Supplementary Materials II: Using the waddle R package

Contents

Α	Simul	ating multi-state tracks	1
	A.1 C	Correlated velocity movement	1
	A.2 B	Biased correlated random walk	4
в	Chang	ge point analyses	7
-	0		•
	B.1 F	irst-Passage Time	7
	B.2 B	PMM: running and diagnostics	8
	B.3 B	CPA: running and diagnostics	12
	B.4 M	Iulti-state random walk: fitting models and analysis	14

These supplementary materials illustrate features of the exploratory change point behavioral analysis described in the manuscript text. They also serve to illustrate the use of the waddle, along with the bcpa, mrw and adehabitatLT packages on which waddle depends. We first present the code used to simulate the multistate random walks, and then the various analysis tools.

library(waddle)

A Simulating multi-state tracks

We simulated two kinds of multi-state tracks: one based on the an integrated Ornstein-Uhlenbeck velocity process (the CVM) and one based on a biased correlated random walk (BCRW). Functions for generating these tracks are also provided in the waddle package.

A.1 Correlated velocity movement

The CVM function simulate a correlated velocity movement process at (arbitrary) times T, with mean speed ν and time scale τ

```
T <- 1:1000
myCVM <- CVM(T, nu=2, tau=5)
```

This object contains V and Z, which are complex velocity and position coordinates, respectively. We illustrate the output of a simulation below:

```
plot(myCVM$V, type="l", asp=1, main="Velocity", xlab="", ylab="")
plot(myCVM$Z, type="l", main="Position", asp=1)
title("CVM(2, 5): 0-1000", outer=TRUE, cex=1.5)
```


Importantly, this process can be sampled from at arbitrary time intervals (note the relatively sparse random sampling in the figure):

T <- cumsum(rexp(100,1/10)) myCVM2 <- CVM(T, nu=2, tau=5) CVM(2, 5): 0-1000, 100 random samples

The multistate CRWs analyzed in the manuscript were generated using the multiCVM function, which also has a plotting method. Thus, the velocity change simulation was generated as follows:

```
nus <- c(1,5,10,1)
taus <- rep(2,4)
Ts <- c(100,50,50,100)
Nu.sim <- multiCVM(taus, nus, Ts)
# rotating to a primarily horizontal axis
Nu.sim$Z <- Nu.sim$Z * complex(mod = 1, arg = -Arg(tail(Nu.sim$Z,1) - Nu.sim$Z[1]))
plot(Nu.sim, col = c("darkblue", "green", "orange", "darkblue"))</pre>
```


and the time scale shift simulation:

```
taus <- c(2,10,100,2)
nus <- rep(1,4)
Ts <- c(100,50,50,100)
Tau.sim <- multiCVM(taus, nus, Ts)
plot(Tau.sim, col = c("darkblue", "green", "orange", "darkblue"))</pre>
```


A.2 Biased correlated random walk

The BCRW function simulated the process described in the Methods section of the text, with two parameters: the angle concentration parameters ρ and the strength of attraction A. Below, we illustrate tracks that are highly correlated (upper panels) and less correlated (lower panels), and more attractive (left panels) and less strongly attractive (right panels).

```
plot(BCRW(n = 500, rho=0.9, attraction = 0.9))
plot(BCRW(n = 500, rho=0.9, attraction = 0.2))
plot(BCRW(n = 500, rho=0.2, attraction = 0.9))
plot(BCRW(n = 500, rho=0.2, attraction = 0.2))
```


A multistate BCRW with k phases is generated with the multiBCRW function, which takes vectors of length k of the relevant parameters, including attraction points. The simulation in the text was generated using the following parameter values:

```
Ts <- c(100,50,50,100)
Z.centers <- c(0,25-10i,50+10i, 50+10i)
attractions <- c(0.5,0.9,0.9,0.5)
rhos <- rep(0.5, 4)
BCRW.sim <- multiBCRW(rhos, attractions, Z.centers, Ts)</pre>
```

The output of this function is a list with the complex coordinates, a vector of the phases, and the duration of the phases:

str(BCRW.sim)

List of 3

```
## $ Z : cplx [1:296] -0.431-0.602i -0.556-0.972i 0.368-1.546i ...
## $ Phase: int [1:300] 1 1 1 1 1 1 1 1 1 1 ...
## $ ns : num [1:4] 100 50 50 100
## - attr(*, "class")= chr "multipath"
```

There is a plotting method for the multistate BCRW object:

```
plot(BCRW.sim, col = c("darkblue", "green", "orange", "darkblue"))
```


Note that in this example, the step-length does not change over the duration of the track:

```
plot.ts(Mod(diff(BCRW.sim$Z)))
abline(v = c(100,150,200), lwd=3, col="darkgrey", lty=3)
Mod(diff(BCRW.sim$Z))
     2.0
     1.5
     1.0
     0.5
     0.0
             0
                                            100
                                                                            200
                            50
                                                            150
                                                                                            250
                                                                                                            300
                                                          Time
```

And the clustering is similarly low across all four phases:

```
# step vectors
S <- diff(BCRW.sim$Z)
# absolute orientation
Phi <- Arg(diff(BCRW.sim$Z))
# turning angles
Theta <- diff(Phi)
# rose diagrams
require(circular)
rose.diag(Theta[1:99], bins=18, main="Phase II", prop=2, col="blue")
rose.diag(Theta[100:149], bins=18, main="Phase III", prop=2, col="green")
rose.diag(Theta[150:200], bins=18, main="Phase III", prop=2, col="orange")
rose.diag(Theta[201:350], bins=18, main="Phase IV", prop=2, col="blue")</pre>
```


B Change point analyses

B.1 First-Passage Time

We explore the FPT results for the lamprey data set at three different radii, without and with smoothing.

Loading the package and the data:

```
require(waddle)
data(Lamprey)
```

Creating a smoothed version of the lamprey data:

```
L1 <- Lamprey
L2 <- SmoothTrack(Lamprey, 3)
```

Converting to a traj class, the native class of trajectories in adehabitatLT:

```
L1.traj <- as.ltraj(data.frame(L1$X, L1$Y),L1$Time, id = "Lamprey")
L2.traj <- as.ltraj(data.frame(L2$X, L2$Y),L2$Time, id = "Lamprey")
```

Calculating the fpt for three different radii:

```
radii <- c(5,10,20)
L1.fpt <- fpt(L1.traj, radii)
L2.fpt <- fpt(L2.traj, radii)</pre>
```

Plotting the FPT:

```
plot.fpt(L1.fpt, radii, xlab="Time", main="Raw: ")
plot.fpt(L2.fpt, radii, xlab="Time", main="Smooth: ")
```


The smoothed 20 m FPT provides the clearest behavioral separation.

B.2 BPMM: running and diagnostics

The segmentation is performed using tools in adehabitatLT with a few convenience wrappers in waddle. Note that the waddle implementation is highly simplified, e.g. applicable only to step lengths or their log transforms. For a more flexible implementation, the reader is encouraged to study the modpartltraj help file in adehabitatLT.

To perform the segmentation, we must first regularize the trajectory:

```
L2.reg <- InterpolatePoints(L2, 1, "min")$Data
L2.traj <- as.ltraj(data.frame(L2$X, L2$Y),L2$Time, id = "Lamprey")
```

We plot the distance steps:

```
L.VT <- GetVT(L2)
plot(L2.traj[[1]]$date, L2.traj[[1]]$dist, xlab="", ylab="Distance (m)", type="l", col="darkgrey")
points(L2.traj[[1]]$date, L2.traj[[1]]$dist, pch=19, cex=0.5)</pre>
```


A visual inspection suggests that a standard deviation of 5 m might be appropriate for the variance within the homogeneous sections, (here, we are not too concerned about the difference in variance - in other analyses, we examine this more rigorously and end up using the log transformation.).

After the data prepping, the first step is an assessment of the number of partitions that might be present in these data. In the convenience function **PrepSegments**, the **nmodels** argument sets the number of candidate models, i.e. the μ_i 's ranging from 0 to the maximum value of the step length.

L2.segments <- Prep.segments(L2.traj, units="min", dt = 2, sd=5, nmodels=20)

Maximum likelihood for K = 4

The likelihood assessment suggests 4 partitions - one more than the 3 partitions that we might have expected (note, that because of the randomization, the number can vary - some runs suggest 3 partitions). We now fit the four partition model, and plot the segments:

The diagnostic plot of the Lamprey residuals:

Clearly, the normality assumption is violated (left panel). The central panel is useful for "tuning" the standard deviation.

The complete analysis and diagnostic code for the wolf:

The diagnostic plots suggest that the normality and independence assumptions and the choice for standard

deviation are reasonably justified for the log transform of step length, though with some left skew due to an over-correction in the log transform.

B.3 BCPA: running and diagnostics

The bcpa package similarly streamlines the implementation of the BCPA to movement data. The GetVT() function obtains step lengths, absolute orientations, turning angles:

```
Lamprey.VT <- GetVT(L2, units = "min")</pre>
```

Set the required "knobs":

```
windowsize <- 30
windowstep <- 1
K <- 0.5
```

Perform the analysis. Note that any function of the columns of the VT data can be passed in the second argument (e.g. log(v):

A summary of the "flat' results is given by:

```
ChangePointSummary(Lamprey.ws, clusterwidth=3)
```

##	\$ł	orea	aks								
##		X1	middle	e size	mode	lmode		mide	dle.POS	IX	
##	1	1	50.16667	7 9		4	2010-0	05-02	09:41:0	00	
##	2	15	175.39286	5 14		2	2010-0	05-02	11:46:0	00	
##	3	16	182.73333	3 10		2	2010-0	05-02	11:54:0	00	
##	4	27	291.06667	7 5		2	2010-0	05-02	13:42:0	05	
##	5	31	371.66667	7 4		4	2010-0	05-02	15:02:	20	
##	6	48	528.30000) 15		4	2010-0	05-02	17:39:4	40	
##											
##	\$ ₁	phas	ses								
##			t.cut	mı	ı.hat		s.hat	1	rho.hat	t0	t1
##	1	(1	.33,50.2]	11.278	31251	11.69	950908	13.3	1435514	1.333333	50.16667
##	2	(5	50.2,175]	0.100)5441	0.63	124534	0.0	1894909	50.166667	175.39286
##	3	((175,183]	0.461	16606	4.03	329051	0.0	2748634	175.392857	182.73333
##	4	((183,291]	0.244	12350	1.02	237796	0.0	2836101	182.733333	291.06667
##	5	((291,372]	0.468	39255	0.80	026789	0.3	5100299	291.066667	371.66667
##	6	((372,528]	0.231	15370	0.5	701728	0.08	3343703	371.666667	528.30000
##	7	((528,673]	23.215	58677	8.12	277220	5.20	5228647	528.300000	673.16667
##		j	interval								

##	1	48.833333
##	2	125.226190
##	3	7.340476
##	4	108.333333
##	5	80.600000
##	6	156.633333
##	7	144.866667

Note that model 2 in the upper table refers to only the variance changing, while model 4 refers to both means and variances changing.

The following code will produce the plots in figure 3 c and d:

```
plot(Lamprey.ws, type="smooth", threshold = 2, legend=FALSE)
plot(Lamprey.ws, type="flat", clusterwidth = 3, legend=FALSE)
```

And the residual diagnostic plot is given by:

```
DiagPlot(Lamprey.ws, "smooth")
```


The assumptions appear to be largely satisfied. Diagnostic plots for the wolf data are below.

B.4 Multi-state random walk: fitting models and analysis

In this appendix, we first present the JAGS code for the three fitted models (double state, double switching, and triple switching), then illustrate the R code from the **mrw** package to fit the models and analyze the results.

JAGS code

Two-state model

```
data{
  for (t in 1:numT){
    ones[t] <- 1
}
model{
  for (t in 1:numT){
   # likelihood for steps
    ## Weibull distriution for step length
    step[t] ~ dweib(v[t], lambda[t])
    ## shape parameter
    v[t] <- a[idx[t]]
    ## scale parameter (transform between WinBUGS and R's definition of Weibull)
    lambda[t] <- pow(b[idx[t]], -a[idx[t]])</pre>
    # likelihood for turns
    ones[t] ~ dbern(wc[t])
    # Density function for Wrapped Cauchy distribution
    wc[t] <- ( 1/(2*Pi) * (1 - rho.t[t] * rho.t[t]) /
              (1 + rho.t[t] * rho.t[t] - 2*rho.t[t] * cos(theta[t] - mu.t[t])) ) / 300
    ## mean cosine for the circular distribution
    rho.t[t] <- rho[idx[t]]</pre>
    ## mean direction for turns
    mu.t[t] <- mu[idx[t]]</pre>
    \# idx is the latent variable and the parameter index
    ## priors on p[t,1], the probability that the t-th
    idx[t] ~ dcat(p[t,])
    # observation corresponds to movement state 1. 
 p[t,1]\ \ \ dunif(0,1)
    p[t,2] <- 1 - p[t,1]
```

```
####### priors on movement shape
a[1] ~ dgamma(0.01, 0.01)
a[2] ~ dgamma(0.01, 0.01)
####### priors on movement scale
b[1] ~ dgamma(0.01, 0.01)
b[2] ~ dgamma(0.01, 0.01)
####### priors for mean direction of turns
mu[1] ~ dunif(-3*Pi/2, Pi/2)
mu[2] ~ dunif(-3*Pi/2, Pi/2)
####### priors for mean cosine of circular distribution
rho[1] ~ dunif(0, 1)
rho[2] ~ dunif(0, 1)
Pi <- 3.14159265359 # define pi
}
```

Two-state switching model

```
data{
 for (t in 1:numT){
   ones[t] <- 1
  }
}
model{
  for (t in 2:numT){
   # likelihood for steps
   ## Weibull distriution for step length
    step[t] ~ dweib(v[t], lambda[t])
   ## shape parameter
    v[t] <- a[idx[t]]
    ## scale parameter (transform between WinBUGS and R's definition of Weibull)
    lambda[t] <- pow(b[idx[t]], -a[idx[t]])</pre>
    # likelihood for turns
    ones[t] ~ dbern(wc[t])
    ## Density function for Wrapped Cauchy distribution
    wc[t] <- ( 1/(2*Pi) * (1 - rho.t[t] * rho.t[t]) / (1 + rho.t[t] * rho.t[t] - 2*rho.t[t] * cos(theta[t] - mu.t[t])) ) / 300
    ## mean cosine for the circular distribution
    rho.t[t] <- rho[idx[t]]</pre>
    ## mean direction for turns
    mu.t[t] <- mu[idx[t]]</pre>
    # idx is the latent variable and the parameter index
    idx[t] ~ dcat(prob[t,])
    \# prob[t, 1] is the probability that the t-th observation corresponds to movement state 1
    prob[t,1] <- p[idx[t-1]]</pre>
   prob[t,2] <- 1 - p[idx[t-1]]
  ####### priors on movement shape
  a[1] ~ dgamma(0.01, 0.01)
  a[2] ~ dgamma(0.01, 0.01)
  ####### priors on movement scale
  b[1] ~ dgamma(0.01, 0.01)
  b[2] ~ dgamma(0.01, 0.01)
  ###### priors for mean direction of turns
  mu[1] ~ dunif(-3*Pi/2, Pi/2)
mu[2] ~ dunif(-3*Pi/2, Pi/2)
  ###### priors for mean cosine of circular distribution
  rho[1] ~ dunif(0, 1)
  rho[2] ~ dunif(0, 1)
  #### priors for transition probabilities
  p[1] ~ dunif(0,1)
  p[2] ~ dunif(0,1)
```

```
### asign state for first observation
phi[1] ~ dunif(0, 1)
phi[2] <- 1 - phi[1]
idx[1] ~ dcat(phi[])
Pi <- 3.14159265359  # define pi
}</pre>
```

Three-state switching model

```
data{
 for (t in 1:numT){
   ones[t] <- 1
  }
}
model{
 for (t in 2:numT){
 # likelihood for steps
   ## Weibull distriution for step length
step[t] ~ dweib(v[t], lambda[t])
    ## shape parameter
v[t] <- a[idx[t]]
    ## scale parameter (transform between WinBUGS and R's definition of Weibull)
lambda[t] <- pow(b[idx[t]], -a[idx[t]])</pre>
    # likelihood for turns.
ones[t] ~ dbern(wc[t])
## Density function for Wrapped Cauchy distribution
wc[t] <- ( 1/(2*Pi) * (1 - rho.t[t] * rho.t[t]) / (1 + rho.t[t] * rho.t[t] - 2*rho.t[t] * cos(theta[t] - mu.t[t])) ) / 300
                          # mean cosine for the circular distribution
# mean direction for turns
rho.t[t] <- rho[idx[t]]</pre>
mu.t[t] <- mu[idx[t]]</pre>
   # idx is the latent variable and the parameter index
idx[t] ~ dcat(prob[t,])
    \# prob[t,i] is the probability that the t-th observation corresponds to movement state i
prob[t,1] <- p[idx[t-1]]</pre>
prob[t,2] <- (1 - p[idx[t-1]]) * phi[idx[t-1]]</pre>
prob[t,3] <- (1 - p[idx[t-1]]) * (1 - phi[idx[t-1]])
####### priors on movement shape
a[1] ~ dgamma(0.01, 0.01)
a[2] ~ dgamma(0.01, 0.01)
a[3] ~ dgamma(0.01, 0.01)
####### priors on movement scale
b[1] ~ dgamma(0.01, 0.01)
b[2] ~ dgamma(0.01, 0.01)
b[3] ~ dgamma(0.01, 0.01)
###### priors for mean direction of turns
mu[1] ~ dunif(-3*Pi/2, Pi/2)
mu[2] ~ dunif(-3*Pi/2, Pi/2)
mu[3] ~ dunif(-3*Pi/2, Pi/2)
###### priors for mean cosine of circular distribution
rho[1] ~ dunif(0, 1)
rho[2] ~ dunif(0, 1)
rho[3] ~ dunif(0, 1)
#### priors for transition probabilities
p[1] ~ dunif(0,1)
p[2] ~ dunif(0,1)
p[3] ~ dunif(0,1)
phi[1] ~ dunif(0, 1)
phi[2] ~ dunif(0, 1)
phi[3] ~ dunif(0, 1)
```

```
### asign state for first observation
idx[1] ~ dcat(phi[])
Pi <- 3.14159265359  # define p
}
```

Fitting the multi-state random walk

The following steps fit the model in R. Note that fitting this model with the JAGS code above can take a long time (several hours or more) depending on the size of the dataset.

To fit a correlated random walk (or a mixture thereof) the steps must equally spaced time intervals, so we interpolate the Lamprey data to meet these requirements. Interpolating every 120 sec. (most observations are separated by 1 or 2 minutes, though the longest gap is 7 minutes) gives 338 data points (slightly less than the smoothed data used in the other analysis).

Loading and prepping the data:

```
require(waddle)
require(rjags)
require(R2jags)
data(Lamprey)
Lamprey.Data <- InterpolatePoints(Lamprey, n = 120, id = "Lamprey")$Data
Lamprey.VT <- GetVT(Lamprey.Data, units = "day")
# small offset to avoid zero sized length steps
Lamprey.VT$S[Lamprey.VT$S == 0] <- 0.000001
Lamprey.MRW <- list("numT" = nrow(Lamprey.VT), "step" = Lamprey.VT$S, "theta" = Lamprey.VT$Theta)</pre>
```

Two-state model

The first model assigns each step to one of two CRW models.

Two-state switching model

In the second model, switching between the two states is governed by a Markovian transition matrix.

Three-state switching model

Three CRW states, and a 3×3 transition matrix.

Analyzing model results

Here, we walk through the steps of analyzing and comparing the multi-state random walk fits.

Two-state model

The two-state model shows no evidence of non-convergence (Gelman diagnostic near 1, Geweke z non-significant):

```
analyzeConvergence(Lamprey.doubleState)
```

##		Mean	SD	X2.5.	X97.5.
##	a[1]	2.464143e+00	0.37383981	1.76984646	3.19205869
##	a[2]	1.049607e+00	0.06662145	0.92333646	1.18467350
##	b[1]	4.931853e+01	3.23675033	43.43154371	54.37937564
##	b[2]	2.007867e+00	0.15337830	1.71320686	2.30596230
##	deviance	6.607187e+03	18.15410551	6586.93898363	6646.10521592
##	mu[1]	-2.030754e-03	0.04752768	-0.09847493	0.09222159
##	mu[2]	-2.804701e+00	0.60960448	-3.75738667	-1.52746609
##	rho[1]	7.287340e-01	0.03490390	0.65690801	0.78988256
##	rho[2]	1.161659e-01	0.05870660	0.01117720	0.22755002
##		effectiveSize	acLag1	gelman.diag g	geweke[[i]]\$z
##	a[1]	1400.000	-0.006336417	1.0071205	0.6429455
##	a[2]	1400.000	0.021615661	0.9998870	1.0435767
##	b[1]	1410.656	0.039997170	1.0230590	-0.5033199

##	b[2]	1400.000	-0.013327198	1.0085056	-0.5673558
##	deviance	1261.469	-0.011667350	1.0411716	-1.6931750
##	mu[1]	1426.106	-0.048890621	0.9998426	-1.6103701
##	mu[2]	1400.000	0.027496496	1.0095541	-1.3642942
##	rho[1]	1400.000	-0.026510167	1.0018636	-0.5061270
##	rho[2]	1370.294	-0.054549612	1.0045038	-0.2916946
##		geweke[[i]]\$z			
##	a[1]	-0.1164879			
##	a[2]	1.0142880			
##	b[1]	0.9070817			
##	b[2]	2.0031802			
##	deviance	0.3698925			
##	mu[1]	0.2262456			
##	mu[2]	-0.4283367			
##	rho[1]	-0.1338814			
##	rho[2]	-1.5355511			

The beginning and end of the trajectory are assigned to the active state (state 1), as well as some steps in the middle sedentary phase (state 2).

We examine the assignment of steps and turning angles to each state. The larger steps were assigned to the active state, while the small steps were assigned to the sedentary state, with only a small degree of overlap. There is more overlap in turning angle distributions between states, though turning angle near 0 (straight ahead) are mostly assigned to the active state and those near π (reverse course) mostly assigned to the sedentary state.

Two-state switching model

Again, no evidence of non-convergence:

analyzeConvergence(Lamprey.doubleStateSwitch)

##		Mean	SD	X2.5.	X97.5.
##	a[1]	3.53187201	0.321767382	2.920625e+00	4.19884526
##	a[2]	0.89757987	0.043658588	8.134354e-01	0.98229215
##	b[1]	54.24703422	1.809152150	5.073268e+01	57.87996119
##	b[2]	2.37916778	0.175876503	2.049216e+00	2.73812815
##	deviance	6589.23642760	5.938071121	6.581414e+03	6604.54868911
##	mu[1]	-0.01459541	0.048392265 -	-1.155302e-01	0.07602620
##	mu[2]	-2.77412344	0.553648639 -	-3.605591e+00	-1.63357678
##	p[1]	0.96532500	0.019498636	9.188865e-01	0.99230559
##	p[2]	0.01198622	0.006970837	2.222964e-03	0.02899685
##	rho[1]	0.74771902	0.033302170	6.788436e-01	0.80819255
##	rho[2]	0.11698437	0.050954968	1.734347e-02	0.22079849
##		effectiveSize	acLag1	gelman.diag	geweke[[i]]\$z
##	a[1]	3479.633	0.011023468	1.0012949	0.5661434
##	a[2]	3600.000	0.003704661	1.0001827	-0.5683059
##	b[1]	3600.000	0.018894431	1.0004766	1.2696181
##	b[2]	3573.779	0.020605721	0.9999525	0.1083452
##	deviance	3825.184	-0.011413562	1.0001396	0.6582386
##	mu[1]	3600.000	0.013536206	1.0004188	0.6934114
##	mu[2]	3470.131	0.002176044	1.0014782	-0.4884161
##	p[1]	3961.421	0.018975394	1.0013417	0.5979218
##	p[2]	3463.041	0.004919769	1.0018417	-0.5320003
##	rho[1]	3569.486	0.006049729	0.9998365	0.7582199
##	rho[2]	3798.539	-0.014078373	1.0003313	0.1373218
##		geweke[[i]]\$z			
##	a[1]	-1.5495825			
##	a[2]	-0.6700394			
##	b[1]	-3.0086735			
##	b[2]	0.4542364			

##	deviance	-1.1581677
##	mu[1]	-1.1150146
##	mu[2]	-0.1631495
##	p[1]	-0.9612567
##	p[2]	1.4792954
##	rho[1]	0.3925924
##	rho[2]	1.5312835

The state assignment is very definite, in that the probability of being in a particular state is always near 1. Again, the beginning and end are in the active state (state 1), but now with only a single brief blip in the middle also assigned to the active state.

Again the states appear to be separated by both step size and turning angle, with more by step size with the larger steps being assigned to the active state and the smaller steps to the sedentary state. The separation of straight ahead and reverse turning angles is stronger than in the double state model.

```
## Warning in as.circular(xx[, 1]): an object is coerced to the class 'circular' using default
value for the following components:
## type:
          'angles'
##
  units: 'radians'
##
   template: 'none'
  modulo: 'asis'
##
##
   zero:
         0
  rotation: 'counter'
##
## rose.diagtheta[getModeStates(doubleState) == 1]362State 1
## Warning in as.circular(x): an object is coerced to the class 'circular' using default value
for the following components:
## type: 'angles'
## units: 'radians'
##
  template: 'none'
## modulo: 'asis'
  zero: 0
##
## rotation: 'counter'
## conversion.circularxradiansmodulo
```

```
## Warning in as.circular(xx[, 1]): an object is coerced to the class 'circular' using default
value for the following components:
## type: 'angles'
## units: 'radians'
## template: 'none'
## modulo: 'asis'
## zero: 0
## rotation: 'counter'
## rose.diagtheta[getModeStates(doubleState) == 2]362State 2
## Warning in as.circular(x): an object is coerced to the class 'circular' using default value
for the following components:
## type: 'angles'
## units: 'radians'
## template: 'none'
## modulo: 'asis'
## zero: 0
## rotation: 'counter'
```

conversion.circularxradiansmodulo

And we can also extract the transition matrix.

getTransitionMatrix(Lamprey.doubleStateSwitch)

[,1] [,2]
[1,] 0.96532500 0.0346750
[2,] 0.01198622 0.9880138

Three-state switching model Finally, we can examine the triple state switching model, to see if there is any evidence of another state. There is no evidence of non-convergence.

analyzeConvergence(Lamprey.tripleStateSwitch)

##		Mean	SD	X2.5.	X97.5.
##	a[1]	3.483051e+00	0.324886948	2.875438e+00	4.16663036
##	a[2]	1.153309e+00	0.079296981	1.002557e+00	1.31379522
##	a[3]	1.212444e+00	0.174263582	9.275370e-01	1.61188537
##	b[1]	5.414744e+01	1.804433230	5.069147e+01	57.69839270
##	b[2]	1.460715e+00	0.162724113	1.147375e+00	1.78757231
##	b[3]	6.047274e+00	1.367573149	4.098217e+00	9.62623103
##	deviance	6.434709e+03	16.420139214	6.404735e+03	6470.09986235
##	mu[1]	-1.367527e-02	0.046527557	-1.071714e-01	0.07273961
##	mu[2]	-1.004372e+00	1.439683707	-4.336549e+00	1.24858118
##	mu[3]	-3.019270e+00	0.102898270	-3.209378e+00	-2.79590215
##	p[1]	9.579842e-01	0.022993688	9.030782e-01	0.99099371
##	p[2]	8.426396e-03	0.007773594	2.821249e-04	0.02731204
##	p[3]	4.041539e-02	0.029502504	4.629346e-03	0.11737983
##	phi[1]	6.280342e-01	0.258871272	9.577220e-02	0.98507055
##	phi [2]	8 926572e-01	0 037915676	8 025432e-01	0 95104377
##	phi [2]	2 6344880-01	0.096450601	1 1020830-01	0 48275622
##	rho[1]	7 504407e-01	0.033471559	6 789035e-01	0.81157917
##	rho[2]	7 070364e-02	0.056588459	2 2837236-03	0 21307958
##	rho[3]	5 876642e-01	0.086918760	4 095890e-01	0.74860286
##	110[0]	offectiveSize	acI ag1	relman diag g	0.14000200
##	□[1]	3200 000	-0 0088286/3	1 0053801	-1 80885268
##	a[1]	3330 95/	-0.008878090	1 000/809	0.2753/062
##	a[2]	3044 500	0.0/2/61785	1 0029876	0.5/1389/7
##	a[J]	3646 147	-0.022464027	1.0025070	-1 19037017
## ##	עניין ג[ט]	3200 000	-0.022404237	1.00000004	0 90169600
## ##	D[2]	3200.000	0.002330738	1.0015657	0.00100033
## ##	doviance	3200.000	0.008840805	1 0110760	0.33321313
##		0765 E10	0.000040000	1.00112703	-0 60111050
##	mu[1]	2700.019	-0.022105504	1.0004277	-0.09111950
##	mu[2]	3365.721	-0.023274794	1.0000795	0.76779986
##	mu[3]	3200.000	-0.009006040	1 0627224	-0.00102209
##	p[1]	3200.000	0.020230933	1.2037334	-0.47003227
##	p[2]	2000.012	0.009230566	1.0006739	-0.06/118/5
##	p[3]	3207.021	0.029380982	1.0105744	-0.25810561
##	pn1[1]	3324.020	-0.028578995	1.0128243	-0.89564692
##	pn1[2]	3362.000	-0.038029201	0.9998304	0.87510246
##	pn1[3]	3200.000	0.018995233	1.0218359	0.103/4400
##	rno[1]	3200.000	-0.013221142	1.0000597	0.00/30903
##	rno[2]	3620.692	-0.009980454	1 0000004	-0.57659436
##	rno[3]	3414.564	-0.024022292	1.0022904	0.83/32991
##	- [1]	geweke[[1]]\$Z			
##		0.09444167			
##	a[2]	-1.22349118			
##	a[3]	-1.20801613			
##	D[I]	-2.24044941			
##	b[2]	-0.66181541			
##	D[3]	-1./54381/8			
##	deviance	-0.76208750			
##	mu[1]	-0.13818666			
##	mu[2]	-0.00137399			
##	mu[3]	-0.20556070			
##	p[1]	-1.25612771			
##	p[2]	-1.48339200			
##	p[3]	0.27753196			
##	phi[1]	1.92156700			
##	phi[2]	-1.80912309			
##	phi 3	-0.11138220			

##	rho[1]	0.48145105
##	rho[2]	0.26499277
##	rho[3]	0.25256349

The active state (state 1) is very similar to the active state in the double state switch model, and the sedentary state is broken into two states.

The active state parameters are very similar to the double state switch model. The two sedentary states consist of a state with small steps in all directions (state 2) and a state with larger steps and direction reversals (state 3).

Change point comparison

Looking at where each model identifies changes from one behavior state to the next, we see that the double state switching model has the fewest change points, and is a subset of both the double state and triple state switch models. Interestingly, the triple state switch model has the most change points, even though the double state model includes no persistence, so there is less constraining state assignment.

# 1	# Double state											
cb	<pre>cbind(Lamprey.VT, state = getModeStates(Lamprey.doubleState))[</pre>											
7	which(diff(getModeStates(Lamprev.doubleState)) != 0), c(3:5, 10:12)]											
	((
		<i>a</i>	51.				m DOGTV					
##		S	Phi	Theta	V		T.PUSIX					
##	14	7.5369389	1.3526608	0.004821148	5426.5960	2010-05-02	09:16:00					
##	24	7.7652215	-2.6327930	-5.583655147	5590.9595	2010-05-02	09:36:00					
##	25	52.4119407	2.8676294	5.500422403	37736.5973	2010-05-02	09:38:00					
##	43	0.3466376	-2.8908766	-0.759987608	249.5791	2010-05-02	10:14:00					
##	44	13.5509032	1.3132600	4.204136594	9756.6503	2010-05-02	10:16:00					
##	45	3.3514993	-1.8113462	-3.124606174	2413.0795	2010-05-02	10:18:00					
##	46	10.1547235	-1.8192143	-0.007868138	7311.4009	2010-05-02	10:20:00					
##	89	3.8859063	3.1397913	3.321768205	2797.8525	2010-05-02	11:46:00					
##	91	15,6577475	-2.5295508	-3.088392823	11273.5782	2010-05-02	11:50:00					

##	141	7,9436381	-0.4825744	-2.621215743	5719,4194	2010-05-02	13:30:00
##	143	19 7105991	2 9831474	3 312293550	14191 6314	2010-05-02	13.34.00
##	1/1	0 7123038	0 1021003	-2 701038132	512 8587	2010-05-02	13.36.00
##	1/6	17 5054720	-0.7776056	-2 160261040	10602 0410	2010 00 02	12.40.00
## ##	140	11.0004109	-2.1110030	-3.100301240	12003.9412	2010-05-02	13.40.00
##	174	3.000/200	-0.4990921	-0.460431126	2640.0431	2010-05-02	14:30:00
##	1/5	12.0887090	3.0489773	3.548069377	8703.8705	2010-05-02	14:38:00
##	256	6.5711688	-0.3857890	0.256880441	4731.2416	2010-05-02	17:20:00
##	257	12.2872229	2.7554431	3.141232067	8846.8005	2010-05-02	17:22:00
##	266	1.2159359	2.5969419	0.577263624	875.4738	2010-05-02	17:40:00
##		state					
##	14	1					
##	24	2					
##	25	1					
##	43	2					
##	44	- 1					
##	15	2					
## ##	40	2					
##	46	1					
##	89	2					
##	91	1					
##	141	2					
##	143	1					
##	144	2					
##	146	1					
##	174	2					
##	175	1					
##	256	2					
##	257	1					
##	266	2					
~	200	2					
cb: T	ind(I which	Lamprey.VT, n(diff(getMo	state = get odeStates(La	ModeStates(La mprey.doubleS	amprey.doub) StateSwitch)	leStateSwitc)) != 0), c(h))[3:5, 10:12)]
##		S	Phi	Theta	V	Т.	POSIX state
##	13	14.901510	1.347840 0	.04514548 107	29.0869 20:	10-05-02 09:	14:00 1
##	24	7.765222 -	-2.632793 -5	.58365515 55	590.9595 20	10-05-02 09:	36:00 2
##	25	52 411941	2 867629 5	50042240 377	736 5973 201	10-05-02 09:	38.00 1
##	266	1 215936	2.5060/020	57726362	2010010 201	10-05-02 17:	40.00 2
# #	200	1.210000	2.000042 0	.01120302 0	010.4100 20.	10 05 02 17.	40.00 2
# 1	Doubl	le state swa	itch				
cb:	ind(I	Lamprey.VT,	state = get	ModeStates(La	amprey.trip	LeStateSwitc	h))[
T	which	n(diff(getMo	odeStates(La	mprey.tripleS	StateSwitch))) $!= 0$), c(3:5, 10:12)]
##		G	D1	ጥኤ	- 2	V	T DOGTY
##	1.4	7 5360200	1 35066004	A 901140c 4		SO 2010-05 0	2 00.16.00
##	14	1.5369369	1.35266081	4.0211400-0	03 5426.590	50 2010-05-0	2 09:16:00
##	19	0.5806422	2.07280956	3.945381e+0	418.062	24 2010-05-0	2 09:26:00
##	24	1.7652215	-2.63279304	-5.583655e+0	5590.959	95 2010-05-0	2 09:36:00
##	25	52.4119407	2.86762936	5.500422e+0	00 37736.59	73 2010-05-0	2 09:38:00
##	30	2.3506419	2.02384672	-8.411939e-0	1692.462	22 2010-05-0	2 09:48:00
##	31	6.3796991	-0.09565711	-2.119504e+0	4593.383	34 2010-05-0	2 09:50:00
##	43	0.3466376	-2.89087658	-7.599876e-0	249.579	91 2010-05-0	2 10:14:00
##	48	3.1906592	0.74449828	3.222119e+0	0 2297.274	46 2010-05-0	2 10:24:00
##	61	1.3475807	-0.12948179	-2.317286e+0	0 970.258	31 2010-05-0	2 10:50:00
##	66	3.3138771	0.53796647	2.914544e+0	0 2385 99	15 2010-05-0	2 11:00:00
##	69	1 8868385	0 66648867	1 0609676+0	0 1358 523	37 2010-05-0	2 11.06.00
ππ ##	77	2 2511070	0 33700/00	3 070737~+0	1620 94	18 2010-05-0	2 11.00.00
##	07	0.0607004	-2 06054207				2 11.22.00
##	07	0.8607901	-3.00251307	-2.230365e+0	0 1004 (0)	2010-05-0	2 11:42:00
##	92	2.0131093	1.40/2/3/3	4.0100206+(10 1001.430	2010-02-0	Z 11:02:00

##	122	4.3149519	-0.10137203	-7.037516e-02	3106.7653	2010-05-02	12:52:00
##	123	6.8246386	3.09649562	3.197868e+00	4913.7398	2010-05-02	12:54:00
##	132	1.8105262	2.77852309	4.875661e+00	1303.5789	2010-05-02	13:12:00
##	137	1.5407770	3.03299244	3.400855e+00	1109.3595	2010-05-02	13:22:00
##	138	1.5781567	2.91665558	-1.163369e-01	1136.2728	2010-05-02	13:24:00
##	148	2.6515621	-2.68754197	-2.724325e+00	1909.1247	2010-05-02	13:44:00
##	152	1.2677510	-0.35318517	1.355578e-01	912.7807	2010-05-02	13:52:00
##	153	4.7217068	2.57284601	2.926031e+00	3399.6289	2010-05-02	13:54:00
##	170	2.0785929	-0.04379361	-1.521235e+00	1496.5869	2010-05-02	14:28:00
##	175	12.0887090	3.04897731	3.548069e+00	8703.8705	2010-05-02	14:38:00
##	179	2.3228243	2.73873214	2.432000e+00	1672.4335	2010-05-02	14:46:00
##	182	2.4655032	-0.86095584	-3.893890e+00	1775.1623	2010-05-02	14:52:00
##	209	2.8751417	-2.65852404	-3.297681e+00	2070.1021	2010-05-02	15:46:00
##	213	11.0073713	-2.66716405	-3.080943e+00	7925.3073	2010-05-02	15:54:00
##	247	2 0071698	-0.36155797	-6 059777e-01	1445 1623	2010-05-02	17.02.00
##	250	3 4623084	-0 15207400	2 9579990+00	2492 8621	2010-05-02	17.08.00
##	254	0 2475636	-3 10523036	-3 759465e-09	178 2458	2010-05-02	17.16.00
##	201	0.2470000	-0 72235162	-3 /777050+00	1551 /766	2010 05 02	17.04.00
##	200	1 0150250	0.72233102	-3.47795e+00	07E 1720	2010-05-02	17.40.00
##	200	17 0402404	2.59094107	-1 E0EE24a+00	12017 0/51	2010-05-02	17.40.00
##	207	17.9403404	1.00141741	-1.5955240+00	12917.0451	2010-05-02	17:42:00
##	1 /	State					
##	14	1					
##	19	2					
##	24	3					
##	25	1					
##	30	2					
##	31	3					
##	43	2					
##	48	3					
##	61	2					
##	66	3					
##	69	2					
##	77	3					
##	87	2					
##	92	3					
##	122	2					
##	123	3					
##	132	2					
##	137	3					
##	138	2					
##	148	3					
##	152	2					
##	153	3					
##	170	2					
##	175	3					
##	179	2					
##	182	3					
##	209	2					
##	213	3					
##	247	2					
##	250	3					
##	254	2					
##	258	3					
##	266	2					

Model comparison

3

267

We can compare models using DIC (a function of the deviance and the estimated number of parameters, pD).

getDIC(list(Lamprey.doubleState, Lamprey.doubleStateSwitch, Lamprey.tripleStateSwitch))

DIC pD
DoubleState.txt 6771.697 164.50965
DoubleStateSwitch.txt 6606.869 17.63259
TripleStateSwitch.txt 6569.137 134.42775

For these data, the DIC supports selecting the three-state switching model, but the two-state switching model is quite close.