every ε > 0 there exists L = L(ε) > 0 with the following property. Let X ∈ Tg be
a marked hyperbolic structure and γ := (γi)

k
i=1 be a simple closed multi-curve on Sg such that

`γi(X) < ε, ∀i = 1, . . . , k.

Then, there exists a completion of γ to a pair of pants decomposition P := (γi)
3g−3
i=1 of Sg such that

`γi(X) < L, ∀i = 1, . . . , 3g − 3.

By Lemma 5.7, there exists a constant ε > 0 such that on any closed, orientable hyperbolic surface
no two closed geodesics of length < ε intersect. For the rest of this section we fix such a constant and
denote it by ε > 0. Consider the measurable function u : Mg → R+ given for every X ∈Mg by

u(X) :=
∏

γ : `γ(X)<ε

1

`γ(X)
,

where the product runs over all simple closed geodesics γ on X of length `γ(X) < ε. We interpret
empty products as taking the value 1. The following exercise is an analogue of Exercise 2.10.
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Exercise 5.10. Show there exists a constant C > 0 such that for every X ∈Mg and every L > 0,

(5.5) s(X, γ, L) ≤ C · L6g−6 · u(X).

Additionally, show that the function u : Mg → R+ is integrable with respect to µ̂wp, i.e.,

(5.6)

∫
Mg

u(X) dµ̂wp(X) <∞.

Hint: To prove (5.5) use Proposition 5.8 and Theorem 5.9 to reduce to a lattice point counting problem
in Dehn-Thurston coordinates. To prove (5.6) follow the same approach as in Exercise 3.8.

Equidistribution of counting measures. We are finally ready to prove that the sequence of count-
ing measure (νγL)L>0 onMLg converges in the weak-? topology to a constant multiple of the Thurston
measure µThu. The following exercise is an analogue of Theorem 2.13.

Exercise 5.11. Let γ :=
∑k
i=1 aiγi be an integral simple closed multi-curve on Sg. Show that, with

respect to the weak-? topology for measures on MLg,
lim
L→∞

µγL = c(γ) · µThu.

Hint: Follow the same approach as in the proof of Theorem 2.13.

Counting simple closed multi-curves. For every marked hyperbolic structure X ∈ Tg denote

(5.7) B(X) := µThu ({λ ∈MLg | `λ(X) ≤ 1}) .
As the Thurston measure µThu is invariant with respect to the Modg action onMLg, the value B(X)
is independent of the marking of X ∈ Tg and depends only on the underlying hyperbolic structure
X ∈Mg. Thus, (5.7) gives rise to a function B : Mg → R+ known as the Mirzakahani function.

Exercise 5.12. Show there exists a constant C > 0 such that for every X ∈Mg

B(X) ≤ C · u(X).

Conclude that the function B : Mg → R+ is integrable with respect to µ̂wp, i.e.,∫
Mg

B(X) dµ̂wp(X) <∞.

Hint: Use Proposition 5.8 and interpret µThu as the Lebesgue measure in Dehn-Thurston coordinates.

Following Exercise 5.12 we consider the constant bg > 0 defined as

(5.8) bg :=

∫
Mg

B(X) dµ̂wp(X).

We are now ready to prove the following more precise version of Theorem 5.2.

Exercise 5.13. Let γ :=
∑k
i=1 aiγi be an integral simple closed multi-curve on Sg and X ∈ Tg be a

marked hyperbolic structure on Sg. Show that the following identity holds

lim
L→∞

s(X, γ, L)

L6g−6
=
c(γ) ·B(X)

bg
.

Hint: Follow the same approach as in the proof of Theorem 2.15. Aside from Exercises 5.11 and 5.12,
it will be useful to recall the identity in (5.2) as well as Exercise 3.12.

We are finally ready to prove Theorem 1.1, the main result of this survey.

Exercise 5.14. Using (5.1) and Exercise 5.13 prove Theorem 1.1, i.e., show that for every closed,
orientable hyperbolic surface X of genus g ≥ 2 there exists a constant n(X) > 0 such that

lim
L→∞

s(X,L)

L6g−6
= n(X).

Let us end this section by proving the following more precise version of Theorem 1.2.
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Exercise 5.15. Let γ1 and γ2 be non-separating and separating simple closed curves on S2. Using
Exercises 5.6 and 5.13 show that on any genus 2 hyperbolic surface X ∈M2 it is 48 times more likely
for a long random simple closed geodesic to be non-separating rather than separating, i.e., show that

lim
L→∞

s(X, γ1, L)

s(X, γ2, L)
= 48.

6. Beyond simple closed geodesics

Outline of this section. In this section we give a brief overview of several counting results for closed
curves on surfaces and other related objects that have been proved since the debut of Mirzakhani’s
thesis. Rather than exhaustively covering the great amount of material available we aim at giving a
landscape picture of the relevance of these results and of the variety of techniques behind their proofs.
In particular, although many of the results that follow hold for surfaces with punctures, we focus on
the case of closed surfaces. The reader is encouraged to look into the cited references for more details.

General length functions. For the rest of this section we fix an integer g ≥ 2 and a connected,
oriented, closed surface Sg of genus g. Let γ :=

∑k
i=1 aiγi be a simple closed multi-curve on Sg. Recall

that MLg denotes the space of measured geodesic laminations on Sg and that this space supports
a natural R+ scaling action. Consider a continuous function ` : MLg → R+ that is homogeneous,
i.e., such that `(t · λ) = t · `(λ) for every t > 0 and every λ ∈ MLg. Interesting examples of such
functions include the extremal length with respect to a given conformal structure [Ker80] and the
length of geodesic representatives with respect to an arbitrary negatively curved metric [Ota90]. For
every L > 0 consider the counting function

s(`, γ, L) := #{α ∈ Modg · γ | `(α) ≤ L}.
Recall that µThu denotes the Thurston measure on MLg. Given a continuous, homogeneous func-

tion ` : MLg → R+ consider the finite, positive constant

B(`) := µThu ({λ ∈MLg | `(λ) ≤ 1}) .
Recall the definition of the constants c(γ) > 0 and bg > 0 introduced in (5.4) and (5.8). A careful
consideration of the techniques introduced in the proof of Theorem 5.2 show that the same asymptotic
estimates can be proved in this more general setting. Indeed, the following holds.

Exercise 6.1. Let γ :=
∑k
i=1 aiγi be an integral simple closed multi-curve on Sg and ` : MLg → R+

be a continuous, homogeneous function. Show that the following identity holds

lim
L→∞

s(`, γ, L)

L6g−6
=
c(γ) ·B(`)

bg
.

Hint: Follow the same approach as in Exercise 5.13.

Non-simple closed geodesics. One can also consider counting problems for closed geodesics that
are not simple. Extending the definition for simple closed curves, we say two closed curves on homeo-
morphic surfaces have the same topological type if there exists a homeomorphism between the surfaces
that identifies the free homotopy classes of the curves. A closed curve is said to be filling if every
homotopically non-trivial closed curve on the surface intersects the curve.

Let X ∈ Tg be a marked hyperbolic structure and γ be a filling closed curve on Sg. For every L > 0
consider the counting function

f(X, γ, L) := #{α ∈ Modg · γ | `α(X) ≤ L}.
This quantity does not depend on the marking of X ∈ Tg and corresponds to the number of closed
geodesics on X of the same topological type as γ and length ≤ L. Consider the finite constant

c(γ) := µThu ({λ ∈MLg | i(γ, λ) ≤ 1}) /#Stab(γ),

where i(γ, λ) denotes the geometric intersection number between γ and λ [Bon88] and Stab(γ) ⊆
Modg denotes the stabilizer of γ with respect to the natural mapping class group action. Recall the
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definition of the Mirzakhani function B : Mg → R+ in (5.7). In [Mir16], Mirzakhani introduced novel
techniques, inspired by work of Margulis [Mar70] and relying on previous work of herself on the ergodic
theory of the earthquake flow [Mir08a], to prove asymptotic formulas for the counting function above.

Theorem 6.2. [Mir16, Theorem 1.1] Let X ∈ Mg be a hyperbolic structure and γ be a filling closed
curve on Sg. Then, the following asymptotic formula holds,

lim
L→∞

f(X, γ, L)

L6g−6
=
c(γ) ·B(X)

bg
.

A result analogous to Theorem 6.2 for closed geodesics of any topological type was later proved by
Erlandsson and Souto [ES19] using original arguments introduced in their earlier work [ES16]. One of
the main ideas of their work is to study how injective the procedure of smoothing a non-simple closed
geodesic at its self-intersections is for closed geodesics of a given topological type.

Geodesic currents. In [Bon88], Bonahon gave a unified treatment of several seemingly unrelated
notions of length for closed curves on closed, orientable surfaces using the concept of geodesic currents.

To define geodesic currents let us endow the surface Sg with an auxiliary hyperbolic metric. The
projective tangent bundle PTSg admits a 1-dimensional foliation by lifts of geodesics on Sg. A
geodesic current on Sg is a Radon transverse measure of the geodesic foliation of PTSg. Equivalently,
a geodesic current on Sg is a π1(Sg)-invariant Radon measure on the space of unoriented geodesics
of the universal cover of Sg. Endow the space of geodesic currents on Sg with the weak-? topology.
Different choices of auxiliary hyperbolic metrics on Sg yield canonically identified spaces of geodesic
currents [Bon88, Fact 1]. Denote the space of geodesic currents on Sg by Cg. This space supports a
natural R+ scaling action and a natural Modg action [RS19, §2].

Free homotopy classes of weighted, unoriented closed curves on Sg embed into Cg by considering
their geodesic representatives with respect to any auxiliary hyperbolic metric. By work of Bonahon
[Bon88, Proposition 2], this embedding is dense. Moreover, the geometric intersection number pairing
for closed curves on Sg extends in a unique way to a continuous, symmetric, bilinear pairing i(·, ·)
on Cg [Bon88, Proposition 3]. In this sense, geodesic currents are to closed curves what measured
geodesic laminations are to simple closed curves.

Many different metrics on Sg embed into Cg in such a way that the geometric intersection number
of the metric with any closed curve is equal to the length of the geodesic representatives of the closed
curve with respect to the metric. The geodesic current corresponding to any such metric is usually
refered to as its Liouville current. Examples of metrics admitting Liouville currents include hypebolic
metrics [Bon88] and negatively curved Riemannian metrics [Ota90].

A geodesic current α ∈ Cg is said to be filling if i(α, β) > 0 for every non-zero β ∈ Cg. Relevant
examples of filling geodesic currents include free homotopy classes of unoriented filling closed curves
and the Liouville currents introduced above. Filling geodesic currents α ∈ Cg have finite stabilizers
Stab(α) ⊆ Modg with respect to the natural mapping class group action.

Consider a continuous function ` : Cg → R+ that is homogeneous, i.e., such that `(t · α) = t · `(α)
for every t > 0 and every α ∈ Cg. Let α ∈ Cg be a filling geodesic current. For every L > 0 consider
the counting function

cur(`, α, L) := #{β ∈ Modg · α | `(β) ≤ L}.
In [RS19], Rafi and Souto introduced novel methods for studying the asymptotics of these counting

functions. Given any filling geodesic current α ∈ Cg consider the finite positive constant

c(α) := µThu ({λ ∈MLg | i(α, λ) ≤ 1}) /#Stab(α).

Theorem 6.3. [RS19, Main Theorem] Let ` : Cg → R+ be a continuous, homogeneous function and
α ∈ Cg be a filling geodesic current. Then, the following asymptotic estimate holds,

lim
L→∞

cur(`, α, L)

L6g−6
=
B(`) · c(α)

bg
.
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Theorem 6.3 was later generalized by Erlandsson and Souto for non-filling geodesic currents [ES20].
As a remarkable application of Theorem 6.3, Rafi and Souto proved an asymptotic formula for the
number of points in a mapping class group of Teichmüller space Tg that lie within a ball of given center
and large radius with respect to Thurston’s asymmetric metric [RS19, Theorem 1.1]. Thurston’s
asymmetric metric quantifies the minimal Lipschitz constant among Lipschitz maps between marked
hyperbolic structures on Sg [Thu98].

Square-tiled surfaces. A square-tiled surface is a closed, connected, oriented surface constructed
from finitely many disjoint unit area squares on the complex plane, with sides parallel to the real and
imaginary axes, by identifying pairs of sides by translation and/or 180◦ rotation. We assume square-
tiled surfaces have no points of cone angle π. The horizontal core multi-curve of a square tiled-surface
is the integrally weighted simple closed multi-curve obtained by concatenating the horizontal segments
running through the middle of each square. The vertical core multi-curve of a square tiled-surface is
defined in an analogous way. See Figure 17 for an example.

(a) Square-tiled surface.

α1

α

α

2

2

(b) Horizontal core multi-curve.

ß1
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(c) Vertical core multi-curve.

Figure 17. Example of a square-tiled surface of genus 2. The horizontal core multi-
curve is α1 + 2α2. The vertical core multi-curve is β1 + β2 + β3.

Recall that two integrally weighted simple closed multi-curves on homeomorphic surfaces have the
same topological type if there exists a homeomorphism between the surfaces mapping one multi-curve
to the other preserving the weights. Let α :=

∑k
i=1 aiαi be an integral simple closed multi-curve on

Sg. For every L > 0 consider the counting function

sq(α,L) := #

{
square-tiled surfaces with horizontal core multi-curve

of the same topological type as α and ≤ L squares

}
/ ∼,

where ∼ denotes the equivalence relation induced by cut and paste operations. As in the counting
problems above, we are interested in the asymptotics of sq(α,L) as L→∞. Denote by

(6.1) εg :=

{
2 if g = 2,
1 if g 6= 2,

the number of automorphisms of a generic square-tiled surface of genus g. Recall the definition of the
constants c(γ) > 0 introduced in (5.4).

Theorem 6.4. Let α :=
∑k
i=1 aiαi be an integral simple closed multi-curve on Sg. Then,

lim
L→∞

sq(α,L)

L6g−6
=
εg · c(α)

22g−3
.

One can also consider more refined counting functions of square-tiled surfaces. Let α :=
∑k
i=1 αiαi

and β :=
∑l
j=1 bjβj be integral simple closed multi-curves on Sg. For every L > 0 denote

sq(α, β, L) := #

 square-tiled surfaces with horizontal core multi-curve of
the same topological type as α and vertical core multi-curve

of the same topological type as β and ≤ L squares

 / ∼,

where ∼ denotes the equivalence relation induced by cut and paste operations.
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Theorem 6.5. Let α :=
∑k
i=1 aiαi and β :=

∑l
j=1 bjβj be integral simple closed multi-curves on Sg.

Then, the following asymptotic formula holds,

lim
L→∞

sq(α, β, L)

L6g−6
=
εg · c(α) · c(β)

22g−3
.

Theorems 6.4 and 6.5 were originally proved by Delecroix, Goujard, Zograf, and Zorich using
algebro-geometric methods [DGZZ19]. Different proofs of these theorems were later provided in
[Ara19b]. These proofs made crucial use of the results of Mirzakhani discussed in this survey.

Individual components of multi-curves. An ordered simple closed multi-curve on Sg is a tuple
γ := (γ1, . . . , γk) with 1 ≤ k ≤ 3g − 3 of pairwise non-isotopic and non-intersecting simple closed
curves. Two ordered simple closed multi-curves on homeomorphic surfaces have the same topological
type if there exists a homeomorphism between the surfaces mapping one multi-curve to the other
respecting the orders. Multi-geodesics on hyperbolic surfaces are multi-curves all of whose components
are geodesics. Inspired by Mirzakhani’s simple close geodesic counting theorems, Wolpert conjectured
that analogous results should hold for countings of simple closed multi-geodesics that keep track of
the hyperbolic length of individual components, rather than just the total hyperbolic length.

For instance, let X ∈ Mg be a closed, connected, oriented hyperbolic surface of genus g ≥ 2 and
γ := (γ1, . . . , γk) be an ordered simple closed multi-curve on Sg with 1 ≤ k ≤ 3g− 3 components. For
every L > 0 consider the counting function

m(X, γ, L) := #

{
ordered simple closed multi-geodesics α := (α1, . . . , αk) on X
of the same topological type as γ with maxi=1,...,k `αi(X) ≤ L

}
.

Exercise 6.6. Let γ := (γ1, . . . , γk) be an ordered simple closed multi-curve on Sg. Using Mirza-
khani’s integration formulas give an explicit expression for

M(γ, L) :=

∫
Mg

m(X, γ, L) dµ̂wp(X)

in terms of Weil-Petersson volume polynomials and conclude that M(γ, L) is a polynomial in L of
degree 6g − 6. Hint: Follow the same approach as in Exercise 5.5.

Following Exercise 6.6 we define

m(γ) := lim
L→∞

M(γ, L)

L6g−6
.

Theorem 6.7. Let X ∈Mg be a hyperbolic structure on Sg and γ := (γ1, . . . , γk) with 1 ≤ k ≤ 3g−3
be an ordered simple closed multi-curve on Sg. Then, the following asymptotic formula holds,

lim
L→∞

m(X, γ, L)

L6g−6
=
m(γ) ·B(X)

bg
.

Theorem 6.7 was proved independently by the author [Ara19a] and Liu [Liu19] using general averag-
ing and unfolding methods introduced by Margulis in his thesis [Mar70]. In [Ara19a] a generalization
of Theorem 6.7 for ordered filling closed multi-curves was proved using techniques introduced by
Mirzakhani in [Mir16]. A result analogous to Theorem 6.7 for all topological types of closed curves
has since been proved by Erlandsson and Souto using original methods [ES20].

Effective results. The counting results discussed above only provide asymptotic estimates without
explicit error terms. The search for effective estimates for counting problems of simple closed geodesics
has only seen progress in recent years. In [EMM19], Eskin, Mirzakhani, and Mohammadi introduced
new methods fundamentally based on Teichmüller dynamics to prove the following effective version
of Mirzakhani’s simple closed geodesic counting theorem.
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Theorem 6.8. [EMM19] Let X ∈ Mg be a hyperbolic structure on Sg and γ :=
∑k
i=1 aiγi be an

integral simple closed multi-curve on Sg. Then, for every L > 0,

s(X, γ, L) =
c(γ) ·B(X)

bg
· L6g−6 +OX,γ

(
L6g−6−κ) ,

where κ = κ(g) > 0 is a positive constant depending only on the genus g ≥ 2.

Even more recently, in [Ara21b], novel methods were introduced by the author to prove analogous
effective estimates for countings of filling closed geodesics of a given topological type. These methods
rely on recent progress made in the prequels [Ara20] and [Ara21a] on the study of the effective dynamics
of the mapping class group on Teichmüller space and the space of closed curves of a closed, orientable
surface. These recent developments in turn rely on the exponential mixing rate, the hyperbolicity,
and the renormalization dynamics of the Teichmüller geodesic flow as their main driving forces.

Theorem 6.9. [Ara21b] Let X ∈ Mg be a hyperbolic structure on Sg and γ be a filling closed curve
on Sg. Then, for every L > 0,

f(X, γ, L) =
c(γ) ·B(X)

bg
· L6g−6 +OX,γ

(
L6g−6−κ) ,

where κ = κ(g) > 0 is a positive constant depending only on the genus g ≥ 2.

The methods introduced in [Ara21b] can also be used to prove an effective version of Rafi’s and
Souto’s asymptotic estimate for the number of points in a mapping class group orbit of Teichmüller
space that lie within a ball of given center and large radius with respect to Thurston’s asymmetric
metric. An analogous result for balls in the Teichmüller metric was proved by the author in [Ara20]
building on previous work of Athreya, Bufetov, Eskin, and Mirzakhani [ABEM12].
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