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Common and Inconvenient Features of Movement Data

Multi-dimensional
Auto-correlated
Error-ridden

Irregularly sampled

Heterogeneous!
e Across space (environmental) e Between individuals (population)
e Within an individual (behavioral)

Lack of consensus on appropriate models or analysis methods
v




Basic Question:

How do we identify/characterize/model behavioral heterogeneity /
complexity in individual animal movement data?



Basic Question:

How do we identify/characterize/model behavioral heterogeneity /
complexity in individual animal movement data?

Manuscript Objective:

Actually, many methods exist in the literature! This is confusing. Our
goal is to take (some of) these methods and

@ schematize, review, assess, compare and contrast.

strengths and weaknesses
assumptions

difficulty of implementation
interpretabilty of outputs
other criteria?

@ Provide conceptual framework to guide choice of appropriate
analysis.



Methods:

Hidden Markov modeling / State space modeling of multi-state
random walks - SSM/HMM (Morales et al. 2004, Jonsen et al. 2008)

First passage time - FPT (Fauchald and Tveraa 2003)
Trajectory segmentation (Barraquand Benhamou 2008, Calenge)
Behavioral change point analysis - BCPA (Gurarie et al. 2009)
More?!
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Multi-state random walks

Basic ldea:

@ Assume the animal has several distinct / discrete behavioral states,
each associated with a set of movement behaviors.
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@ Formulate a model in which the switching between discrete states
occurs with some rate (that can be a function of covariates)



Multi-state random walks

Basic ldea:

@ Assume the animal has several distinct / discrete behavioral states,
each associated with a set of movement behaviors.

@ Formulate a model in which the switching between discrete states
occurs with some rate (that can be a function of covariates)

o Estimate! (typically using Bayesian MCMC)



Hidden Markov Model: Morales et al. 2004
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Ecology, 85(9). 2004, pp. 2436-2445
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EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING
MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS

JUAN MANUEL MORALEs.!* DANIEL T. HAYDON.? JACQUI FRAIR? KENT E. HOLSINGER,!
AND JOoHN M. FRYXELL?



HMM: Morales et al. 2004
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HMM: Morales et al. 2004

Daily movement rate
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State-space modeling

A SSM consists of coupled stochastic models (Figure |): a process
model

Xt = g(Xt-1,m) [Equation la]
describing the state of an animal (e.g. position X = {Xiongitude,tf,Xiati-
wdet}) at time t and an observation model

yi = h(x. &) [Equation Ib]

TREE §94; No of Pages §

Review | Cel

State-space models of individual
animal movement

Toby A. Patterson’?, Len Thomas®, Chris Wilcox", Otso Ovaskainen* and
Jason Matthiopoulos®®



State-space modeling
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Switching SSM:

44°N

another example

42°

68°W 66° 64° 62°
Fig. 1. Dermochelys coriacea. State estimates (x,, filled circles) with associated
behavioural mode estimates (blue = transiting, red = foraging, black = uncertain)
obtained from the SSSM for a leatherback turtle (B.1) tagged in coastal waters
off Nova Scotia, Canada. The full path is shown inset. The underlying grey line
indicates the observed Argos positions. The time interval between each x, is 6 h.
The 1000 m isobath is displayed as a dashed black line

Vol
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. 337: 255264, 2007

Identifying leatherback turtle foraging behaviour

from satellite telemetry using a switching
state-space model

Ian D. Jonsen*, Ransom A. Myers*, Michael C. James

‘Department of Biology, Dalhousie University, 1355 Oxford Street, Haliiax, Nova Scotia B3H 471, Canada



HMM/SSM/SSSM: Components

@ Movement model
o often 2-3-state CRW, but also applications with centers of attraction
@ Behavioral switching model

o Markovian state-transition matrix
o Can depend on co-variates

@ Observation model

o but only if error is important, especially in marine environments



HMM/SSM: Assessment

@ Natural implementation of responses to covariates.
@ Ability to estimate a “full” process-based models

o Capable of including “arbitrarily” complex behaviors, e.g. with
external biases or (possibly unknown) centers of attraction.

Potential for hierarchical modeling

Explicit accounting for observation error.




HMM/SSM: Assessment

@ Natural implementation of responses to covariates.

@ Ability to estimate a “full” process-based models

o Capable of including “arbitrarily” complex behaviors, e.g. with
external biases or (possibly unknown) centers of attraction.

o Potential for hierarchical modeling

@ Explicit accounting for observation error.

A

Weaknesses

@ Very heavy reliance on a priori assumption of “countable”
states

@ Dependence on having some idae

e To date: Fitting of discrete-time models. High reliance on
CRW-type models (which do not scale very well, or are easily fitted
with irregularly sampled data).

e Computationally very intensive. Sometimes (often) intractable.

A




First Passage Time Analysis

Ecology, 84(2), 2003, pp. 282-288
© 2003 by the Ecological Society of America

USING FIRST-PASSAGE TIME IN THE ANALYSIS OF AREA-RESTRICTED
SEARCH AND HABITAT SELECTION

PER FAUCHALD! AND TORKILD TVERAA

Norwegian Institute for Nature Research, Division of Arctic Ecology, Polar Environmental Center,
N-9296 Tromse, Norway

Basic ldea:
The longer it takes you to leave an area, the longer you are searching.

Basic Method: Compute how long it takes to “leave” a variety range of
radii over entire track.



FPT: Implementation

Compute all times T(r) within a circle of radius r around point i.

limage from Barraquand and Benhamou 2008



FPT: Area Restricted Search
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FPT: Applied to petrel tracks
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FPT: Assessment

@ Few assumptions about movement model

@ Insights into scales of overall and intensive searching properties

@ Easy to implement




FPT: Assessment

@ Few assumptions about movement model

@ Insights into scales of overall and intensive searching properties

@ Easy to implement

Weaknesses

o No “objective” statistical method to identify segmentations

@ Relies heavily on assumption that Area Restricted Use is related to
intensive foraging
o Fails if foraging is itself mobile (e.g. fur seals)
o Fails if resting and prey processing are more stationary than hunting.

o Difficult to implement for irregularly sampled data




Related technique: Spatio-temporal path segmentation

Basic ldea:

o Compute total residence time within a radius
o Apply statistical time-series segmentation techniques (Lavielle 2005)
to classify time-series of use-intensity
o Heuristic selection of number of change points within a time series

o Implemented by Clément in adehabitatLT

Ecology, 89(12), 2008, pp. 3336-3348
© 2008 by the Ecological Society of America

ANIMAL MOVEMENTS IN HETEROGENEOUS LANDSCAPES:
IDENTIFYING PROFITABLE PLACES AND HOMOGENEOUS
MOVEMENT BOUTS

N >
FREDERIC BARRAQUAND! AND SIMON BENHAMOU?

Centre z/'l':'('nlu‘gi(' Fonctionnelle et Evolutive, CNRS Montpellier, France



Related technique: Spatio-temporal path segmentation
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More Segmentation: adehabitatL T

Analysis of Animal Movements in R:
the adehabitatLT Package
Clement Calenge,

Office national de la chasse et de la faune sauvage
Saint Benoist — 78610 Auffargis — France.

April 2011



More Segmentation: adehabitatL T
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More Segmentation: adehabitatL T
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Behavioral Changepoint Analysis (BCPA)

Basic Goal:
Identify behavioral changes with minimal a priori assumptions in a
movement dataset:

o that is autocorrelated and can be sampled irregularly or with error;

@ that contains an arbitrary number of discrete states, and can
accomodate gradual changes in behavior



Behavioral Changepoint Analysis (BCPA)

Basic Goal:

Identify behavioral changes with minimal a priori assumptions in a
movement dataset:

o that is autocorrelated and can be sampled irregularly or with error;

@ that contains an arbitrary number of discrete states, and can
accomodate gradual changes in behavior

Basic Method:
@ Define a homogeneous portion of movement from organism’s
perspective (e.g. velocities and turning angles) as a time-series with
a few parameters (u, o, p)
@ Use likelihood methods and selection criteria to see if there is a
“significant” shift in the values of the parameters over a portion of
the data.

@ Scan the complete data with a moving window.



BCPA: Select movement variable

V;cos(8,)

Persistence Velocity Component: V,, = V/ cos()

@ Captures tendency and speed of persistence:

o high mean = high speed and consistent orientation

e high variance = variable behaviors (stopping and going, slowing
down and speeding)

o high auto-corellation = behavioral changes slower than sampling
interval
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BCPA: Likelihood Model

EX(1) = n
Var (X(t))
Corr (X(t)) X(t —7)

1l
S

F(X(£)|X(t — 7)) ~ Gaussian [p” X (t — 7),02%(1 — p*7)]



BCPA: Estimating p

Conditional Likelihood:

L(p|X,T) Hf(X|x, LT P)s

where:

B 1 (Xi — p7(Xi—1 — 1))
f(Xi|Xi—1) = U\/m exp ( 20_2(1 — plz-,—,-) >

then:

p = argmax, L(p|X,T)



Estimating p
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BCPA: Identifying Change Point
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BCPA: Identifying Change Point
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BCPA: Identifying Change Point
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BCPA: Identifying Change
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BCPA: Identifying Change Point, different p's
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BCPA: Identifying Models

Model 0 | py=p2 o1=02 p1=p2
Model 1 | py #pp o1=02 p1=p2
Model 2 | py=po o01#02 p1=p2
Model 3 | py=p2 o1=02 p1# p2
Model 4 | w1 #pe 01 # 02  p1=p2
Model 5 M1 7é H2 g1 = 02 P1 75 P2
Model 6 M1 = M2 g1 7é g9 P1 7é P2
Model 7 | p1 # 2  o01# 02  p1# p2



BCPA: Identifying Models

Model 0 | py=p2 o1=02 p1=p2
Model 1 | py #pp o1=02 p1=p2
Model 2 | py=po o01#02 p1=p2
Model 3 | py=p2 o1=02 p1# p2
Model 4 | w1 #pe 01 # 02  p1=p2
Model 5 M1 75 H2 g1 = 02 P1 75 P2
Model 6 M1 = M2 g1 7é g9 P1 7é P2
Model 7 | p1 # 2  o01# 02  p1# p2

How to choose?

BIC: Ig(X,T) = —2nlog (L(@\X,T)) + dlog(n)



BCPA: Model selection

BIC selected Model
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Select Window
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BCPA: Algorithm for Identifying Multiple Changepoints

@ Select Window
@ Find MLBP
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BCPA: Algorithm for Identifying Multiple Changepoints

@ Select Window
Find MLBP
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BCPA: Algorithm for Identifying Multiple Changepoints

@ Select Window
Find MLBP
Identify Model

Record estimates based on model selected.
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BCPA: Algorithm for Identifying Multiple Changepoints

@ Select Window
Find MLBP
Identify Model

Record estimates based on model selected.

Move window forward and repeat




BCPA: Movement analysis output
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BCPA: Northern Fur Seal
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BCPA: Swedish Moose?
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BCPA: Swedish Moose?

aa_ac_04_050.yr1:VeosW

3Thanks to Navi Singh



BCPA: Swedish Moose*
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BCPA: Swedish Moose®
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BCPA: Behavioral phase plot
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BCPA: Assessment

o Very few a priori assumptions

@ Works on continuous time-series

o Relatively easy/fast to implement

@ Synthesizes complex/messy data into something digestible

@ Can be applied to any time-series derived from movement (speed,
persistence, turning, depths)




BCPA: Assessment

o Very few a priori assumptions

@ Works on continuous time-series
o Relatively easy/fast to implement
@ Synthesizes complex/messy data into something digestible

@ Can be applied to any time-series derived from movement (speed,
persistence, turning, depths)

N

Weaknesses

e Confusing output.
Not a “complete” model of a process.

Requires considerable post hoc effort to interpret results.

°
("]
@ Requires some “tuning” (window-sizes, selection thresholds)
°

Joint modeling of multiple time-series?




Discussion point

There seems to be a fundamental distinction between “full modeling”
approaches (HMM, SSM) and “synthesizing approaches” (BCPA,
segmentation).



Full process modeling

@ Can be very powerful for quantifying relationships between (behaviorally
heterogeneous) movements and explanatory factors (e.g. habitat),
allowing for fully parameterized models, model comparison, etc.

@ Can incorporate arbitrarily complex movement models, e.g. with centers of
attraction (including unknown ones, e.g. McClintock 2012)

@ Relies very heavily on strong a priori assumptions about:

e a) the movement model, especially the number of states

e b) the functional form of response to covariates ... which leads to
questions about what is “selection”, “availability”, the role of
internal states, etc.

@ Can be computationally very intensive. Effort (and tuning) goes into
making models converge, independent biological knowledge goes
(perhaps) into Bayesian priors.




Full process modeling

@ Can be very powerful for quantifying relationships between (behaviorally
heterogeneous) movements and explanatory factors (e.g. habitat),
allowing for fully parameterized models, model comparison, etc.

@ Can incorporate arbitrarily complex movement models, e.g. with centers of
attraction (including unknown ones, e.g. McClintock 2012)

@ Relies very heavily on strong a priori assumptions about:
e a) the movement model, especially the number of states
e b) the functional form of response to covariates ... which leads to

questions about what is “selection”, “availability”, the role of
internal states, etc.

@ Can be computationally very intensive. Effort (and tuning) goes into
making models converge, independent biological knowledge goes
(perhaps) into Bayesian priors.

y

Future directions:

@ Account better for continuous time processes

@ More flexible definitions, possible numbers of discrete states
@ Explicit accounting for relationship between dimensions of movement data

@ more?




Synthesizing approaches

@ require far fewer a priori assumptions, and can more flexibly
accommodate different kinds of movement models (correlated,
continuous) or metrics (but probably only as long as they can be
“coerced” to be Gaussian).

@ Generally, computationally much easier/faster.

o provides NO further suggestion as to how to explain the synthesized
output, i.e. requires a whole separate, wide open step of modeling
the outcumes (e.g. the times and locations of behavioral change
points).

@ Generally requires some biologically meaningful/case specific
“tuning” of parameters.




Synthesizing approaches

@ require far fewer a priori assumptions, and can more flexibly
accommodate different kinds of movement models (correlated,
continuous) or metrics (but probably only as long as they can be
“coerced” to be Gaussian).

@ Generally, computationally much easier/faster.

o provides NO further suggestion as to how to explain the synthesized
output, i.e. requires a whole separate, wide open step of modeling
the outcumes (e.g. the times and locations of behavioral change
points).

@ Generally requires some biologically meaningful/case specific
“tuning” of parameters.

V.

Future directions:

e Formalization of methods/strategies for post hoc analysis?

@ Incorporation of multi-dimensional data (multiple time-series)?

@ Expansion beyond entirely organism-centric variables?




What is a researcher with data supposed to do?

Obviously this depends on what the QUESTIONS are and what the
DATA can support!
Some general (hypothetized) principles:

o Consider carefully (and explore empirically) whether CRW or
continuous time model is appropriate, what metrics might be most
meaningful, whether measurement error is important.

o This depends on resolution and regularity of data. Very high
temporal resolution and very irregular data, should NOT be modeled
with CRW.

o Discretization of data (e.g. "best daily location”) can be a helpful
simplification.

@ Explore data (with more “synthesizing approaches” and heavy use of
visualization) before fitting complex models.

@ Be aware of assumptions behind different methods, and test to see if
they are supported by the data! (provide concrete examples.)



What are we doing?

Exploring/illustrating these principles...

@ Picking some data-sets to analyze.
o Different scales and resolutions?
o Different richness of covariate data?
o Simulate some data to illustrate strenghts/weakness of different
methods?
e How many?
@ Picking some methods to apply
e Some or all of these?
o Assign experts to perform analyses!
o Picking some “objective” criteria to assess/compare outputs?

@ Perhaps make an honest attempt to “break” the models - i.e. show
how if you don't account for some basic process (violate
assumptions) the wrong result appears?



Please, discuss!
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Change-point analyses®
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Change-point analyses®
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Change-point analyses®

a) speed switch
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Broad

recommnedations

Trust biological intuition

Be aware of the structure of the data
Consider feasibility

Be aware of and test assumptions
Build your analysis off focal individuals
Assess via simulation

Combine tools
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