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Abstract. Given a connected, oriented, complete, finite area hyperbolic sur-
face X of genus g with n punctures, Mirzakhani showed that the number of

simple closed multi-geodesics on X of a prescribed topological type and total

hyperbolic length ≤ L is asymptotic to a polynomial in L of degree 6g−6+2n
as L→∞. We establish asymptotics of the same kind for countings of simple

closed multi-geodesics that keep track of the hyperbolic length of individual

components rather than just the total hyperbolic length, proving a conjec-
ture of Wolpert. The leading terms of these asymptotics are related to limits

of Weil-Petersson volumes of expanding subsets of quotients of Teichmüller

space. We introduce a framework for computing limits of this kind in terms
of purely topological information. We provide two further applications of this

framework to countings of square-tiled surfaces and countings of filling closed
multi-geodesics on hyperbolic surfaces.
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1. Introduction

Let X be a connected, oriented, complete, finite area hyperbolic surface of genus
g with n punctures. In [Mir08b], Mirzakhani showed that the number of simple
closed multi-geodesics on X of a prescribed topological type and total hyperbolic
length ≤ L is asymptotic to a polynomial in L of degree 6g − 6 + 2n as L → ∞.
Wolpert conjectured that analogous results should hold for countings of simple
closed multi-geodesics that keep track of the hyperbolic length of individual com-
ponents rather than just the total hyperbolic length.

For instance, let X be a connected, oriented, complete, finite area hyperbolic
surface of genus g with n punctures and γ := (γ1, . . . , γk) be an ordered simple
closed multi-curve on X with 1 ≤ k ≤ 3g − 3 + n components. For every L > 0
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consider the counting function

m(X, γ, L)(1.1)

:= #

{
ordered simple closed multi-geodesics α := (α1, . . . , αk) on X
of the same topological type as γ with maxi=1,...,k `αi(X) ≤ L

}
,

where `αi(X) denotes the hyperbolic length of the geodesic αi on X. In this paper
we show that m(X, γ, L) is asymptotic to a polynomial in L of degree 6g − 6 + 2n
as L → ∞. Wolpert’s more general conjecture, introduced below as Theorem 1.9,
is also proved in this paper.

Mirzakhani’s results and techniques in [Mir08b] can be used to establish asymp-
totics for countings of simple closed multi-curves with respect to length functions
much more general than total hyperbolic length. Recent generalizations due to sev-
eral authors also establish asymptotics for countings of objects much more general
than simple closed multi-curves [ES16, EPS20, RS19]. Wolpert’s conjecture does
not fit into this framework; see Remark 1.8 below.

Instead, our proof of Wolpert’s conjecture draws inspiration from ideas intro-
duced by Margulis in his thesis [Mar70]. Using general averaging and unfolding
techniques for parametrized countings, we reduce the proof of this conjecture to
an application of equidistribution results for analogues of expanding horoballs on
moduli spaces of hyperbolic surfaces. A first version of these results was established
by Mirzakhani in [Mir07a] and was later generalized by the author in [Ara20b].

As described in Theorem 1.9, the leading terms of the asymptotics in Wolpert’s
conjecture are related to limits of Weil-Petersson volumes of expanding subsets of
quotients of Teichmüller space. In this paper we introduce a framework for comput-
ing limits of this kind in terms of purely topological information; see Theorem 1.16.
We provide two further applications of this framework to countings of square-tiled
surfaces and countings of filling closed multi-geodesics on hyperbolic surfaces; see
Theorems 1.18 and 1.21 for precise statements.

The centerpiece of this framework is Proposition 4.4, which shows that an ap-
propriate renormalization of the Weil-Petersson measure on Teichmüller space con-
verges to the Thurston measure on the space of measured geodesic laminations as
one lets the curvature of the metrics diverge to −∞. The main tool used in the
proof of Proposition 4.4 is the correspondence of the Weil-Petersson measure and
the Thurston measure through Thurston’s shear coordinates [Thu86, PP93, SB01].

The rest of this section is devoted to setting up notation and providing precise
statements of the aforementioned results.

Notation. For the rest of this paper we fix a pair of non-negative integers g, n ≥ 0
satisfying 2− 2g − n < 0 and a connected, oriented surface Sg,n of genus g with n
punctures (and negative Euler characteristic).

Denote by Tg,n the Teichmüller space of marked, oriented, complete, finite area
hyperbolic structures on Sg,n up to isotopy, by Modg,n the mapping class group of
Sg,n, and by Mg,n := Tg,n/Modg,n the moduli space of oriented, complete, finite
area hyperbolic structures on Sg,n.

Let α := (α1, . . . , αk) with k ≥ 1 be an ordered tuple of pairwise non-isotopic
essential closed curves on Sg,n, an ordered closed multi-curve for short. For every
X ∈ Tg,n, the hyperbolic length vector of α with respect to X is given by

~̀
α(X) := (`α1

(X), . . . , `αk(X)) ∈ (R>0)k,
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where, for every i ∈ {1, . . . , k}, `αi(X) > 0 denotes the hyperbolic length of the
unique geodesic representative of αi on X. Given a vector a := (a1, . . . , ak) ∈
(R>0)k of positive weights on the components of α, consider the weighted closed
multi-curve on Sg,n given by

(1.2) a · α := a1α1 + · · ·+ akαk.

The total hyperbolic length of a · α with respect to X is given by

`a·α(X) := a · ~̀α(X) = a1`α1(X) + · · ·+ ak`αk(X) ∈ R>0

Unless otherwise specified, the term length will always refer to hyperbolic length.

Mirzakhani’s asymptotic counting formula. Let γ := (γ1, . . . , γk) with k ≥ 1
be an ordered closed multi-curve on Sg,n, a := (a1, . . . , ak) ∈ (R>0)k be a vector of
positive weights on the components of γ, and X ∈ Tg,n. For every L > 0 consider
the counting function

(1.3) t(X, γ,a, L) := #{α ∈ Modg,n · γ | `a·α(X) ≤ L}.

In words, t(X, γ,a, L) is the number of ordered multi-geodesics on X of the same
topological type as γ whose total hyperbolic length with respect to the weights a
is ≤ L. This function does not depend on the marking of X ∈ Tg,n but only on the
subjacent hyperbolic structure X ∈Mg,n. In [Mir08b], Mirzakhani’s described the
asymptotics of t(X, γ,a, L) as L→∞ when γ is simple, i.e., when the components
of γ are simple and pairwise disjoint.

To give a precise statement of Mirzakhani’s asymptotic counting formula, we
first introduce some notation. Consider the subgroup

Stab(γ) =

k⋂
i=1

Stab(γi) ⊆ Modg,n

of mapping classes of Sg,n that fix every component of γ up to isotopy. Denote by
µwp the Weil-Petersson measure on Tg,n and by µ̃γwp the local pushforward of µwp

to Tg,n/Stab(γ). In [Mir08b], Mirzakhani showed that, if γ is simple, the following
limit, known as the frequency of the weighted simple closed multi-curve a ·γ, exists,

(1.4) r(γ,a) := lim
L→∞

µ̃γwp({Y ∈ Tg,n/Stab(γ) | `a·γ(Y ) ≤ L})
L6g−6+2n

.

Furthermore, Mirzakhani provided an explicit formula for computing r(γ,a). More
precisely, letting x := (x1, . . . , xk) be the standard coordinates of (R≥0)k and dx :=
dx1 · · · dxk be the standard measure of (R≥0)k, there exists an explicit polynomial
Wg,n(γ,x) of degree 6g − 6 + 2n − k on the x variables, all of whose non-zero
monomials are of top degree, with non-negative rational coefficients, and which has
x1 · · ·xk as a factor, such that the following result holds.

Proposition 1.1. [Mir08b, Proposition 5.1] Let γ := (γ1, . . . , γk) be an ordered
simple closed multi-curve on Sg,n with 1 ≤ k ≤ 3g − 3 + n components and a :=
(a1, . . . , ak) ∈ (R>0)k be a vector of positive weights. Then,

r(γ,a) =

∫
a·x≤1

Wg,n(γ,x) · dx.
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Remark 1.2. Up to a constant, Wg,n(γ,x) is equal to x1 · · ·xk times the sum of the
top degree monomials of the product of the Weil-Petersson volume polynomials of
the moduli spaces of bordered Riemann surfaces associated to the components of
the surface obtained by cutting Sg,n along γ. See §2 for a precise definition.

Denote by MLg,n the space of measured geodesic laminations on Sg,n and by
µThu be the Thurston measure onMLg,n. Consider the function B : Mg,n → R>0

which to every X ∈Mg,n assigns the value

(1.5) B(X) := µThu({λ ∈MLg,n | `λ(X) ≤ 1}),

where `λ(X) > 0 denotes the hyperbolic length of λ with respect to X. We refer to
this function as the Mirzakhani function. Roughly speaking, B(X) measures the
shortness of simple closed geodesics on X. Denote by µ̂wp the local pushforward
of the Weil-Petersson measure µwp on Tg,n to Mg,n := Tg,n/Modg,n. By work of
Mirzakhani, B is continuous, proper, and integrable with respect to µ̂wp [Mir08b,
Proposition 3.2, Theorem 3.3]. Define

(1.6) bg,n :=

∫
Mg,n

B(X) dµ̂wp(X) < +∞.

Remark 1.3. In [AA20], upper and lower bounds of the same order describing the
behavior of B near the cusp of Mg,n are established. In particular, it is proved
that B is square-integrable with respect to µ̂wp.

The following theorem due to Mirzakhani describes the asymptotics of the count-
ing functions t(X, γ,a, L) as L→∞ when γ is simple.

Theorem 1.4. [Mir08b, Theorem 6.1] Let X ∈ Mg,n, γ := (γ1, . . . , γk) be an
ordered simple closed multi-curve on Sg,n with 1 ≤ k ≤ 3g− 3 +n components, and
a := (a1, . . . , ak) ∈ (R>0)k be a vector of positive weights. Then,

lim
L→∞

t(X, γ,a, L)

L6g−6+2n
=
B(X) · r(γ,a)

bg,n
.

Remark 1.5. In [EMM19], Eskin, Mirzakhani, and Mohammadi improved Theorem
1.4 by obtaining a power saving error term for the asymptotics of t(X, γ,a, L). Their
methods are very different from the ones in [Mir08b] and rely on the exponential
mixing rate of the Teichmüller geodesic flow.

Wolpert conjectured that results analogous to Theorem 1.4 should hold for count-
ings of simple closed multi-geodesics that keep track of the the hyperbolic length
of individual components rather than just the total hyperbolic length. To give a
precise statement of this conjecture we first introduce some terminology.

Length spectra of ordered closed multi-curves. Let γ := (γ1, . . . , γk) be an
ordered closed multi-curve on Sg,n with k ≥ 1 components and X ∈ Tg,n. One can
record, with multiplicity, the hyperbolic length vector with respect to X of every
ordered closed multi-curve in the mapping class group orbit of γ by considering the
counting measure on (R≥0)k given by

µγ,X :=
∑

α∈Modg,n·γ

δ~̀
α(X).
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This measure does not depend on the marking of X ∈ Tg,n but only on the subjacent
hyperbolic structure X ∈ Mg,n. We refer to this measure as the length spectrum
of γ with respect to X.

To study the asymptotic behavior of µγ,X we consider the rescaled counting
measures {µLγ,X}L>0 on (R≥0)k given by

µLγ,X :=
∑

α∈Modg,n·γ

δ 1
L ·~̀α(X).

Asymptotics of length spectra of ordered simple closed multi-curves.
The first main result of this paper is the following theorem, which describes the
behavior near infinity of the length spectrum of ordered simple closed multi-curves
with respect to complete, finite area hyperbolic structures.

Theorem 1.6. Let γ := (γ1, . . . , γk) with 1 ≤ k ≤ 3g − 3 + n be an ordered simple
closed multi-curve on Sg,n and X ∈Mg,n. Then,

lim
L→∞

µLγ,X
L6g−6+2n

=
B(X)

bg,n
·Wg,n(γ,x) · dx

in the weak-? topology for measures on (R≥0)k.

Remark 1.7. Theorem 1.4 can be deduced directly from Theorem 1.6 and Portman-
teau’s theorem. This provides an alternative proof of Theorem 1.4 independent of
Mirzakhani’s original work in [Mir08b].

Remark 1.8. Theorem 1.6 is not a direct consequence of Theorem 1.4. Indeed,
simplices of (R≥0)k of the form

∆a := {(x1, . . . , xk) ∈ (R≥0)k | a1x1 + · · ·+ akxk ≤ 1}

with a := (a1, . . . , ak) ∈ (R>0)k arbitrary do not generate the σ-algebra of Borel
measurable subsets of (R≥0)k. Furthermore, Mirzakhani’s more general counting
results in [Mir08b] do not directly imply Theorem 1.6 as the notion of hyperbolic
length of individual components does not extend continuously from the dense subset
of rationally weighted simple closed multi-curves to all MLg,n.

Let γ := (γ1, . . . , γk) be an ordered closed multi-curve on Sg,n with k ≥ 1
components, b := (b1, . . . , bk) ∈ (R>0)k be a vector of positive scaling parameters,
and X ∈ Tg,n. For every L > 0 consider the counting function

c(X, γ,b, L)(1.7)

:= #{α := (α1, . . . , αk) ∈ Modg,n · γ | `αi(X) ≤ biL, ∀i = 1, . . . , k}.

In words, c(X, γ,b, L) is the of number of ordered closed multi-geodesics on X of the
same topological type as γ whose i-th component has hyperbolic length ≤ biL. This
function does not depend on the marking of X ∈ Tg,n but only on the underlying
hyperbolic structure X ∈ Mg,n. The following theorem corresponds to Wolpert’s
conjecture. It is a direct consequence of Theorem 1.6 and Portmanteau’s theorem.

Theorem 1.9. Let X ∈ Mg,n, γ := (γ1, . . . , γk) with 1 ≤ k ≤ 3g − 3 + n be an
ordered simple closed multi-curve on Sg,n, and b := (b1, . . . , bk) ∈ (R>0)k. Then,

lim
L→∞

c(X, γ,b, L)

L6g−6+2n
=
B(X)

bg,n
·
∫
∏k
i=1[0,bi]

Wg,n(γ,x) · dx.
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Remark 1.10. A version of Theorem 1.9 for pair of pants decompositions was proved
by Mirzakhani [Mir16, Theorem 1.2]. A result closely related to Theorem 1.9 was
independently established by Liu [Liu19, Theorem 1.2]. Other results related to
Theorem 1.9 are discussed in forthcoming work of Erlandsson and Souto [ES20].

Remark 1.11. Letting b := (1, . . . , 1) ∈ (R>0)k in Theorem 1.9 gives asymptotics
for the counting functions m(X, γ, L) introduced in (1.1).

Remark 1.12. Wolpert has used Theorem 1.9 to prove asymptotic formulas for
counting functions of proper, bi-infinite, simple complete geodesics on connected,
oriented, complete, finite area hyperbolic surfaces with punctures.

Remark 1.13. Theorems 1.6 and 1.9 can be strengthened to obtain asymptotics of
countings that also keep track of the equivalence class of rationally weighted simple
closed multi-geodesics in the space of projective measured geodesic laminations; see
Theorems 3.5 and 3.7 for precise statements.

Outline of the proof of Theorem 1.6. To prove Theorem 1.6 we consider the
following equivalent reformulation. Let X ∈Mg,n, γ := (γ1, . . . , γk) be an ordered
simple closed multi-curve on Sg,n with 1 ≤ k ≤ 3g − 3 + n components, and
f : (R≥0)k → R≥0 be an arbitrary non-negative, continuous, compactly supported
function. For every L > 0 consider the counting function

(1.8) c(X, γ, f, L) :=

∫
Rk

f(x) dµLγ,X(x) =
∑

α∈Modg,n·γ

f
(

1
L · ~̀α(X)

)
.

This function does not depend on the marking of X ∈ Tg,n but only on the hyper-
bolic structure X ∈Mg,n. Notice that, for b := (b1, . . . , bk) ∈ (R>0)k, if

f(x) :=

k∏
i=1

1[0,bi](xi),

then c(X, γ, f, L) = c(X, γ,b, L). By the definition of weak convergence of mea-
sures, Theorem 1.6 is equivalent to the following result.

Theorem 1.14. Let X ∈ Mg,n, γ := (γ1, . . . , γk) with 1 ≤ k ≤ 3g − 3 + n be
an ordered simple closed multi-curve on Sg,n, and f : (R≥0)k → R≥0 be a non-
negative, continuous, compactly supported function. Then,

lim
L→∞

c(X, γ, f, L)

L6g−6+2n
=
B(X)

bg,n
·
∫
Rk

f(x) ·Wg,n(γ,x) · dx.

Our proof of Theorem 1.14 is inspired by ideas introduced by Margulis in his
thesis [Mar70]. The upshot of the proof is the following: approaching these count-
ings directly for a particular hyperbolic structure X is rather hard but averaging
them over nearby points in Mg,n should make them more tractable. After suit-
ably averaging the countings over nearby points, unfolding such averages on an
appropriate intermediate cover reduces the proof of Theorem 1.14 to the question
of whether certain analogues of expanding horoballs on Mg,n equidistribute. Such
equidistribution results were established by the author in [Ara20b] building on ideas
introduced by Mirzakhani in [Mir07a].

Remark 1.15. If the analogues of expanding horoballs on Mg,n alluded to in the
previous paragraph equidistributed at a polynomial rate, see Remark 3.4 for a
precise statement of this condition, the methods in our proof would yield an effective
version of Theorem 1.14 with a power saving error term.
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Asymptotics of Weil-Petersson volumes. Let γ := (γ1, . . . , γk) with 1 ≤ k ≤
3g− 3 +n be an ordered simple closed multi-curve on Sg,n. According to Theorem
1.6, the asymptotic length spectrum of γ with respect to any X ∈ Tg,n has a factor

Wg,n(γ,x) · dx

which depends only on γ and not on X. This factor can be described in terms of
limits of Weil-Petersson volumes of expanding subsets of quotients of Tg,n; see Re-
mark 1.2. The second goal of this paper is to introduce a framework for computing
limits of this kind in terms of purely topological information.

Let i : MLg,n×MLg,n → R≥0 denote the geometric intersection number of mea-
sured geodesic laminations on Sg,n. For every µ ∈ MLg,n denote by MLg,n(µ) ⊆
MLg,n the open, dense, full measure subset of measured geodesic laminations that
together with µ fill Sg,n. More precisely,

(1.9) MLg,n(µ) := {λ ∈MLg,n | i(λ, η) + i(µ, η) > 0, ∀η ∈MLg,n}.

Denote byMLg,n(γ) ⊆MLg,n the corresponding subset when γ is endowed with an
arbitrary transverse measure of full support. The stabilizer Stab(γ) ⊆ Modg,n acts
properly discontinuously on MLg,n(γ); see Proposition 4.5. Consider the measure
µγThu := µThu|MLg,n(γ) on MLg,n(γ) and denote by µ̃γThu its local pushforward to
MLg,n(γ)/Stab(γ). Let

Iγ : MLg,n(γ)→ (R≥0)k

be the map which to every λ ∈MLg,n(γ) assigns the vector

Iγ(λ) := (i(γ1, λ), . . . , i(γk, λ)) ∈ (R≥0)k

and let

Ĩγ : MLg,n(γ)/Stab(γ)→ (R≥0)k

be the induced map on MLg,n(γ)/Stab(γ). In this paper we prove the following.

Theorem 1.16. Let γ := (γ1, . . . , γk) be an ordered simple closed multi-curve on
Sg,n with 1 ≤ k ≤ 3g − 3 + n components. Then,

Wg,n(γ,x) · dx = (Ĩγ)∗(µ̃
γ
Thu).

Remark 1.17. For a pair of pants decomposition of Sg,n, Theorem 1.16 can be
proved directly using Wolpert’s magic formula [Wol85, Theorem 1.3] and an explicit
computation in Dehn-Thurston coordinates; see [Ara20a, §4] for details.

The main tool used in the proof of Theorem 1.16 is the correspondence of the
Weil-Petersson measure on Tg,n and the Thurston measure on MLg,n through
Thurston’s shear coordinates [Thu86, PP93, SB01]. Using this correspondence we
show that an appropriate renormalization of the Weil-Petersson measure converges
to the Thurston measure as one lets the curvature of the metrics diverge to −∞;
see Proposition 4.4 for a precise statement. The characterization of the subset
MLg,n(γ) ⊆MLg,n provided by Proposition 4.8 will play an important role when
dealing with issues of non-compactness that arise in the course of the proof.

We provide two further applications of the framework developed in the proof of
Theorem 1.16 to countings of square-tiled surfaces and countings of filling closed
multi-geodesics on hyperbolic surfaces. We now describe these applications.
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Counting square-tiled surfaces. A square-tiled surface is a surface constructed
from finitely many disjoint unit area squares on the complex plane, with sides paral-
lel to the real and imaginary axes, by identifying pairs of sides by translation and/or
180◦ rotation. Points of the surface with cone angle π are considered as punctures.
The horizontal core multi-curve of a square tiled-surface is the integrally weighted
simple closed multi-curve obtained by concatenating the horizontal segments run-
ning through the middle of each square. The vertical core multi-curve of a square
tiled-surface is defined in an analogous way. See Figure 1 for an example.

(a) Square-tiled sur-
face.

α1

α

α

2

2

(b) Horizontal core
multi-curve.

ß1

ßß 32

(c) Vertical core multi-
curve.

Figure 1. Example of a square-tiled surface of genus 2 with no
punctures. The horizontal core multi-curve is α1 + 2α2. The ver-
tical core multi-curve is β1 + β2 + β3.

Two integrally weighted simple closed multi-curves on homeomorphic surfaces
have the same topological type if there exists a homeomorphism between the surfaces
mapping one multi-curve to the other preserving the weights. Let α := (α1, . . . , αk)
be an ordered simple closed multi-curve on Sg,n with 1 ≤ k ≤ 3g−3+n components,
a := (a1, . . . , ak) ∈ (Z>0)k be vector of positive integral weights on the components
of α, and a · α be as in (1.2). For every L > 0 consider the counting function

s(a · α,L) := #

{
square-tiled surfaces with horizontal core multi-curve
of the same topological type as a · α and ≤ L squares

}
/ ∼,

where ∼ denotes the equivalence relation induced by cut and paste operations. We
are interested in the asymptotic behavior of s(a · α,L) as L→∞.

Denote by

(1.10) εg,n :=

 4 if (g, n) = (0, 4),
2 if (g, n) ∈ {(1, 1), (1, 2), (2, 0)},
1 if (g, n) /∈ {(0, 4), (1, 1), (1, 2), (2, 0)},

the number of automorphisms of a generic square-tiled surface of genus g with n
punctures. Recall the definition of r(α,a) in (1.4). In this paper we combine results
and techniques from [Ara20a] with Theorem 1.16 to prove the following.

Theorem 1.18. Let α := (α1, . . . , αk) with 1 ≤ k ≤ 3g−3+n be an ordered simple
closed multi-curve on Sg,n and a := (a1, . . . , ak) ∈ (Z>0)k. Then,

lim
L→∞

s(a · α,L)

L6g−6+2n
=
εg,n · r(α,a)

22g−3+n
.

Remark 1.19. Theorem 1.18 was originally proved by Delecroix, Goujard, Zograf,
and Zorich using algebro-geometric methods [DGZZ19]. In [Ara20a] we gave a dif-
ferent proof of Theorem 1.18 using results of Mirzakhani [Mir08b]. The proof in
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this paper establishes an explicit connection between countings of square-tiled sur-
faces and asymptotics of Weil-Petersson volumes of expanding subsets of quotients
of Teichmüller space through their relation with Thurston volumes of subsets of
quotients of MLg,n.

Asymptotics of length spectrum of ordered filling closed multi-curves.
An ordered closed multi-curve on Sg,n is said to be filling if it cuts the surface
into polygons with at most one puncture in their interior. Recall the definition of
the counting functions with respect to total hyperbolic length t(X, γ,a, L) in (1.3).
In [Mir16], Mirzakhani showed that, if γ := (γ1, . . . , γk) is a filling ordered closed
multi-curve on Sg,n with k ≥ 1 components and a := (a1, . . . , ak) ∈ (R>0)k is a
vector of positive weights, then the counting function t(X, γ,a, L) is asymptotic to
a polynomial in L of degree 6g − 6 + 2n as L→∞.

In this paper we combine results and techniques of Mirzakhani in [Mir16] with
the framework developed in the proof of Theorem 1.16 to describe the behavior near
infinity of the length spectra of ordered filling closed multi-curves with respect to
complete, finite area hyperbolic structures. More precisely, we prove the following.

Theorem 1.20. Let γ := (γ1, . . . , γk) with k ≥ 1 be an ordered filling closed multi-
curve on Sg,n and X ∈Mg,n. Then,

lim
L→∞

µLγ,X
L6g−6+2n

=
B(X)

bg,n
· (Ĩγ)∗ (µ̃γThu)

in the weak-? topology for measures on (R≥0)k.

Recall the definition of the counting functions c(X, γ,b, L) introduced above.
The following theorem is an analogue of Wolpert’s conjecture for filling closed multi-
geodesics. It is a direct consequence of Theorem 1.20 and Portmanteau’s theorem.

Theorem 1.21. Let X ∈ Mg,n, γ := (γ1, . . . , γk) with k ≥ 1 be an ordered filling
closed multi-curve on Sg,n, and b := (b1, . . . , bk) ∈ (R>0)k. Then,

lim
L→∞

c(X, γ,b, L)

L6g−6+2n
=
B(X)

bg,n
· µ̃γThu ({λ ∈MLg,n(γ)/Stab(γ) | i(λ, γi) ≤ bi}) .

Remark 1.22. As highlighted by Mirzakhani in [Mir16], applying the methods in
the proof of Theorem 1.21 to get an effective version of the same theorem with a
power saving error term seems rather hard.

Organization of the paper. In §2 we introduce the preliminaries needed to un-
derstand the proofs of the main results. In §3 we prove Theorem 1.14 and discuss
how refining the ideas in this proof leads to the stronger version alluded to in Re-
mark 1.13. In §4 we prove Theorem 1.16 and develop the aforementioned general
framework for computing limits of Weil-Petersson volumes of expanding subsets
of quotients of Teichmüller space. In §5 we review the techniques introduced by
the author in [Ara20a] and prove Theorem 1.18. In §6 we review the techniques
introduced by Mirzakhani in [Mir16] and prove Theorem 1.20.

Acknowledgments. The author is very grateful to Alex Wright and Steve Ker-
ckhoff for their invaluable advice, patience, and encouragement. The author would
also like to thank the anonymous referee whose detailed comments and suggestions
greatly helped improve this paper.
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2. Preliminaries

Outline of this section. In this section we introduce the preliminaries needed to
understand the proofs of the main results of this paper. Of particular importance
for later will be the definitions of the horoball segment measures µf,Lγ and νf,Lγ,a as
well as Theorems 2.3 and 2.4.

The Thurston measure. Train track coordinates induce a 6g − 6 + 2n dimen-
sional piecewise integral linear (PIL) structure on the space MLg,n of measured
geodesic laminations on Sg,n; see [PH92, §3.1] for details. By work of Masur, there
exists a unique (up to scaling) non-zero, locally finite, Modg,n-invariant, Lebesgue
class measure on MLg,n [Mas85, Theorem 2]. Several different definitions of such
measure (equal up to scaling) can be found in the literature. We will consider the
definition coming from the symplectic structure of MLg,n.

More precisely, consider the Modg,n-invariant symplectic form ωThu on the PIL
manifoldMLg,n induced by train track coordinates; see [PH92, §3.2] for an explicit
definition. This symplectic form is known as the Thurston symplectic form. The top
exterior power vThu := 1

(3g−3+n)!
∧3g−3+n
i=1 ωThu induces a non-zero, locally finite,

Modg,n-invariant, Lebesgue class measure µThu onMLg,n. We refer to this measure
as the Thurston measure.

This measure satisfies the following scaling property:

(2.1) µThu(t ·A) = t6g−6+2n · µThu(A)

for every Borel measurable subset A ⊆ MLg,n and every t > 0. In particular, the
following lemma applies; see [EU18, Page 24] for a proof.

Lemma 2.1. Let Ω be a topological space endowed with a continuous (R>0)-action
and µ be a measure on Ω such that the following property holds for some k > 0:

µ(t ·A) = tk · µ(A)

for every Borel measurable subset A ⊆ Ω and every t > 0. Let f : Ω → R≥0 be a
non-negative, homogeneous, continuous function. Then, for every c > 0,

µ(f−1({c})) = 0.

Dehn-Thurston coordinates. Let P := (γ1, . . . , γ3g−3+n) be a pair of pants
decomposition of Sg,n. The following theorem, originally due to Dehn in the case
of integral multi-curves and later extended by Thurston to the case of general
measured geodesic laminations, gives an explicit parametrization ofMLg,n in terms
of intersection numbers mi ∈ R≥0 and twisting numbers ti ∈ R with respect to the
components of P; see [PH92, §1.2] and [Mar16, §8.3.9] for details.

Theorem 2.2. Let P := (γ1, . . . , γ3g−3+n) be a pair of pants decomposition of Sg,n.

Any set of intersection and twisting numbers (mi, ti)
3g−3+n
i=1 of MLg,n with respect

to the components of P gives a parametrization of MLg,n by the set

Θ :=
{

(mi, ti) ∈ (R≥0 ×R)3g−3+n | mi = 0⇒ ti ≥ 0, ∀i = 1, . . . , 3g − 3 + n
}
.

We refer to any parametrization as in Theorem 2.2 as a set of Dehn-Thurston
coordinates of MLg,n adapted to P and to the set Θ as the parameter space of
such parametrization. The Thurston measure µThu on MLg,n corresponds (up to
scaling) to the Lebesgue measure on Θ.
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The Mirzakhani measure. Consider the bundle P 1Tg,n of unit length measured
geodesic laminations over Tg,n. More precisely,

P 1Tg,n := {(X,λ) ∈ Tg,n ×MLg,n | `λ(X) = 1}.
For every X ∈ Tg,n consider the measure µXThu on the fiber P 1

XTg,n of P 1Tg,n above
X which to every Borel measurable subset A ⊆ P 1

XTg,n assigns the value

(2.2) µXThu(A) := µThu([0, 1] ·A).

The Mirzakhani measure νMir on P 1Tg,n is defined by the disintegration formula

dνMir(X,λ) := dµXThu(λ) dµwp(X).

The mapping class group Modg,n acts diagonally on P 1Tg,n in a properly dis-
continuous way preserving νMir. The quotient P 1Mg,n := P 1Tg,n/Modg,n is the
bundle of unit length measured geodesic laminations over Mg,n. Locally pushing
forward νMir through the quotient map P 1Tg,n → P 1Mg,n yields a measure ν̂Mir

on P 1Mg,n, also called the Mirzakhani measure. The pushforward of ν̂Mir under
the bundle map π : P 1Mg,n →Mg,n is given by

dπ∗(ν̂Mir)(X) = B(X) dµ̂wp(X),

where B : Mg,n → R>0 is the Mirzakhani function defined in (1.5). The total mass
of P 1Mg,n with respect to ν̂Mir is given by

ν̂Mir(P
1Mg,n) =

∫
Mg,n

B(X) dµ̂wp(X) = bg,n.

In particular, by (1.6), the measure ν̂Mir is finite.

Horoball segment measures. Let γ := (γ1, . . . , γk) be an ordered simple closed
multi-curve on Sg,n with 1 ≤ k ≤ 3g− 3 +n components and f : (R≥0)k → R≥0 be
a non-negative, bounded, compactly supported, Borel measurable function that is
not almost everywhere zero with respect to the Lebesgue measure class. For every
L > 0 consider the horoball segment Bf,Lγ ⊆ Tg,n given by

Bf,Lγ := {X ∈ Tg,n | ~̀γ(X) ∈ L · supp(f)}.

Every such horoball segment supports a horoball segment measure µf,Lγ defined as

(2.3) dµf,Lγ (X) := f
(

1
L · ~̀γ(X)

)
dµwp(X).

This measure is Stab(γ)-invariant. To get a locally finite horoball segment measure
on Mg,n one needs to get rid of the redundancies that arise when taking pushfor-
wards. For this purpose consider the intermediate cover

Tg,n → Tg,n/Stab(γ)→Mg,n.

Let µ̃f,Lγ be the local pushforward of µf,Lγ to Tg,n/Stab(γ) and µ̂f,Lγ be the pushfor-

ward of µ̃f,Lγ to Mg,n.

Let a := (a1, . . . , ak) ∈ (Q>0)k be a vector of positive rational weights on the
components of γ. The rationally weighted simple closed multi-curve a · γ defined
as in (1.2) belongs to MLg,n. The horoball segment measures µf,Lγ on Tg,n also

give rise to horoball segment measures νf,Lγ,a on the bundle P 1Tg,n by considering
the disintegration formula

dνf,Lγ,a (X,λ) := dδa·γ/`a·γ(X)(λ) dµf,Lγ (X),
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where δ denotes point masses. This measure is Stab(γ)-invariant. In analogy with
the case above, to get locally finite horoball segment measures on P 1Mg,n we
consider the intermediate cover

P 1Tg,n → P 1Tg,n/Stab(γ)→ P 1Mg,n.

Let ν̃f,Lγ,a be the local pushforward of νf,Lγ,a to P 1Tg,n/Stab(γ) and ν̂f,Lγ,a be the push-

forward of ν̃f,Lγ,a to P 1Mg,n.

One can check, see Proposition 2.9 below, that the measures µ̂f,Lγ and ν̂f,Lγ,a are

finite. We denote by mf,L
γ the total mass of the measures µ̂f,Lγ and ν̂f,Lγ,a , i.e.,

mf,L
γ := µ̂f,Lγ (Mg,n) = ν̂f,Lγ,a (P 1Mg,n) < +∞.

The main tool used in the proof of Theorem 1.6 is the following result, which
shows that horoball segment measures on P 1Mg,n equidistribute with respect to
ν̂Mir. This result is an analogue of the classical equidistribution theorem for ex-
panding horoballs on homogeneous spaces; see [KM96] for instance. This result is
proved in [Ara20b], expanding on ideas introduced by Mirzakhani in [Mir07a].

Theorem 2.3. In the weak-? topology for measures on P 1Mg,n,

lim
L→∞

ν̂f,Lγ,a

mf,L
γ

=
ν̂Mir

bg,n
.

From Theorem 2.3, taking pushforwards through the map P 1Mg,n → Mg,n,
we deduce the following result, which shows that horoball segment measures on
Mg,n equidistribute with respect to B(X) · dµ̂wp(X). The proof of Theorem 1.6
will directly use this result

Theorem 2.4. In the weak-? topology for measures on Mg,n,

lim
L→∞

µ̂f,Lγ

mf,L
γ

=
B(X) · dµ̂wp(X)

bg,n
.

Teichmüller and moduli spaces of hyperbolic surfaces with boundary.
Let g, n, b ≥ 0 be a triple of non-negative integers satisfying 2− 2g− n− b < 0 and
Sbg,n be a connected, oriented surface of genus g with n punctures and b labeled

boundary components β1, . . . , βb. Let L := (Li)
b
i=1 ∈ (R>0)b be a vector of positive

real numbers.
Denote by T bg,n(L) the Teichmüller space of marked, oriented, complete, fi-

nite area hyperbolic structures on Sbg,n with labeled geodesic boundary compo-
nents whose lengths are given by L, up to isotopy fixing each boundary compo-
nent setwise. The mapping class group of Sbg,n, denoted Modbg,n, is the group

of orientation preserving diffeomorphisms of Sbg,n that setwise fix each boundary
component, up to isotopy fixing each boundary component setwise. The quotient
Mb

g,n(L) := T bg,n(L)/Modbg,n is the moduli space of oriented, complete, finite area

hyperbolic structures on Sbg,n with labeled geodesic boundary components whose

lengths are given by L. We warn the reader that these definitions of T bg,n(L),

Modbg,n, and Mb
g,n(L) might differ from others found in the literature.

Denote the total Weil-Petersson volume of the moduli space Mb
g,n(L) by

V bg,n(L) := Volwp(Mb
g,n(L)).



COUNTING HYPERBOLIC MULTI-GEODESICS 13

The following remarkable theorem due to Mirzakhani shows that V bg,n(L) is a poly-
nomial on the L variables.

Theorem 2.5. [Mir07b, Theorem 6.1] [Mir07c, Theorem 1.1] Let g, n, b ≥ 0 be
non-negative integers with 2− 2g − n− b < 0. The total Weil-Petersson volume

V bg,n(L1, . . . , Lb)

is a polynomial of degree 3g − 3 + n+ b on the variables L2
1, . . . , L

2
b . Moreover, if

V bg,n(L1, . . . , Lb) =
∑

α∈(Z≥0)
b,

|α|≤3g−3+n+b

cα · L2α1
1 · · ·L2αb

b ,

where |α| := α1 + · · ·+ αb for every α ∈ (Z≥0)b, then cα ∈ Q>0 · π6g−6+2n+2b−2|α|.
In particular, the leading coefficients of V bg,n(L1, . . . , Lb) belong to Q>0.

Remark 2.6. If the surface Sbg,n is a pair of pants, i.e., if g = 0 and n+ b = 3, then,

for any L := (Li)
b
i=1 ∈ (R>0)b, the moduli space Mb

g,n(L) has exactly one point.
In this case we adopt the convention

V bg,n(L) := 1.

The polynomials Wg,n(γ, x). Given a simple closed curve α on Sg,n, let

Stab0(α) ⊆ Modg,n

be the subgroup of all mapping classes of Sg,n that fix α up to isotopy together
with its orientations. Although α is unoriented, it admits two possible orientations.
We require mapping classes in Stab0(α) to fix these orientations. More generally,
given an ordered simple closed multi-curve γ := (γ1, . . . , γk) on Sg,n with 1 ≤ k ≤
3g − 3 + n components, let

Stab0(γ) :=

k⋂
i=1

Stab0(γi) ⊆ Modg,n

be the subgroup of all mapping classes of Sg,n that fix each component of γ up to
isotopy together with their respective orientations.

For the rest of this discussion fix an ordered simple closed multi-curve γ :=
(γ1, . . . , γk) on Sg,n with 1 ≤ k ≤ 3g − 3 + n components. Let Sg,n(γ) be the
(potentially disconnected) oriented surface with boundary obtained by cutting Sg,n
along the components of γ. Let c ∈ Z>0 be the number of components of Sg,n(γ)
and {Σj}cj=1 be the components of Sg,n(γ). For every j ∈ {1, . . . , c} let gj , nj , bj ∈
Z≥0 be the triple of non-negative integers satisfying 2− 2gj −nj − bj < 0 such that

Σj is homeomorphic to S
bj
gj ,nj . Given a vector x := (xi)

k
i=1 ∈ (R>0)k, for every

j ∈ {1, . . . , c}, let xj ∈ (R>0)bj be the subvector of x whose entries correspond to
the boundary components of Σj .

Let ρg,n(γ) be the number of components of γ that bound (on any of its sides) a
component of Sg,n(γ) which is a torus with one boundary component. Let σg,n(γ) ∈
Q>0 be the rational number given by

σg,n(γ) :=

∏c
j=1 |K

bj
gj ,nj |

|Stab0(γ) ∩Kg,n|
,

where K
bj
gj ,nj / Modbjgj ,nj is the kernel of the mapping class group action on T bjgj ,nj

and Kg,n / Modg,n is the kernel of the mapping class group action on Tg,n. These
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kernels are non-trivial only in the low complexity cases where special involutions
arise. For example, if g = 2, n = 0, and γ is a separating simple closed curve on
S2,0, then σ2,0(γ) = 4/2 = 2.

For vectors x := (xi)
k
i=1 ∈ (R>0)k consider the polynomial

Vg,n(γ,x) :=
1

[Stab(γ) : Stab0(γ)]
· σg,n(γ) · 2−ρg,n(γ) ·

c∏
j=1

V bjgj ,nj (xj) · x1 · · ·xk.

By Theorem 2.5, Vg,n(γ,x) is a polynomial of degree 6g − 6 + 2n − k with non-
negative coefficients and rational leading coefficients. This polynomial represents
the total Weil-Petersson volume of the moduli spaces associated to the (potentially
disconnected) oriented surface with boundary Sg,n(γ). Denote by

(2.4) Wg,n(γ,x) := V top
g,n (γ,x)

the polynomial obtained by adding up all the leading (maximal degree) monomials
of Vg,n(γ,x). This polynomial depends only on g, n, and the Modg,n-orbit of γ.

Example 2.7. Table 1 contains the polynomials W2,0(γ, x1, . . . , xk) for all Mod2,0-
orbits of ordered simple closed multi-curves γ := (γ1, . . . , γk) on S2,0. These poly-
nomial were computed using (2.4) and the tables in [Do13, §B].

Example 2.8. For every pair of pants decomposition P := (γ1, . . . , γ3g−3+n) of
Sg,n there exists kP ∈ Z≥0 such that

Wg,n(P, x1, . . . , x3g−3+n) = 2−kP · x1 · · ·x3g−3+n.

Total mass of horoball segment measures. Let γ := (γ1, . . . , γk) be an or-
dered simple closed multi-curve on Sg,n with 1 ≤ k ≤ 3g − 3 + n components and
f : (R≥0)k → R≥0 be a non-negative, bounded, compactly supported, Borel mea-
surable function that is not almost everywhere zero with respect to the Lebesgue
measure class. As mentioned above, the horoball segment measures µ̂f,Lγ on Mg,n

and ν̂f,Lγ,a on P 1Mg,n are finite. One can actually compute explicit formulas for

their total mass mf,L
γ in terms of the polynomial Vg,n(γ,x) and use them to de-

scribe the asymptotics of mf,L
γ as L → ∞ in terms of the polynomial Wg,n(γ,x).

More concretely, in [Ara20b] we prove the following.

Proposition 2.9. [Ara20b, Proposition 3.1] For every L > 0,

mf,L
γ =

∫
Rk

f(x) · Vg,n(γ, L · x) · Lk · dx,

where dx := dx1 · · · dxk. In particular,

lim
L→∞

mf,L
γ

L6g−6+2n
=

∫
Rk

f(x) ·Wg,n(γ,x) · dx.

The symmetric Thurston metric. Consider the asymmetric Thurston metric
d′Thu on Tg,n which to every pair X,Y ∈ Tg,n assigns the distance

d′Thu(X,Y ) := sup
λ∈MLg,n

log

(
`λ(Y )

`λ(X)

)
.

As this metric is asymmetric, it is convenient to consider the symmetric Thurston
metric dThu on Tg,n which to every pair X,Y ∈ Tg,n assigns the distance

dThu(X,Y ) := max{d′Thu(X,Y ), d′Thu(Y,X)}.
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γ := (γ1, . . . , γk) W2,0(γ, x1, . . . , xk)

γ1
1
96x

5
1

γ1 1
4608x

5
1

γ1 γ2
1
4x

3
1x2 + 1

4x1x
3
2

γ2
γ1

1
96x1x

3
2

γ2γ1 γ3
1
2x1x2x3

γ2
γ1 γ3

1
4x1x2x3

Table 1. Polynomials W2,0(γ, x1, . . . , xk) for all Mod2,0-orbits of
ordered simple closed multi-curves γ := (γ1, . . . , γk) on S2,0.

A pair X,Y ∈ Tg,n satisfies dThu(X,Y ) ≤ ε for some ε > 0 precisely when

(2.5) e−ε`λ(X) ≤ `λ(Y ) ≤ eε`λ(X), ∀λ ∈MLg,n.

The metric dThu induces the usual topology on Tg,n. We denote by UX(ε) ⊆ Tg,n
the closed ball of radius ε > 0 centered at X ∈ Tg,n with respect to dThu. For more
details on the theory of the Thurston metrics see [Thu86] and [PS15].
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Measure Description
µwp Weil-Petersson measure on Tg,n
µ̃γwp Local pushforward of µwp to Tg,n/Stab(γ)

µ̂wp Local pushforward of µwp to Mg,n

µThu Thurston measure on MLg,n
µγThu Restriction of µThu to MLg,n(γ)
µ̃γThu Local pushforward of µγThu to MLg,n(γ)/Stab(γ)
µf,Lγ Horoball segment measure on Tg,n
µ̃f,Lγ Local pushforward of µf,Lγ to Tg,n/Stab(γ)

µ̂f,Lγ Pushforward of µ̃f,Lγ to Mg,n

νf,Lγ,a Horoball segment measure on P1Tg,n
ν̃f,Lγ,a Local pushforward of νf,Lγ,a to P1Tg,n/Stab(γ)

νf,Lγ,a Pushforward of ν̃f,Lγ,a to P1Mg,n

Table 2. Measures introduced in §1 and §2.

Table of measures. As a guide to the reader, Table 2 contains brief descriptions
of the measures introduced in §1 and §2 that will appear in the rest of this paper.

3. Counting simple closed hyperbolic multi-geodesics

Outline of this section. In this section we prove Theorem 1.14. As explained
in §1, Theorem 1.6 is equivalent to Theorem 1.14. We also prove a stronger ver-
sion of Theorem 1.6, introduced below as Theorem 3.5. This version allows one
to consider countings that also keep track of the equivalence class of simple closed
multi-geodesics in the space of projective measured geodesic laminations; see The-
orems 3.7 and 3.8.

Setting. For the rest of this section, let γ := (γ1, . . . , γk) with 1 ≤ k ≤ 3g − 3 + n
be an ordered simple closed multi-curve on Sg,n, X ∈ Tg,n be a marked, oriented,
complete, finite area hyperbolic structure on Sg,n, and f : (R≥0)k → R≥0 be a
non-negative, continuous, compactly supported function. We refer the reader back
to §1, in particular to the definition of the counting functions c(X, γ, f, L) in (1.8),
for the notation that will be used in the following discussion.

Outline of the proof of Theorem 1.14. As explained in §1, to prove Theorem
1.14, we proceed in two steps. First, considering X as an element of Mg,n, we
average the counting functions c(X, γ, f, L) over points Y ∈Mg,n near X. Second,
we unfold these averages over a suitable intermediate cover, reducing the proof of
Theorem 1.14 to an application of Theorem 2.4.

Averaging counting functions. With the purpose of describing how the count-
ings c(Y, γ, f, L) vary as we move Y in a small neighborhood of X ∈ Mg,n, we
introduce functions fmax

ε and fmin
ε that closely bound f above and below. Given

x := (xi)
k
i=1 ∈ (R≥0)k and ε > 0, let Nε(x) ⊆ (R≥0)k be the subset

Nε(x) := {y := (yi)
k
i=1 ∈ (R≥0)k | e−εxi ≤ yi ≤ eεxi, ∀i = 1, . . . , k}.
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For every ε > 0 consider the functions fmax
ε , fmin

ε : (R≥0)k → R≥0 which to every
x ∈ (R≥0)k assign the value

(3.1) fmax
ε (x) := max

y∈Nε(x)
f(y), fmin

ε (x) := min
y∈Nε(x)

f(y).

As f : (R≥0)k → R≥0 is continuous and compactly supported,

lim
ε→0

fmax
ε (x) = f(x), lim

ε→0
fmin
ε (x) = f(x)

uniformly over all x ∈ (R≥0)k. Recall that dThu denotes the symmetric Thurston
metric on Tg,n.

Proposition 3.1. Let Y ∈ Tg,n and ε > 0 be such that dThu(X,Y ) ≤ ε. Then, for
every L > 0,

c(Y, γ, fmin
ε , L) ≤ c(X, γ, f, L) ≤ c(Y, γ, fmax

ε , L).

Proof. Fix ε > 0. As highlighted in (2.5), if Y ∈ Tg,n satisfies dThu(X,Y ) ≤ ε, then

e−ε`λ(X) ≤ `λ(Y ) ≤ eε`λ(X), ∀λ ∈MLg,n.

In particular, directly from (1.8), one deduces that, for every L > 0,

c(Y, γ, fmin
ε , L) ≤ c(X, γ, f, L) ≤ c(Y, γ, fmax

ε , L). �

Recall that UX(ε) ⊆ Tg,n denotes the closed ball of radius ε > 0 centered at
X ∈ Tg,n with respect to dThu. Denote by π : Tg,n → Mg,n be the quotient map.
Recall that µ̂wp denotes the Weil-Petersson measure on Mg,n. For every ε > 0 let
ηε : Mg,n → R≥0 be a bump function of total µ̂-mass 1 with support in π(UX(ε)).
Directly from Proposition 3.1 we deduce the following corollary, which concludes
the averaging step of the proof of Theorem 1.14.

Corollary 3.2. For every ε > 0 and every L > 0,∫
Mg,n

ηε(Y ) · c(Y, γ, fmin
ε , L) dµ̂wp(Y ) ≤ c(X, γ, f, L),(3.2)

c(X, γ, f, L) ≤
∫
Mg,n

ηε(Y ) · c(Y, γ, fmax
ε , L) dµ̂wp(Y ).(3.3)

Unfolding counting averages. Consider the intermediate cover

Tg,n → Tg,n/Stab(γ)→Mg,n.

Unfolding the integrals in (3.2) and (3.3) over Tg,n/Stab(γ) and pushing them
back down to Mg,n in a suitable way will reduce the proof of Theorem 1.14 to an
applicaton of Theorem 2.4. The following proposition describes this principle; see
§2 for the definition of the horoball segment measures µ̂h,Lγ .

Proposition 3.3. Let h : (R≥0)k → R≥0 be a non-negative, continuous, compactly
supported function. Then, for every ε > 0 and every L > 0,

(3.4)

∫
Mg,n

ηε(Y ) · c(Y, γ, h, L) dµ̂wp(Y ) =

∫
Mg,n

ηε(Y ) dµ̂h,Lγ (Y ).
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Proof. Let ε > 0 and L > 0 be arbitrary. For every Y ∈ Mg,n one can rewrite the
counting function c(Y, γ, h, L) as follows:

c(Y, γ, h, L) =
∑

α∈Modg,n·γ

h
(

1
L · ~̀α(Y )

)
=

∑
[φ]∈Modg,n/Stab(γ)

h
(

1
L · ~̀φ·γ(Y )

)
=

∑
[φ]∈Modg,n/Stab(γ)

h
(

1
L · ~̀γ(φ−1 · Y )

)
=

∑
[φ]∈Stab(γ)\Modg,n

h
(

1
L · ~̀γ(φ · Y )

)
.

Let us record this as

(3.5) c(X, γ, h, L) =
∑

[φ]∈Stab(γ)\Modg,n

h
(

1
L · ~̀α(φ ·X)

)
.

Let pγ : Tg,n/Stab(γ) → Mg,n be the quotient map and η̃γε : Tg,n/Stab(γ) → R≥0
be the lift of ηε given by η̃γε := ηε◦pγ . Recall that µ̃γwp denotes the local pushforward
of the Weil-Petersson measure µwp on Tg,n to the quotient Tg,n/Stab(γ). Unfolding
the integral on the left hand side of (3.4) using (3.5) it follows that∫
Mg,n

ηε(Y ) · c(Y, γ, h, L) dµ̂wp(Y ) =

∫
Tg,n/Stab(γ)

η̃γε (Y ) · h
(

1
L · ~̀γ(Y )

)
dµ̃γwp(Y ).

By definition, see (2.3), the measure µh,Lγ on Tg,n is given by

dµh,Lγ (Y ) := h
(

1
L · ~̀γ(Y )

)
dµwp(Y ).

Taking local pushforwards to Tg,n/Stab(γ) we deduce

dµ̃h,Lγ (Y ) = h
(

1
L · ~̀γ(Y )

)
dµ̃γwp(Y ).

It follows that∫
Tg,n/Stab(γ)

η̃γε (Y ) · h
(

1
L · ~̀γ(Y )

)
dµ̃γwp(Y ) =

∫
Tg,n/Stab(γ)

η̃γε (Y ) dµ̃h,Lγ (Y ).

As µ̂h,Lγ is the pushforward of µ̃h,Lγ to Mg,n,∫
Tg,n/Stab(γ)

η̃γε (Y ) dµ̃h,Lγ (Y, α) =

∫
Mg,n

ηε(Y ) dµ̂h,Lγ (Y ).

Putting everything together we conclude∫
Mg,n

ηε(Y ) · c(Y, γ, h, L) dµ̂wp(Y ) =

∫
Mg,n

ηε(Y ) dµ̂h,Lγ (Y ). �
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Application of Theorem 2.4. We are now ready to prove Theorem 1.14. Theo-
rem 2.4 and Proposition 2.9 will play a fundamental role in the proof.

Proof of Theorem 1.14. By Proposition 2.9, given any non-negative, continuous,
compactly supported function h : (R≥0)k → R≥0,

(3.6) r(γ, h) := lim
L→∞

mh,L
γ

L6g−6+2n
=

∫
Rk

h(x) ·Wg,n(γ,x) · dx.

Proving Theorem 1.14 is then equivalent to showing that

(3.7) r(γ, f) · B(X)

bg,n
≤ lim inf

L→∞

c(X, γ, f, L)

L6g−6+2n
,

(3.8) lim sup
L→∞

c(X, γ, f, L)

L6g−6+2n
≤ r(γ, f) · B(X)

bg,n
.

We first verify (3.7). Let ε > 0 and L > 0 be arbitrary. Consider h := fmin
ε . By

Proposition 3.3 and (3.2),∫
Mg,n

ηε(Y ) dµ̂h,Lγ (Y ) ≤ c(X, γ, f, L).

Dividing this inequality by mh,L
γ > 0 we get∫

Mg,n

ηε(Y )
dµ̂h,Lγ (Y )

mh,L
γ

≤ c(X, γ, f, L)

mh,L
γ

.

Taking lim infL→∞ on both sides of this inequalty and using Theorem 2.4 we deduce∫
Mg,n

ηε(Y )
B(Y ) · dµ̂wp(Y )

bg,n
≤ lim inf

L→∞

c(X, γ, f, L)

mh,L
γ

.

As

r(γ, fmin
ε ) = r(γ, h) = lim

L→∞

mh,L
γ

L6g−6+2n
,

it follows that

(3.9) r(γ, fmin
ε ) ·

∫
Mg,n

ηε(Y )
B(Y ) · dµ̂wp(Y )

bg,n
≤ lim inf

L→∞

c(X, γ, f, L)

L6g−6+2n
.

Recall that fmin
ε → f uniformly on (R≥0)k as ε→ 0. In particular,

lim
ε→0

r(γ, fmin
ε ) = lim

ε→0

∫
Rk

fmin
ε (x) ·Wg,n(γ,x) · dx

=

∫
Rk

f(x) ·Wg,n(γ,x) · dx

= r(f, γ).

Using the properties of the functions ηε : Mg,n → R≥0 one can check that

lim
ε→0

∫
Mg,n

ηε(Y )
B(Y ) · dµ̂wp(Y )

bg,n
=
B(X)

bg,n
.

Taking ε→ 0 in (3.9) we deduce

r(γ, f) · B(X)

bg,n
≤ lim inf

L→∞

c(X, γ, f, L)

L6g−6+2n
.
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This finishes the proof of (3.7).

Analogous arguments using fmax
ε instead of fmin

ε and (3.3) instead of (3.2) yield
a proof of (3.8). This finishes the proof of Theorem 1.14. �

Remark 3.4. Let ‖·‖C1 denote the C1 norm for real valued, smooth, compactly sup-
ported functions on Mg,n. Carefully following the steps of the proof of Theorem
1.14, one can check that the same methods would yield an effective version of the
theorem with a power saving error term under the following polynomial equidistri-
bution condition: There exist constants C > 0, κ > 0, and ε0 > 0 such that for
every smooth, compactly supported function η : Mg,n → R≥0 and every L > 0,∣∣∣∣ ∫

Mg,n

η(Y )
dµ̂h,Lγ (Y )

mh,L
γ

−
∫
Mg,n

η(Y )
B(Y ) · dµ̂wp(Y )

bg,n

∣∣∣∣ ≤ C · ‖η‖C1 · L−κ,
where h ranges over all the functions fmin

ε , fmax
ε with 0 < ε < ε0.

As explained in §1, this finishes the proof of Theorem 1.14.

Length and projective class spectra of ordered simple closed multi-curves.
To state the stronger version of Theorem 1.6 alluded to at the beginning of this
section, we first introduced some notation. Denote by PMLg,n := MLg,n/R>0

the space of projective measured geodesic laminations on Sg,n. The projective class

of a measured geodesic laminations λ ∈MLg,n will be denoted by λ ∈ PMLg,n.
Let γ := (γ1, . . . , γk) with 1 ≤ k ≤ 3g− 3 +n be an ordered simple closed multi-

curve on Sg,n, X ∈ Tg,n, and a := (a1, . . . , ak) ∈ (Q>0)k be a vector of positive
rational weights. One can record, with multiplicity, the hyperbolic length vector
with respect to X and the projective class in PMLg,n with respect to the weights
a of every ordered closed multi-curve in the mapping class group orbit of γ by
considering the counting measure on (R≥0)k × PMLg,n given by

νγ,X,a :=
∑

α∈Modg,n·γ

δ~̀
α(X) ⊗ δa·α.

This measure depends on the marking of X ∈ Tg,n. We refer to this measure as the
length and projective class spectrum of γ with respect to X and a.

To study the asymptotic behavior of νγ,X,a we consider the family of rescaled
counting measures {νLγ,X,a}L>0 on (R≥0)k × PMLg,n given by

νLγ,X,a :=
∑

α∈Modg,n·γ

δ 1
L ·~̀α(X) ⊗ δa·α.

Asymptotics of length and projective class spectra of ordered simple
closed multi-curves. Given X ∈ Tg,n, denote by µXThu the measure on PMLg,n
which to every Borel measurable subset V ⊆ PMLg,n assigns the value

µXThu(V ) := µThu({λ ∈MLg,n | `λ(X) ≤ 1, λ ∈ V }).
Under the natural identification of PMLg,n with the fiber P 1

XTg,n of the bundle
P 1Tg,n above X, this definition is equivalent to the one in (2.2). A refinement of
the ideas in the proof of Theorem 1.6 yields the following stronger result, which
describes the behavior near infinity of the length and projective class spectra of
ordered simple closed multi-curves with respect to complete, finite area hyperbolic
structures and positive rational weights.
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Theorem 3.5. Let γ := (γ1, . . . , γk) be an ordered simple closed multi-curve on
Sg,n with 1 ≤ k ≤ 3g−3+n components, X ∈ Tg,n, and a := (a1, . . . , ak) ∈ (Q>0)k

be a vector of positive rational weights. Then,

lim
L→∞

νLγ,X,a
L6g−6+2n

=
1

bg,n
·Wg,n(γ,x) · dx⊗ µXThu

in the weak-? topology for measures on (R≥0)k × PMLg,n.

Remark 3.6. Theorem 1.6 can be deduced from Theorem 3.5 by taking pushforwards
under the map (R≥0)k×PMLg,n → (R≥0)k which projects to the first coordinate.

Let X ∈ Tg,n, γ := (γ1, . . . , γk) with 1 ≤ k ≤ 3g − 3 + n be an ordered simple
closed multi-curve on Sg,n, b := (b1, . . . , bk) ∈ (R>0)k, a := (a1, . . . , ak) ∈ (Q>0)k,
and V ⊆ PMLg,n be a continuity subset of the Thurston measure class, i.e., V is
a Borel measurable subset satisfying

µThu({λ ∈MLg,n | λ ∈ ∂V }) = 0.

For every L > 0 consider the counting function

c(X, γ,b, L,a, V )

:= #

{
α := (αi)

k
i=1 ∈ Modg,n · γ `αi(X) ≤ biL, ∀i = 1, . . . , k,

a · α ∈ V.

}
.

Compared to c(X, γ,b, L), the counting function c(X, γ,b, L,a, V ) imposes the
additional restriction that the weighted simple closed multi-curves a · α ∈ MLg,n
must belong to the cone in MLg,n corresponding to V ⊆ PMLg,n. This function
depends on marking of X ∈ Tg,n. The following strengthening of Theorem 1.9 is a
direct consequence of Theorem 3.5 and Portmanteau’s theorem.

Theorem 3.7. Let X ∈ Tg,n, γ := (γ1, . . . , γk) be an ordered simple closed multi-
curve on Sg,n with 1 ≤ k ≤ 3g−3+n components, b := (b1, . . . , bk) ∈ (R>0)k, a :=
(a1, . . . , ak) ∈ (Q>0)k, and V ⊆ PMLg,n be a continuity subset of the Thurston
measure class. Then,

lim
L→∞

c(X, γ,b, L,a, V )

L6g−6+2n
=
µXThu(V )

bg,n
·
∫
∏k
i=1[0,bi]

Wg,n(γ,x) · dx.

Proof of Theorem 3.5. We now explain how to adapt the arguments in the proofs
of Theorems 1.6 and 1.14 to obtain a proof of Theorem 3.5.

Let X ∈ Tg,n, γ := (γ1, . . . , γk) be an ordered simple closed multi-curve on
Sg,n with 1 ≤ k ≤ 3g − 3 + n components, and a := (a1, . . . , ak) ∈ (Q>0)k. Let
f : (R≥0)k → R≥0 and g : PMLg,n → R≥0 be non-negative, continuous, compactly
supported functions. For every L > 0 consider the counting function

c(X, γ, f, L,a, g) :=

∫
Rk×PMLg,n

f(x) · g
(
λ
)
dνLγ,X,a

(
x, λ

)
(3.10)

=
∑

α∈Modg,n·γ

f
(

1
L · ~̀α(X)

)
· g (a · α) .

This function depends on the marking of X ∈ Tg,n. Notice that, for any b :=
(b1, . . . , bk) ∈ (R>0)k and any V ⊆ PMLg,n, if

f(x) :=

k∏
i=1

1[0,bi](xi), g(λ) := 1V (λ),
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then c(X, γ, f, L,a, g) = c(X, γ,b, L,a, V ). By the definition of weak convergence
of measures and the Stone-Weierstrass theorem, Theorem 3.5 is equivalent to the
following analogue of Theorem 1.14.

Theorem 3.8. Let X ∈ Tg,n, γ := (γ1, . . . , γk) be an ordered simple closed multi-
curve on Sg,n with 1 ≤ k ≤ 3g−3+n components, and a := (a1, . . . , ak) ∈ (Q>0)k.
Let f : (R≥0)k → R≥0 and g : PMLg,n → R≥0 be non-negative, continuous, com-
pactly supported functions. Then,

lim
L→∞

c(X, γ, f, L,a, g)

L6g−6+2n
=

1

bg,n
·
∫
Rk

f(x) ·Wg,n(γ,x) ·dx ·
∫
PMLg,n

g
(
λ
)
dµXThu

(
λ
)
.

We now explain how to adapt the arguments in the proof Theorem 1.14 to prove
Theorem 3.8 . For the rest of this discussion we fix X ∈ Tg,n, γ := (γ1, . . . , γk) an
ordered simple closed multi-curve on Sg,n with 1 ≤ k ≤ 3g − 3 + n components,
a := (a1, . . . , ak) ∈ (Q>0)k, and a pair of non-negative, continuous, compactly
supported functions f : (R≥0)k → R≥0 and g : PMLg,n → R≥0. Identify

P 1Tg,n = Tg,n × PMLg,n,
P 1Mg,n = (Tg,n × PMLg,n)/Modg,n.

It will be important to make a clear distinction between points Y ∈ Tg,n and their
images [Y ] := π(Y ) ∈ Mg,n under the quotient map π : Tg,n → Mg,n, as well

as between points (Y, λ) ∈ P 1Tg,n and their images [Y, λ] ∈ P 1Mg,n under the
quotient map Π: P 1Tg,n → P 1Mg,n.

To deal with the fact that the counting functions defined in (3.10) depend on
the marking of Y ∈ Tg,n, we introduce a local averaging procedure that yields well
defined counting functions on Mg,n. This procedure also deals with the orbifold
issues that arise from working on Mg,n. Using the proper discontinuity of the
action of Modg,n on Tg,n, one can find a neighborhood WX ⊆ Tg,n of X such that

(1) WX is Stab(X)-invariant,
(2) φ ·WX ∩WX = ∅ for every φ ∈ Modg,n \ Stab(X).

For every every [Y ] ∈ π(WX), every non-negative, continuous, compactly supported
function h : (R≥0)k → R≥0, and every L > 0, consider the counting function

c′ ([Y ], γ, h, L,a, g) :=
1

|Stab(X)|
·

∑
φ∈Stab(X)

c (φ · Y, γ, h, L,a, g) .

Notice that

c′ ([X], γ, h, L,a, g) = c (X, γ, h, L,a, g) .

For the rest of this discussion let ε0 := ε0(X) > 0 be small enough so that
UX(ε) ⊆WX for every 0 < ε < ε0. Recall the definition of the functions fmin

ε , fmax
ε

in (3.1). Equation (2.5) ensures the following analogue of Proposition 3.1 holds.

Proposition 3.9. Let Y ∈ Tg,n and 0 < ε < ε0 be such that dThu(X,Y ) ≤ ε. Then,
for every L > 0,

c′
(
[Y ], γ, fmin

ε , L,a, g
)
≤ c (X, γ, f, L,a, g) ≤ c′ ([Y ], γ, fmax

ε , L,a, g) .

As in the proof of Theorem 1.14, for every ε > 0 consider a bump function
ηε : Mg,n → R≥0 of total µ̂-mass 1 with support in π(UX(ε)). Directly from Propo-
sition 3.9 we deduce the following analogue of Corollary 3.2.
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Corollary 3.10. For every 0 < ε < ε0 and every L > 0,∫
Mg,n

ηε ([Y ]) · c′
(
[Y ], γ, fmin

ε , L,a, g
)
dµ̂wp ([Y ]) ≤ c (X, γ, f, L,a, g) ,(3.11)

c(X, γ, f, L,a, g) ≤
∫
Mg,n

ηε ([Y ]) · c ([Y ], γ, fmax
ε , L,a, g) dµ̂wp ([Y ]) .(3.12)

Let p : P 1Tg,n = Tg,n × PMLg,n → PMLg,n be the map that projects to the
second coordinate. Consider the function g′ : P 1Mg,n → R≥0 which to every

[Y, λ] ∈ P 1Mg,n assigns the value

g′
([
Y, λ

])
:= 1π(WX) ([Y ])· 1

|Stab(X)|
·
∑

φ∈Stab(X)

g
(
φ · p

(
Π|−1WX×PMLg,n

([
Y, λ

])))
,

where Π|−1WX×PMLg,n([Y, λ]) ∈ WX × PMLg,n denotes any of the finitely many

preimages of [Y, λ] under the restriction Π|WX×PMLg,n . This function averages the
value of g over the second coodinate of every Stab(X)-orbit in WX . The following
analogue of Proposition 3.3 can be proved using a similar unfolding argument; see
§2 for the definition of the horoball segment measures ν̂h,Lγ,a .

Proposition 3.11. Let h : (R≥0)k → R≥0 be a non-negative, continuous, com-
pactly supported function. Then, for every 0 < ε < ε0 and every L > 0,∫

Mg,n

ηε ([Y ]) · c′ ([Y ], γ, h, L,a, g) dµ̂wp ([Y ])

=

∫
P 1Mg,n

ηε ([Y ]) · g′
([
Y, λ

])
dν̂h,Lγ,a

([
Y, λ

])
.

Theorem 3.8 can now be proved by mimicking the proof of Theorem 1.14 above:
the inequalities (3.11) and (3.12) are used in place of the inequalities (3.2) and
(3.3), Proposition 3.11 is used in place of Proposition 3.3, and Theorem 2.3 is used
in place of Theorem 2.4.

Remark 3.12. A polynomial equidistribution condition analogous to the one intro-
duced in Remark 3.4 but for horoball segment measures on P 1Mg,n would yield
an effective version of Theorem 3.8 with a power saving error term.

4. Asymptotics of Weil-Petersson volumes

Outline of this section. The leading terms in the asymptotic formulas of Theo-
rems 1.6 and 3.5 include a factor Wg,n(γ,x) · dx which can be described in terms
of limits of Weil-Petersson volumes of expanding subsets of quotients of Tg,n. The
purpose of this section is to prove Theorem 1.16, which gives a purely topological
description of this factor. In the course of the proof we develop a framework for
computing general limits of this kind in terms of purely topological information.

Setting. For the rest of this section, let γ := (γ1, . . . , γk) be a fixed ordered simple
closed multi-curve on Sg,n with 1 ≤ k ≤ 3g − 3 + n components.
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Outline of the proof of Theorem 1.16. The main tool used in the proof of
Theorem 1.16 is the correspondence of the Weil-Petersson measure on Tg,n and the
Thurston measure onMLg,n through Thurston’s shear coordinates [Thu86, PP93,
SB01]. We begin with an elementary reduction of the proof of Theorem 1.16 to a
more concrete statement, which we introduce below as Theorem 4.1. We then focus
on proving this statement for the rest of this section. After introducing Thurston’s
shear coordinates and the correspondence of measures alluded to above, we turn to
an analysis of how an appropriate renormalization of the Weil-Petersson measure
converges to the Thurston measure as one lets the curvature of the hyperbolic
metrics diverge to −∞; see Proposition 4.4 for a precise statement. We then prove
Theorem 4.1 by passing to a suitable quotient and using an intuitive but rather
technical no escape of mass argument; see Proposition 4.7. The last part of this
section is devoted to the technical aspects of the proof of Proposition 4.7.

A first reduction of the proof of Theorem 1.16. We refer the reader back
to the statement of Theorem 1.16 for the notation that will be used in the follow-
ing discussion. By Carathéodory’s extension theorem, to prove Theorem 1.16, it

is enough to show that the measures Wg,n(γ,x) · dx and (Ĩγ)∗(µ̃
γ
Thu) on (R≥0)k

coincide on the generating semi-ring of boxes

Ba,b :=

k∏
i=1

[ai, bi)

with a := (ai)
k
i=1,b := (bi)

k
i=1 ∈ (R≥0)k arbitrary. By the inclusion-exclusion

principle and Lemma 2.1, to prove this, it is enough to show that the measures

Wg,n(γ,x) · dx and (Ĩγ)∗(µ̃
γ
Thu) coincide on the set of closed boxes

Bb :=

k∏
i=1

[0, bi]

with b := (bi)
k
i=1 ∈ (R>0)k arbitrary. By Proposition 2.9,∫

Bb

Wg,n(γ,x) · dx = lim
L→∞

mfb,L
γ

L6g−6+2n
,

where fb : (R≥0)k → R≥0 is the function which to every x := (xi)
k
i=1 ∈ (R≥0)k

assigns the value

fb(x) :=

k∏
i=1

1[0,bi](xi).

By definition,
mfb,L
γ := µ̂fb,Lγ (Mg,n).

As µ̂fb,Lγ is the pushforward to Mg,n of the measure µ̃fb,Lγ on Tg,n/Stab(γ),

µ̂fb,Lγ (Mg,n) = µ̃fb,Lγ (Tg,n/Stab(γ)).

Denote by µ̃γwp the local pushforward of the Weil-Petersson measure µwp on Tg,n
to Tg,n/Stab(γ). Notice that

dµ̃fb,Lγ (X) = fb

(
1
L · ~̀γ(X)

)
dµ̃γwp(X).

In particular,

mfb,L
γ = µ̃γwp ({X ∈ Tg,n/Stab(γ) | `γi(X) ≤ biL, ∀i = 1, . . . , k}) .
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It follows that, to prove Theorem 1.16, it is enough to prove the following result.

Theorem 4.1. For any b := (b1, . . . , bk) ∈ (R>0)k,

lim
L→∞

µ̃γwp ({X ∈ Tg,n/Stab(γ) | `γi(X) ≤ biL, ∀i = 1, . . . , k})
L6g−6+2n

= µ̃γThu ({λ ∈MLg,n(γ)/Stab(γ) | i(λ, γi) ≤ bi, ∀i = 1, . . . , k}) .

The rest of this section is devoted to the proof of Theorem 4.1. Some of the
arguments in our proof are closely related to ideas in the proofs of [Mir04, Theorem
5.17] and [RS19, Theorem 3.3].

The Yamabe space. Denote by Yg,n the Yamabe space of all complete, finite
area, constant negative curvature metrics on Sg,n up to isotopy. One can identify

Yg,n = (R>0)× Tg,n,

where (t,X) ∈ (R>0)×Tg,n corresponds to the scaling t ·X ∈ Yg,n of the hyperbolic

metric X ∈ Tg,n which scales lengths by t > 0. Denote by Yg,n the enlarged Yamabe

space obtained by adjoining a copy of MLg,n to Yg,n,

Yg,n := Yg,n tMLg,n.

Consider the pairing i : Yg,n ×MLg,n → R≥0 which to every (α, µ) ∈ Yg,n ×
MLg,n assigns the value

i(α, µ) :=

{
t · `µ(X) if α := (t,X) ∈ Yg,n,
i(λ, µ) if α := λ ∈MLg,n.

This pairing is homogenous with respect to the natural R>0 actions on each co-
ordinate. On Yg,n consider the weakest topology making this pairing continuous.
With this topology Tg,n = {1} × Tg,n ⊆ Yg,n and MLg,n ⊆ Yg,n are embedded.

By work of Thurston, see for instance [FLP12, Theorem 8.7], Yg,n is projectively

compact, that is, PYg,n := Yg,n/R>0 is compact. The natural action of Modg,n on

Yg,n is continuous.

Thurston’s shear coordinates. Let µ be a maximal geodesic lamination on Sg,n.
In the following discussion it is not required that µ supports an invariant trans-
verse measure. For instance, µ could be an ideal geodesic triangulation (if n > 0)
or a maximal completion of a geodesic pair of pants decomposition. Denote by
Stab(µ) ⊆ Modg,n the subgroup of mapping classes of Sg,n that stabilize µ. In
[Thu86], Thurston introduced a Stab(µ)-equivariant global parametrization of Tg,n,

Fµ : Tg,n →MLg,n,

called the shear coordinates of Tg,n with respect to µ. The map Fµ is a homeo-
morphism onto its image; below we describe its image in certain cases of interest.
Roughly speaking, this map sends X ∈ Tg,n to the transverse horocyclic foliation
Fµ(X) of µ on X. The Fµ(X)-measure of a subarc of µ is given by its hyperbolic
length on X. In particular, given any X ∈ Tg,n and any λ ∈MLg,n,

(4.1) i(Fµ(X), λ) ≤ `λ(X).

Moreover, if one of the leaves of µ is a simple closed curve γ, then

(4.2) i(Fµ(X), γ) = `γ(X).
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As explained in [PP93, §4], if n > 0 and µ is an ideal geodesic triangulation, Fµ
surjects ontoMLg,n. By work of Mirzakahani [Mir08a, Theorem 1.3], if n = 0 and µ
is a maximal measured geodesic lamination, Im(Fµ) =MLg,n(µ), whereMLg,n(µ)
is as in (1.9). As explained in [Mir08a, §7], if µ is a maximal completion of a
geodesic pair of pants decomposition P, Im(Fµ) =MLg,n(P). Given an arbitrary
maximal geodesic lamination µ on Sg,n, denote MLg,n(µ) := Im(Fµ) ⊆ MLg,n;
this notation is consistent with (1.9).

By work of Papadopoulos and Penner [PP93, Corollary 4.2] and of Bonahon and
Sözen [SB01, Theorem 1], if n > 0 and µ is an ideal geodesic triangulation, or if
n = 0 and µ is a maximal measured geodesic lamination, the shear coordinates

Fµ : Tg,n →MLg,n(µ)

pull back the the restriction of Thurston symplectic form on MLg,n(µ) to the
Weil-Petersson symplectic form on Tg,n. As a direct consequence of these results
we deduce the following.

Theorem 4.2. Suppose that n > 0 and µ is an ideal geodesic triangulation of Sg,n,
or that n = 0 and µ is a maximal measured geodesic lamination on Sg,n. Then, the
shear coordinates

Fµ : Tg,n →MLg,n(µ)

pull back the restriction of the Thurston measure µThu on MLg,n(µ) to the Weil-
Petersson measure µwp on Tg,n.

By work of Papadopoulos [Pap88, Pap91], the behavior of Thurston’s shear co-
ordinates along sequence in Tg,n approaching the Thurston boundary PMLg,n is
well understood. More precisely, the following holds.

Proposition 4.3. [Pap88, Proposition 3.1] [Pap91, Lemma 4.9] Suppose that n > 0
and µ is an ideal geodesic triangulation of Sg,n, or that n = 0 and µ is a maximal
measured geodesic lamination on Sg,n. Let (Xk)k∈N be a sequence of points in Tg,n
converging to a projective measured geodesic lamination on the Thurston boundary
PMLg,n. Then, for every simple closed curve α on Sg,n there exists a constant
Cα > 0 such that for every k ∈ N,

i(Fµ(Xk), α) ≤ `α(Xk) ≤ i(Fµ(Xk), α) + Cα.

Shear coordinates of the enlarged Yamabe space. Suppose that n > 0 and µ
is an ideal geodesic triangulation of Sg,n, or that n = 0 and µ is a maximal measured
geodesic lamination on Sg,n. Denote by Fµ : Tg,n → MLg,n(µ) the corresponding
shear coordinates. Consider the map Φµ : Yg,n → (0,∞)×MLg,n(µ) given by

Φµ(t,X) := (t, t · Fµ(X))

for every t > 0 and every X ∈ Tg,n. Using Proposition 4.3, one can check that this
map extends to a homeomorphism

Φµ : Yg,n → ((0,∞)×MLg,n(µ)) t ({0} ×MLg,n) ,

where the topology on the target is the one coming from its natural embedding into
[0,∞)×MLg,n. This map satisfies the following property:

(4.3) Φµ(λ) = (0, λ), ∀λ ∈MLg,n.

We refer to this map as the shear coordinates of Yg,n with respect to µ.
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Asymptotics of the Weil-Petersson measure. Given t > 0, denote by µtwp the

pushforward to {t} × Tg,n ⊆ Yg,n of the Weil-Petersson measure µwp on Tg,n with
respect to the map

Tg,n → {t} × Tg,n, X 7→ (t,X).

We will also denote by µtwp the extension by zero of this measure to Yg,n and by

µThu the extension by zero of the Thurston measure on MLg,n ⊆ Yg,n to Yg,n.
The following proposition describes the asymptotic behavior of the measures µtwp

on Yg,n as t → 0. Roughly speaking, this proposition shows that an appropriate
renormalization of the Weil-Petersson measure converges to the Thurston measure
as one lets the curvature of the hyperbolic metrics diverge to −∞.

Proposition 4.4. In the weak-? topology for measures on Yg,n,

lim
t→0

t6g−6+2n · µtwp = µThu.

Proof. If n > 0 let µ is an ideal geodesic triangulation of Sg,n, and if n = 0 let µ is
a maximal measured geodesic lamination on Sg,n. Denote by

Φµ : Yg,n → ((0,∞)×MLg,n(µ)) t ({0} ×MLg,n)

be the shear coordinates of Yg,n with respect to µ. For every t ≥ 0 consider the
measure µtThu on

((0,∞)×MLg,n(µ)) t ({0} ×MLg,n)

given by
µtThu := δt ⊗ µThu|MLg,n(µ).

Notice that
lim
t→0

µtThu = µ0
Thu

in the weak-? topology. Using Theorem 4.2 and the scaling property (2.1) of the
Thurston measure, one can check that, for every t > 0,(

Φµ
)
∗ µ

t
wp = t−(6g−6+2n) · µtThu.

As the subset MLg,n(µ) ⊆MLg,n has full measure,

µ0
Thu = δ0 ⊗ µThu.

This together with (4.3) imply (
Φµ
)
∗ µThu = µ0

Thu.

Putting everything together we conclude

lim
t→0

t6g−6+2n · µtwp = µThu. �

Properly discontinuous stabilizer actions. Consider the subset

Yg,n(γ) := Yg,n ∪MLg,n(γ) ⊆ Yg,n.
If n = 0, the following result is a direct consequence of [EM18, Proposition 4.1];
the same arguments can be adapted to obtain a proof in the case n > 0.

Proposition 4.5. The group Stab(γ) acts properly discontinuously on Yg,n(γ).

Proposition 4.5 implies in particular that Stab(γ) acts properly discontinuously
onMLg,n(γ). It follows that, as was mentioned in §1, µ̃γThu, the local pushforward
of the measure µγThu := µThu|MLg,n(γ) on MLg,n(γ) to the quotient MLg,n(γ)/
Stab(γ), is well defined.
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Towards a proof of Theorem 4.1. By Proposition 4.5, the subgroup Stab(γ) ⊆
Modg,n acts properly discontinuously on

Yg,n(γ) := Yg,n tMLg,n(γ).

Denote by µ̃γ,twp and µ̃γThu the local pushforwards of the measures µtwp and µγThu :=

µThu|MLg,n(γ) on Yg,n(γ) to the quotient Yg,n(γ)/Stab(γ). Directly from Proposi-
tion 4.4 we deduce the following corollary.

Corollary 4.6. In the weak-? topology for measures on Yg,n(γ)/Stab(γ),

lim
t→0

t6g−6+2n · µ̃γ,twp = µ̃γThu.

Consider the subsets

Y1
g,n := (0, 1] · Tg,n ⊆ Yg,n,

Y1
g,n := Y1

g,n ∪MLg,n ⊆ Yg,n,

Y1
g,n(γ) := Y1

g,n ∪MLg,n(γ) ⊆ Yg,n(γ).

Notice that Stab(γ) preserves Y1
g,n(γ) ⊆ Yg,n(γ). Consider the embedded quotient

Y1
g,n(γ)/Stab(γ) ⊆ Yg,n(γ)/Stab(γ).

Given b := (b1, . . . , bk) ∈ (R>0)k, let B̃b(γ) ⊆ Yg,n(γ)/Stab(γ) denote the subset

B̃b(γ) := {α ∈ Y1
g,n(γ)/Stab(γ) | i(α, γi) < bi, ∀i = 1, . . . , k}.

One would like to use Corollary 4.6 together with Portmanteau’s theorem to deduce

(4.4) lim
t→0

t6g−6+2n · µ̃γ,twp

(
B̃b(γ)

)
= µ̃γThu

(
B̃b(γ)

)
.

Notice that, for every 0 < t ≤ 1,

µ̃γ,twp

(
B̃b(γ)

)
= µ̃γwp ({X ∈ Tg,n/Stab(γ) | `αi(X) < bi/t, ∀i = 1, . . . , k}) ,

and that

µ̃γThu

(
B̃b(γ)

)
= µ̃γThu ({λ ∈MLg,n/Stab(γ) | i(λ, γi) < bi, ∀i = 1, . . . , k}) .

Letting t = 1/L with 0 < L ≤ 1 and taking L↘ 0 would prove Theorem 4.1. But

the hypothesis of Portmanteau’s theorem are not verified by the subset B̃b(γ) ⊆
Yg,n(γ)/Stab(γ) as it does not have compact closure. Such non-compactness comes
from the fact thatMLg,n(γ) ⊆MLg,n is open. To overcome this difficulty we will
prove the following no escape of mass result.

Proposition 4.7. Let b := (b1, . . . , bk) ∈ (R>0)k. For every ε > 0 there exists a

compact subset K̃ε
b(γ) ⊆ B̃b(γ) with the following properties:

(1) µ̃γThu

(
∂K̃ε

b(γ)
)

= 0,

(2) µ̃γThu

(
B̃b(γ)\K̃ε

b(γ)
)
< ε,

(3) t6g−6+2n · µ̃γ,twp

(
B̃b(γ)\K̃ε

b(γ)
)
< ε for all small enough t > 0.

Let us prove Theorem 4.1 assuming Proposition 4.7 holds.
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Proof of Theorem 4.1. Following the discussion above, it remains to verify (4.4).
Fix b := (b1, . . . , bk) ∈ (R>0)k and let ε > 0 be arbitrary. Consider the compact

subset K̃ε
b(γ) ⊆ B̃b(γ) given by Proposition 4.7. As K̃ε

b(γ) ⊆ Yg,n(γ)/Stab(γ)

is compact and satisfies µ̃γThu(∂K̃ε
b(γ)) = 0, Corollary 4.6 together with Portman-

teau’s theorem imply

lim
t→0

t6g−6+2n · µ̃γ,twp

(
K̃ε

b(γ)
)

= µ̃γThu

(
K̃ε

b(γ)
)
.

Let t0 > 0 be small enough so that∣∣∣∣t6g−6+2n · µ̃γ,twp

(
K̃ε

b(γ)
)
− µ̃γThu

(
K̃ε

b(γ)
) ∣∣∣∣ < ε

and

t6g−6+2n · µ̃γ,twp

(
B̃b(γ)\K̃ε

b(γ)
)
< ε

for every 0 < t < t0. As µ̃γThu(B̃b(γ)\K̃ε
b(γ)) < ε, the triangle inequality implies∣∣∣∣t6g−6+2n · µ̃γ,twp

(
B̃b(γ)

)
− µ̃γThu

(
B̃b(γ)

) ∣∣∣∣ < 3ε

for every 0 < t < t0. As ε > 0 is arbitrary, this proves (4.4) and thus concludes the
proof of Theorem 4.1. �

The rest of this section is devoted to the proof of Proposition 4.7. To define the

compact subsets K̃ε
b(γ) ⊆ B̃b(γ) we approximate the open condition λ ∈MLg,n(γ)

by a sequence of closed conditions.

Filling together with a simple closed multi-curve. Consider the subset

Zg,n(γ) := {λ ∈MLg,n | i(λ, γi) = 0, ∀i = 1, . . . , k}.
This subset is homogeneous and closed. In particular, it is projectively compact.
Let ZSg,n(γ) ⊆MLg,n be the subset of all simple closed curves on Sg,n that belong
to Zg,n(γ). This subset is discrete and closed. Notice that every component of γ

belongs to ZSg,n(γ). Consider the map sγ : Yg,n → R≥0 which to every α ∈ Yg,n
assigns the value

sγ(α) := inf
β∈ZSg,n(γ)

i(α, β).

We refer to sγ(α) as the systole of α relative to γ. As complete, finite area hyperbolic
surfaces always have a simple closed geodesic of shortest length, sγ(α) > 0 for
every α ∈ Yg,n and the infimum defining this quantity is attained. The following
proposition characterizes the subset MLg,n(γ) ⊆MLg,n in terms of this function.

Proposition 4.8. Given λ ∈MLg,n,

λ ∈MLg,n(γ) ⇔ sγ(λ) > 0.

Moreover, if λ ∈MLg,n(γ), the infimum defining sγ(λ) is attained.

Proof. Let us first assume that λ /∈ MLg,n(γ). By definition, one can find η ∈
MLg,n such that i(γ, η) = i(λ, η) = 0. If one of the components of γ is a minimal
component of η then sγ(λ) = 0. Assume then that η has a minimal component η′

which is not one of the components of γ. Given ε > 0, as η′ is minimal and not
one of the components of γ, one can follow any half-leaf of η′ for long enough so
that it comes back near to its starting point in such a way that it can be closed up
by adding an arc disjoint from the components of γ and whose tranverse measure
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with respect to λ is ≤ ε. This produces a simple closed curve β ∈ Sγg,n such that
i(λ, β) ≤ ε. As ε > 0 is arbitrary, this shows that sγ(λ) = 0.

We now assume that λ ∈MLg,n(γ). Consider the restriction

i(λ, ·)|Zg,n(γ) : Zg,n(γ)→ R>0.

This function takes only positive values because of the definitions of MLg,n(γ)
and Zg,n(γ). From this fact and the projective compactness of Zg,n(γ) it follows
that this function is proper. As ZSg,n(γ) ⊆ Zg,n(γ) is a discrete closed subset,
we deduce that sγ(λ) > 0 and moreover that the infimum defining this quantity is
attained. This finishes the proof. �

One can check that the systole relative to γ is continuous as a function on Yg,n.
We record this and other properties in the following proposition.

Proposition 4.9. The systole relative to γ,

sγ : Yg,n → R≥0,

is homogeneous, Stab(γ)-equivariant, and continuous.

Proof. The homogenity and Stab(γ)-equivariance of sγ can be checked directly from

the definition. We now show that sγ is continuous. Consider first α ∈ Yg,n such
that sγ(α) = 0. Let ε > 0 be arbitrary. As sγ(α) = 0, one can find β ∈ ZSg,n(γ)

such that i(α, β) < ε. Consider the open neighborhood U ⊆ Yg,n of α given by

U := {σ ∈ Yg,n | i(σ, β) < ε}.

Notice that sγ(σ) < ε for every σ ∈ U . As ε > 0 is arbitrary, this shows that sγ is

continuous at every α ∈ Yg,n such that sγ(α) = 0.

Now consider α ∈ Yg,n such that sγ(α) > 0. Let 1 < ε < 2 be arbitrary. Let

U ′ ⊆ Yg,n be a compact neighborhood of α. As Zg,n(γ) is projectively compact,
one can find a constant C > 0 such that

1

C
≤ i(β, λ)

i(α, λ)
≤ C

for every λ ∈ Zg,n(γ) and every β ∈ U ′. In particular, if λ ∈ Zg,n(γ) is such that
i(α, λ) > 2Csγ(α), then i(β, λ) > 2sγ(α) for every β ∈ U ′. Consider the subset

K := {λ ∈ Zg,n(γ) | i(α, λ) ≤ 2Csγ(α)}.

As the restriction

i(α, ·)|Zg,n(γ) : Zg,n(γ)→ R>0

is proper (see the proof of Proposition 4.8), the set K is compact. As ZSg,n(γ) ⊆
Zg,n(γ) is a discrete closed subset, ZSg,n(γ) ∩K is finite. Consider the neighbor-

hood U ⊆ Yg,n of α given by

U :=
{
σ ∈ U ′ | 1

ε · i(α, β) < i(σ, β) < ε · i(α, β), ∀β ∈ Sγg,n ∩K
}
.

Notice that
1
ε · sγ(α) ≤ sγ(σ) ≤ ε · sγ(α)

for every σ ∈ U . As 1 < ε < 2 is arbitrary, this shows that sγ is continuous at

every α ∈ Yg,n such that sγ(α) > 0. This finishes the proof. �
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It follows from Propositions 4.8 and 4.9 that the restriction

sγ |Yg,n(γ) : Yg,n(γ)→ R>0

induces a homogeneous, positive, continuous map on the quotient Yg,n(γ)/Stab(γ).

No escape of mass. We are now ready to introduce a family of compact subsets
satisfying the properties described in Proposition 4.7. For every b := (b1, . . . , bk) ∈
(R>0)k and every δ > 0 consider the subset K̃δb(γ) ⊆ B̃b(γ) given by

K̃δb(γ) :=

{
α ∈ Y1

g,n(γ)/Stab(γ) i(α, γi) ≤ bi, ∀i = 1, . . . , k,
sγ(α) ≥ δ.

}
.

One should interpret K̃δb(γ) as the intersection of B̃b(γ) with the δ-thick part of

Y1
g,n(γ)/Stab(γ). Proposition 4.7 is a direct consequence of the following result.

Proposition 4.10. Let b := (b1, . . . , bk) ∈ (R>0)k. The subsets K̃δb(γ) ⊆ B̃b(γ)
are compact and satisfy the following conditions:

(1) µ̃γThu

(
∂K̃δb(γ)

)
= 0,

(2) limδ→0 µ̃γThu

(
B̃b(γ)\K̃δb(γ)

)
= 0,

(3) There exists a constant C > 0 such that for every 0 < δ < 1,

lim sup
t→0

t6g−6+2n · µ̃γ,twp

(
B̃b(γ)\K̃δb(γ)

)
≤ C · δ.

For the rest of this section we fix b := (b1, . . . , bk) ∈ (R>0)k and show that the

subsets K̃δb(γ) ⊆ B̃b(γ) satisfy the conditions described in Proposition 4.10.

Bers’s Theorem. The following version of Bers’s theorem can be proved using
arguments similar to those in the proof of [FM12, Theorem 12.8].

Theorem 4.11. Let 1 ≤ k ≤ 3g − 3 + n and b := (b1, . . . , bk) ∈ (R>0)k. There
exists a constant C ≥ maxi=1,...,k bi such that for any X ∈ Tg,n and any ordered
simple closed multi-curve γ := (γ1, . . . , γk) on Sg,n satisfying

`γi(X) ≤ bi, ∀i = 1, . . . , k,

there exists a completion P := (γ1, . . . , γ3g−3+n) of γ to a pair of pants decomposi-
tion of Sg,n such that

`γi(X) ≤ C, ∀i = 1, . . . , 3g − 3 + n.

Bers’s theorem for Y1
g,n(γ). Complete γ to a pair of pants decomposition P of

Sg,n and further complete P to a maximal geodesic lamination µ on Sg,n. Consider
the shear coordinates Fµ : Tg,n →MLg,n(µ) of Tg,n with respect to µ. Properties
(4.1) and (4.2) allow one to deduce the following analogue of Bers’s theorem directly
from Theorem 4.11.

Corollary 4.12. Let 1 ≤ k ≤ 3g − 3 + n and b := (b1, . . . , bk) ∈ (R>0)k. There

exists a constant C ≥ maxi=1,...,k bi such that for any α ∈ Y1
g,n(γ) and any ordered

simple closed multi-curve γ := (γ1, . . . , γk) on Sg,n satisfying

i(α, γi) ≤ bi, ∀i = 1, . . . , k,

there exists a completion P := (γ1, . . . , γ3g−3+n) of γ to a pair of pants decomposi-
tion of Sg,n such that

i(α, γi) ≤ C, ∀i = 1, . . . , 3g − 3 + n.
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Compactness. We now prove that the subsets

K̃δb(γ) ⊆ Yg,n(γ)/Stab(γ)

are compact. This result is an analogue of Mumford’s compactness criterion; see
for instance [FM12, Theorem 12.6]. The proof, although rather technical, hinges
on the following basic ideas:

(1) For every α ∈ K̃δb(γ) there exists a pair of pants decomposition of Sg,n
containing the components of γ that is short with respect to α.

(2) There are finitely many topological types of pair of pants decompositions of
Sg,n containing the components of γ.

(3) Thus, when expressed in shear coordinates, the closed set K̃δb(γ) is con-
tained in the union of finitely many quotients of compact domains in Dehn-
Thurston coordinates times the interval [0, 1].

Proposition 4.13. For every δ > 0 the set K̃δb(γ) is compact.

Proof. Fix δ > 0. Notice that the subset Kδb(γ) ⊆ Yg,n(γ) given by

Kδb(γ) :=

{
α ∈ Y1

g,n(γ) i(α, γi) ≤ bi, ∀i = 1, . . . , k,
sγ(α) ≥ δ.

}
is mapped onto the subset K̃δb(γ) ⊆ Yg,n(γ)/Stab(γ) by the quotient map

Yg,n(γ)→ Yg,n(γ)/Stab(γ).

To prove K̃δb(γ) ⊆ Yg,n(γ)/Stab(γ) is compact, it is enough to show that Kδb(γ) ⊆
Yg,n(γ) can written as a finite union of Stab(γ)-orbits of compact subsets of Yg,n(γ).

Let C > 0 be as in Corollary 4.12. Notice that, up to the action of Stab(γ), there
are finitely many pair of pants decompositions P of Sg,n containing the components

of γ. It follows from Corollary 4.12 that Kδb(γ) ⊆ Yg,n(γ) can be written as the

union of finitely many Stab(γ)-orbits of subsets Cδb(P) ⊆ Yg,n(γ) of the form

Cδb(P) :=

 α ∈ Y1
g,n(γ) i(α, γi) ≤ bi, ∀i = 1, . . . , k,

i(α, γi) ≤ C, ∀i = k + 1, . . . , 3g − 3 + n,
sγ(α) ≥ δ.

 ,

where P := (γ1, . . . , γ3g−3+n) is a pair of pants decomposition of Sg,n containing
the components of γ. We now show that each one of the Stab(P)-invariant subsets
Cδb(P) ⊆ Yg,n(γ) can be written as the Stab(P)-orbit of a compact subset of Yg,n(γ).
As Stab(P) ⊆ Stab(γ), this finishes the proof.

Fix a pair of pants decomposition P := (γ1, . . . , γ3g−3+n) of Sg,n containing the

components of γ. By Proposition 4.8, Cδb(P) ⊆ Yg,n can be rewritten as

Cδb(P) =

 α ∈ Y1
g,n i(α, γi) ≤ bi, ∀i = 1, . . . , k,

i(α, γi) ≤ C, ∀i = k + 1, . . . , 3g − 3 + n,
sγ(α) ≥ δ.

 .

It follows that Cδb(P) is a closed (see Proposition 4.9) subset of the Stab(P)-invariant

subset Dδb(P) ⊆ Yg,n given by

Dδb(P) :=

{
α ∈ Y1

g,n δ ≤ i(α, γi) ≤ bi, ∀i = 1, . . . , k,
δ ≤ i(α, γi) ≤ C, ∀i = k + 1, . . . , 3g − 3 + n.

}
.
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If we show that Dδb(P) ⊆ Yg,n is the Stab(P)-orbit of a compact subset Eδb(P) ⊆
Yg,n, then Cδb(P) ⊆ Yg,n will be the Stab(P)-orbit of the compact subset Cδb(P) ∩
Eδb(P), thus finishing the proof.

Complete P to a maximal geodesic lamination µ of Sg,n and consider the shear

coordinates of Yg,n with respect to µ,

Φµ : Yg,n → ((0,∞)×MLg,n(µ)) t ({0} ×MLg,n)

By (4.2 and (4.3),

i(Φµ(α), γi) = i(α, γi)

for every α ∈ Yg,n and every i = 1, . . . , 3g − 3 + n. It follows that

Φµ(Dδb(P)) = [0, 1]×Dδ
b(P),

where Dδ
b(P) ⊆MLg,n(µ) is the subset given by

Dδ
b(P) :=

{
λ ∈MLg,n(µ) δ ≤ i(α, γi) ≤ bi, ∀i = 1, . . . , k,

δ ≤ i(α, γi) ≤ C, ∀i = k + 1, . . . , 3g − 3 + n.

}
.

Notice that, as MLg,n(µ) =MLg,n(P) and as P is a pair of pants decomposition
of Sg,n, Dδ

b(P) ⊆MLg,n can be rewritten as

Dδ
b(P) :=

{
λ ∈MLg,n δ ≤ i(α, γi) ≤ bi, ∀i = 1, . . . , k,

δ ≤ i(α, γi) ≤ C, ∀i = k + 1, . . . , 3g − 3 + n.

}
.

As Φµ is Stab(µ)-equivariant and as the Dehn twists along the components of P
belong to Stab(µ), it is enough for our purposes to show that Dδ

b(P) ⊆MLg,n can
be written as the orbit of a compact subset ofMLg,n under the action of the group
generated by the Dehn twists along the components of P.

Let (mi, ti)
3g−3+n
i=1 be a set of Dehn-Thurston coordinates of MLg,n adapted

to P and denote by Θ ⊆ (R≥0 × R)3g−3+n its parameter space. Notice that
Dδ

b(P) ⊆MLg,n can be described in such coordinates as

Dδ
b(P) =

{
(mi, ti)

3g−3+n
i=1 ∈ Θ δ ≤ mi ≤ bi, ∀i = 1, . . . , k,

δ ≤ mi ≤ C, ∀i = k + 1, . . . , 3g − 3 + n.

}
.

Consider the compact subset Eδb(P) ⊆MLg,n described in coordinates as

Eδb(P) :=

 (mi, ti)
3g−3+n
i=1 ∈ Θ δ ≤ mi ≤ bi, ∀i = 1, . . . , k,

δ ≤ mi ≤ C, ∀i = k + 1, . . . , 3g − 3 + n,
0 ≤ ti ≤ mi, ∀i = 1, . . . , 3g − 3 + n.

 .

Notice that Dδ
b(P) is the orbit of Eδb(P) under the action of the group generated

by the Dehn twists along the components of P. This finishes the proof. �

Measure estimates. We now show that the subsets K̃δb(γ) ⊆ Yg,n(γ)/Stab(γ)
satisfy the measure estimates described by conditions (1), (2), and (3) in Propo-
sition 4.10. Condition (1) is a direct consequence of Lemma 2.1 and Proposition

4.9. Notice that, as a consequence of Proposition 4.8, K̃δb(γ) ↗ B̃b(γ) as δ ↘ 0.

Condition (2) then follows from the continuity of the measure µ̃γThu on Yg,n(γ) and
the following result, which can be proved using arguments similar to the ones in
the proof of Proposition 4.13.

Lemma 4.14. The subset B̃b(γ) ⊆ Yg,n(γ)/Stab(γ) has finite µ̃γThu measure.

It remains to show that condition (3) of Proposition 4.10 holds.
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Proposition 4.15. There exists C > 0 such that for every 0 < δ < 1,

lim sup
t→0

t6g−6+2n · µ̃γ,twp

(
B̃b(γ)\K̃δb(γ)

)
≤ C · δ.

Proof. Let 0 < δ < 1 be arbitrary. Notice that α ∈ Yg,n(γ)/Stab(γ) belongs to

B̃b(γ)\K̃δb(γ) if and only if

i(α, γi) ≤ bi, ∀i = 1, . . . , k,

and at least one of the following conditions holds:

(1) i(α, γi) < δ for some i = 1, . . . , k,
(2) i(α, β) < δ for some β ∈ Sγg,n that is not a component of γ.

In particular, for every t > 0,

µ̃γ,twp

(
B̃b(γ)\K̃δb(γ)

)
is equal to the µ̃γwp measure of the set of X ∈ Tg,n/Stab(γ) such that

`γi(X) ≤ bi/t, ∀i = 1, . . . , k,

and at least one of the following conditions holds:

(1) `γi(X) < δ/t for some i = 1, . . . , k,
(2) `β(X) < δ/t for some β ∈ Sγg,n which is not a component of γ.

This quantity can be estimated using Mirzakhani’s integration formulas [Mir07b].
More specifically, following arguments similar to those in the proof of [Ara20b,
Proposition 3.9], one can show that, for sufficiently small t > 0,

µ̃γ,twp

(
B̃b(γ)\K̃δb(γ)

)
≤ δ · P (1/t2),

where P is a polynomial of degree 3g − 3 + n depending only on g, n, γ, and b. It
follows that

lim sup
t→0

t6g−6+2n · µ̃γ,twp

(
B̃b(γ)\K̃δb(γ)

)
≤ C · δ

for some constant C > 0 depending only on g, n, γ, and b. �

This finishes the proof of Proposition 4.10 and thus of Proposition 4.7. It follows
that Theorem 4.1 holds, thus concluding the proof of Theorem 1.16.

5. Counting square-tiled surfaces

Outline of this section. In this section we explain how to combine results and
techniques from [Ara20a] with the methods developed in §4 to prove Theorem 1.18.
We first give a brief outline of the proofs of the relevant results from [Ara20a] and
then explain how Theorem 1.16 can be combined with these results to obtain a
proof of Theorem 1.18. We refer the reader to [Ara20a] for a detailed treatment of
the arguments discussed here.
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Setting. For the rest of this section, let α := (α1, . . . , αk) be an ordered simple
closed multi-curve on Sg,n with 1 ≤ k ≤ 3g−3 +n components, a := (a1, . . . , ak) ∈
(Z>0)k be vector of positive integral weights, and a · α be as in (1.2). Recall that
for every L > 0 we consider the counting function

s(a · α,L) := #

{
square-tiled surfaces with horizontal core multi-curve
of the same topological type as a · α and ≤ L squares

}
/∼,

where ∼ denotes the equivalence relation induced by cut and paste operations. We
are interested in the asymptotic behavior of s(a · α,L) as L→∞.

Notation. To discuss the relevant results and techniques from [Ara20a], we first
introduce some notation. A marked square-tiled surface (S, ϕ) of genus g with n
punctures is a square-tiled surface S together with a homeomorphism ϕ : Sg,n → S
called a marking. Denote by QT g,n(Z) the set of all marked square-tiled surfaces of
genus g with n punctures up to cut and paste operations and isotopy of markings.
The group Modg,n acts on QT g,n(Z) by changing the markings. The quotient
QT g,n(Z) := QT g,n(Z)/Modg,n is the set of square-tiled surfaces of genus g with
n punctures up to cut and paste operations.

Denote by MLg,n(Z) ⊆ MLg,n the set of all integrally weighted simple closed
multi-curves on Sg,n up to isotopy. Consider the map = : QT g,n(Z) →MLg,n(Z)
which to every marked square-tiled surface (S, ϕ) assigns the pullback through ϕ
of the horizontal core multi-curve of S. Let [=] : QMg,n(Z)→MLg,n(Z)/Modg,n
denote the map induced on quotients. Consider the map Area: QMg,n(Z)→ Z>0

which to every square-tiled surface S assigns the area of S, or, equivalently, the
number of squares of S. In terms of this notation,

s(a · α,L) = {S ∈ QMg,n(Z) | [=](S) ∈ Modg,n · (a · α), Area(S) ≤ L}.

Counting square tiled-surfaces and Thurston volumes. In [Ara20a] we de-
scribe the function s(a · α,L) in terms of countings of integrally weighted sim-
ple closed multi-curves in the following way. Consider the map < : QT g,n(Z) →
MLg,n(Z) which to every marked square-tiled surface (S, ϕ) assigns the pullback
through ϕ of the vertical core multi-curve of S. Denote the induced map on quo-
tients by [<] : QMg,n(Z) →MLg,n(Z)/Modg,n. Let ∆ ⊆ MLg,n(Z) ×MLg,n(Z)
be the set of pairs of integrally weighted simple closed multi-curves that do not fill
Sg,n. These definitions give rise to a bijection

Ψ: QT g,n(Z) → MLg,n(Z)×MLg,n(Z)−∆
(S, ϕ) 7→ (<(S, ϕ),=(S, ϕ))

.

This bijection is Modg,n-equivariant and maps area of square tiled surfaces to geo-
metric intersection number of integrally weighted simple closed multi-curves. In
[Ara20a, §3] we use this bijection to show that

s(a · α,L) = {b · β ∈MLg,n(Z) ∩MLg,n(a · α)/Stab(a · α) | i(a · α,b · β) ≤ L}.
To study the asymptotics of these counting functions we consider the measures

mL :=
1

L6g−6+2n

∑
b·β∈MLg,n(Z)

δ 1
L ·b·β

.

By work of Masur [Mas85, Theorem 2],

(5.1) µThu = 22g−3+n · lim
L→∞

mL.
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For a computation of the explicit scaling factor in (5.1) see [MT19]. Equation
(5.1) is an analogue of the definition of the Lebesgue measure as a limit of rescaled
integer point counting measures. Consider the measures µa·α

Thu := µThu|MLg,n(a·α)
and ma·α

L := mL|MLg,n(a·α) on MLg,n(a · α) and denote by µ̃a·α
Thu and m̃a·α

L their
local pushforwards to MLg,n(a · α)/Stab(a · α). Directly from (5.1) we deduce

(5.2) µ̃a·α
Thu = 22g−3+n · lim

L→∞
m̃a·α
L .

Consider the subset

A(a · γ) := {λ ∈MLg,n(a · α)/Stab(a · α) | i(a · α, λ) ≤ 1}.
Recall the definition of εg,n ∈ Z>0 in (1.10). Notice that

(5.3) s(a · α,L) = εg,n · m̃a·α
L (A(a · γ)),

where εg,n accounts for orbifold considerations. We would like to combine (5.3)
with (5.2) and apply Portmanteau’s theorem to obtain asymptotics for the counting
functions s(a · α,L) as L → ∞. As in §4, we run into the issue that the subset
A(a · γ) ⊆ MLg,n(a · α)/Stab(a · α) does not have compact closure. The same
methods used to deal with this issue in §4 also work in this case. See [Ara20a,
Proposition 3.5] for an alternative argument using period coordinates of strata of
quadratic differentials. Overall, we deduce the following.

Theorem 5.1. [Ara20a, Proposition 3.4] Let a · α ∈ MLg,n(Z) be an integrally
weighted simple closed multi-curve on Sg,n. Then,

lim
L→∞

s(a · α,L)

L6g−6+2n
=
εg,n · µ̃a·α

Thu ({λ ∈MLg,n(a · α)/Stab(a · α) | i(a · α, λ) ≤ 1})
22g−3+n

.

Thurston volumes and Weil-Petersson volumes. Recall that the frequency
r(α,a) ∈ Q>0 of the integrally weighted simple closed multi-curve a·α ∈MLg,n(Z)
is defined as the limit of Weil-Petersson volumes of expanding subsets of quotients
of Tg,n in (1.4). Directly from Theorem 1.16 we deduce the following.

Corollary 5.2. Let a ·α ∈MLg,n(Z) be an integrally weighted simple closed multi-
curve on Sg,n. Then,

r(α,a) = µ̃a·α
Thu ({λ ∈MLg,n(a · α)/Stab(a · α) | i(a · α, λ) ≤ 1}) .

Remark 5.3. In [Ara20a] we give a different proof of Corollary 5.2 using an indirect
argument which relies on a result of Mirzakhani [Mir08b, Theorem 1.3] and the
involution on strata of quadratic differentials given by rotation by 90◦ [Ara20a, §4].

Theorem 1.18 now follows directly from Theorem 5.1 and Corollary 5.2.

6. Counting filling closed hyperbolic multi-geodesics

Outline of this section. In this section we explain how to combine results from
§4 with techniques of Mirzakhani in [Mir16] to prove Theorem 1.20. We give a
brief overview of Mirzakhani’s work in [Mir16] and introduce a general asymptotic
formula that can be proved directly using her methods; see Theorem 6.5. We then
use this formula in combination with Proposition 4.4 to prove Theorem 1.20.

Setting. For the rest of this section, let γ := (γ1, . . . , γk) be an ordered filling
closed multi-curve on Sg,n with k ≥ 1 components and X ∈ Tg,n be a marked,
oriented, complete, finite area hyperbolic structure on Sg,n.
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Outline of the proof of Theorem 1.20. We begin with an elementary reduction
of the proof of Theorem 1.20 to a more concrete statement, which we introduce
below as Theorem 6.1. The proof of Theorem 6.1 reduces to a simple application
of the general asymptotic formula alluded to above and Proposition 4.4.

A first reduction of the proof of Theorem 1.20. We refer the reader back to
the statement of Theorem 1.20 for the notation that will be used in the following
discussion. As γ is filling, its stabilizer Stab(γ) ⊆ Modg,n is finite. Consider the
family of rescaled counting measures {µLγ,X}L>0 on (R≥0)k given by

µLγ,X :=
∑

φ∈Modg,n

δ 1
L ·~̀φ·γ(X).

Notice that, for every L > 0,

µLγ,X = |Stab(γ)| · µLγ,X ,

(Iγ)∗(µ
γ
Thu) = |Stab(γ)| · (Ĩγ)∗(µ̃

γ
Thu).

It follows that, to prove Theorem 1.20, it is equivalent to show

(6.1) lim
L→∞

µLγ,X
L6g−6+2n

=
B(X)

bg,n
· (Iγ)∗(µ

γ
Thu)

in the weak-? topology for measures on (R≥0)k.
By standard approximation arguments, to prove (6.1), it is equivalent to show

lim
L→∞

µLγ,X(A)

L6g−6+2n
=
B(X)

bg,n
· (Iγ)∗(µ

γ
Thu)(A)

for boxes A :=
∏k
i=1[0, bi) ⊆ (R≥0)k with b := (b1, . . . , bk) ∈ (R>0)k arbitrary. By

Lemma 2.1, we can instead consider closed boxes A :=
∏k
i=1[0, bi] ⊆ (R≥0)k with

b := (b1, . . . , bk) ∈ (R>0)k arbitrary.
Fix b := (b1, . . . , bk) ∈ (R>0)k. For every L > 0 consider the counting function

f(X, γ,b, L) := #{φ ∈ Modg,n | `φ.γi(X) ≤ biL, ∀i = 1, . . . , k}.

In terms of the counting functions c(X, γ,b, L) introduced in (1.7),

f(X, γ,b, L) = |Stab(γ)| · c(X, γ,b, L).

Directly from the definitions we see that

f(X, γ,b, L) = µLγ,X

(
k∏
i=1

[0, bi]

)
.

Thus, the proof of (6.1), and so of Theorem 1.20, reduces to the following result.

Theorem 6.1. For every b := (b1, . . . , bk) ∈ (R>0)k,

lim
L→∞

f(X, γ,b, L)

L6g−6+2n
=
B(X)

bg,n
· µThu({λ ∈MLg,n | i(γi, λ) ≤ bi, ∀i = 1, . . . , k}).

The rest of this section is devoted to the proof of Theorem 6.1. The proof
combines Proposition 4.4 with techniques of Mirzakhani in [Mir16]. More precisely,
we use the general asymptotic formula introduced in Theorem 6.5 below.
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Overview of Mirzakhani’s work. In [Mir16], Mirzakhani proved asymptotic
formulas analogous to the one in Theorem 1.4 for counting functions of filling closed
hyperbolic multi-geodesics with respect to total hyperbolic length. As highlighted
in [Mir16, §1.2], such formulas hold for length functions more general than total
hyperbolic length. We now introduce one such class of length functions and give
a precise statement of the corresponding asymptotic formula; see Theorem 6.5. In
the course of the following discussion we give a brief overview of Mirzakhani’s work.

Let m ∈ N be arbitrary. Every linear function L : Rm → R cuts out a positive
open half-space and a positive closed half-space in Rm corresponding to the sets

H>0(L) := {x ∈ Rm | L(x) > 0},
H≥0(L) := {x ∈ Rm | L(x) ≥ 0}.

A convex polytope P ⊆ Rm is an intersection of finitely many positive open/closed
half-spaces of Rm. The boundary ∂P ⊆ Rm of a convex polytope P ⊆ Rm is its
topological boundary when considered as a subset of Rm.

Let P ⊆ Rm be a convex polytope. We say that a function F : P → R is
asymptotically linear if there exists a linear function L : P → R and a constant
c ∈ R such that

lim
x∈P : d(x,∂P )→∞

F(x)− L(x) = c,

where d denotes the standard Euclidean distance on Rm. We say that a function
F : P → R is asymptotically piecewise linear if P can be partitioned into finitely
many convex polytopes on which F restricts to an asymptotically linear function.

The basic example of an asymptotically piecewise linear function in the setting
of this paper is the hyperbolic length of a closed curve on Sg,n interpreted as a
function on Tg,n. More precisely, the following holds.

Theorem 6.2. [Mir16, Theorem 4.1] Let γ be a closed curve on Sg,n. The hyper-
bolic length function

`γ : Tg,n → R>0

is asymptotically piecewise linear with respect to any set of Fenchel-Nielsen coordi-
nates (`i, τi)

3g−3+n
i=1 . More precisely, after identifying

Tg,n = (R>0 ×R)
3g−3+n

using the Fenchel-Nielsen coordinates (`i, τi)
3g−3+n
i=1 , the length function

`γ : Tg,n = (R>0 ×R)
3g−3+n → R>0

is asymptotically piecewise linear.

Let P := (γ1, . . . , γ3g−3+n) be a pair of pants decomposition of Sg,n. Fix a set of

Fenchel-Nielsen coordinates (`i, τi)
3g−3+n
i=1 of Tg,n adapted to P, i.e., whose length

parameters correspond to the lengths of the components of P. After identifying

Tg,n = (R>0 ×R)
3g−3+n

using these coordinates, we can partition Tg,n into a countable union of convex
polytopes of the form

CmP := {Y ∈ Tg,n | mi · `i(Y ) ≤ τi(Y ) < mi+1 · `i+1(Y )}
with m := (m1, . . . ,m3g−3+n) ∈ Z3g−3+n arbitrary. These polytopes are, up to
finite index, fundamental domains for the action of Stab(P) on Tg,n. We say that
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a function F : Tg,n → R>0 is bounding with respect to the set of Fenchel-Nielsen

coordinates (`i, τi)
3g−3+n
i=1 if for every Y ∈ Tg,n there exist constants L0 > 0 and

C > 0 such that for every m := (m1, . . . ,m3g−3+n) ∈ Z3g−3+n, every L > L0, and
every i ∈ {1, . . . , 3g − 3 + n},

Z ∈ Modg,n · Y ∩ CmP ∩ F−1([0, L])⇒ `i(Z) ≤ C · L

max{|mi|, |mi + 1|}
.

The basic example of a bounding function is the total hyperbolic length of a
weighted filling closed multi-curve on Sg,n. More precisely, the following holds.

Proposition 6.3. [Mir16, §9.4] Let γ := (γ1, . . . , γk) with k ≥ 1 be an ordered
filling closed multi-curve on Sg,n and a := (a1, . . . , ak) ∈ (R>0)k be a vector of
positive weights on the components of γ. The total hyperbolic length function

`a·γ : Tg,n → R>0

is bounding with respect to any set of Fenchel-Nielsen coordinates on Tg,n.

Another important property of the total hyperbolic length of a weighted filling
closed multi-curve on Sg,n is its properness when interpreted as a function on Tg,n.
We record this fact in the following lemma.

Lemma 6.4. [Ker83, Lemma 3.1] Let γ := (γ1, . . . , γk) with k ≥ 1 be an ordered
filling closed multi-curve on Sg,n and a := (a1, . . . , ak) ∈ (R>0)k be a vector of
positive weights. The total hyperbolic length function `a·γ : Tg,n → R>0 is proper.

Let F : Tg,n → R>0 be a positive, continuous, proper function that is asymp-
totically piecewise linear and bounding with respect to some set of Fenchel-Nielsen
coordinates. For every L > 0 consider the counting function

f(X,F , L) := #{φ ∈ Modg,n | F(φ ·X) ≤ L}.

Using Wolpert’s magic formula [Wol85, Theorem 1.3] and the properties of F , one
can check that the following limit, which is an analogue of (1.4), exists,

(6.2) r(F) := lim
L→∞

µwp({Y ∈ Tg,n | F(Y ) ≤ L})
L6g−6+2n

.

We are now ready to introduce the general asymptotic formula that will be used
in the proof of Theorem 6.1. The arguments in the proof of [Mir16, Theorem 1.1]
directly yield the following result.

Theorem 6.5. Let F : Tg,n → R>0 be a positive, continuous, proper function that
is asymptotically piecewise linear and bounding with respect to some set of Fenchel-
Nielsen coordinates. Then

lim
L→∞

f(X,F , L)

L6g−6+2n
=
B(X) · r(F)

bg,n
.

Remark 6.6. According to Theorem 6.2, Proposition 6.3, and Lemma 6.4, given
any set of positive weights a := (a1, . . . , ak) ∈ (R>0)k on the components of γ,
the total hyperbolic length function `a·γ : Tg,n → R>0 satisfies the hypothesis of
Theorem 6.5. It follows that we can recover [Mir16, Theorem 1.1] from Theorem
6.5 by setting F := `a·γ .



40 FRANCISCO ARANA–HERRERA

Topological interpretation of r(F). The arguments introduced in the proof of
Theorem 4.1 can also be used to give a topological interpretation of the limit r(F)
in (6.2) for a particular class of maps F : Tg,n → R>0 which we now describe.

Let F : (R≥0)k → R≥0 be a continuous, homogeneous, and proper function. In
particular, F is positive away from the origin. Consider the map F : Tg,n → R>0

which to every Y ∈ Tg,n assigns the positive value

(6.3) F(Y ) := F (`γ1(Y ), . . . , `γk(Y )).

More generally, consider the map F : Yg,n → R>0 which to every α ∈ Yg,n assigns
the positive value

(6.4) F(α) := F (i(γ1, α), . . . , i(γk, α)).

For any map F : Tg,n → R>0 as in (6.3), the following holds.

Proposition 6.7. Let F : Tg,n → R>0 be as in (6.3). Then,

r(F) = µThu

(
{λ ∈MLg,n | F(λ) ≤ 1}

)
,

where F : Yg,n → R≥0 is as in (6.4).

Proof. By Proposition 4.4,

lim
t→0

t6g−6+2n · µtwp = µThu

in the weak-? topology for measures on Yg,n. Consider the subset of Yg,n given by

D(F) := {α ∈ Yg,n | F(α) ≤ 1}.

Using the properness of the function F : (R≥0)k → R≥0 and the fact that γ is

filling, one can check that D(F) ⊆ Yg,n is compact. By Lemma 2.1,

µThu(∂D(F)) = 0.

It follows from Portmanteau’s theorem that

lim
t→0

t6g−6+2n · µtwp(D(F)) = µThu(D(F)).

Letting t := 1/L for L > 0 and taking L→∞ we deduce

(6.5) lim
L→∞

µ
1/L
wp (D(F))

L6g−6+2n
= µThu(D(F)).

As the function F : (R≥0)k → R≥0 is homogeneous,

(6.6) µ1/L
wp (D(F)) = µwp({Y ∈ Tg,n | F(Y ) ≤ L})

for every L > 0. Notice also that

(6.7) µThu(D(F)) = µThu

(
{λ ∈MLg,n | F(λ) ≤ 1}

)
.

Putting together (6.5), (6.6), and (6.7), we conclude

r(F) := lim
L→∞

µwp({Y ∈ Tg,n | F(Y ) ≤ L})
L6g−6+2n

= µThu

(
{λ ∈MLg,n | F(λ) ≤ 1}

)
.

�
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Proof of Theorem 6.1. We are now ready to prove Theorem 6.1 and thus finish
the proof of Theorem 1.20.

Proof of Theorem 6.1. Let b := (b1, . . . , bk) ∈ (R>0)k be arbitrary. Consider the
function F : (R≥0)k → R≥0 which to every (x1, . . . , xk) ∈ (R≥0)k assigns the value

F (x1, . . . , xk) := max{x1/b1, . . . , xk/bk}.
Let F : Tg,n → R>0 be the map induced by F as defined in (6.3). Notice that, as
a consequence of Theorem 6.2, F is asymptotically piecewise linear with respect to
any set of Fenchel-Nielsen coordinates. Let 1 := (1, . . . , 1) ∈ (Q>0)k. Consider the
total hyperbolic length functions `1·γ : Tg,n → R>0. The bound

`1·γ ≤ k ·max{b1, . . . , bk} · F
ensures that, for every L > 0,

F−1([0, L]) ⊆ `−11·γ([0, k ·max{b1, . . . , bk} · L]).

This fact together with Proposition 6.3 implies F is bounding with respect to any
set of Fenchel-Nielsen coordinates. The same fact together with Lemma 6.4 implies
F is proper. By Theorem 6.5, it follows that

(6.8) lim
L→∞

f(X,F , L)

L6g−6+2n
=
B(X) · r(F)

bg,n
.

Notice that

(6.9) f(X,F , L) = f(X, γ,b, L)

for every L > 0. As a consequence of Proposition 6.7,

(6.10) r(F) = µThu({λ ∈MLg,n | i(γi, λ) ≤ bi, ∀i = 1, . . . , k}).
Putting together (6.8), (6.9), and (6.10), we conclude

lim
L→∞

f(X, γ,b, L)

L6g−6+2n
=
B(X)

bg,n
· µThu({λ ∈MLg,n | i(γi, λ) ≤ bi, ∀i = 1, . . . , k}). �
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